
ARTICLE OPEN

Olfactory genes affect major depression in highly educated,
emotionally stable, lean women: a bridge between animal
models and precision medicine
Nora Eszlari 1,2✉, Gabor Hullam1,3, Zsofia Gal 1,2, Dora Torok1,2, Tamas Nagy1,2,3, Andras Millinghoffer2,3, Daniel Baksa 1,2,4,
Xenia Gonda 2,5, Peter Antal3, Gyorgy Bagdy1,2 and Gabriella Juhasz 1,2

© The Author(s) 2024

Most current approaches to establish subgroups of depressed patients for precision medicine aim to rely on biomarkers that
require highly specialized assessment. Our present aim was to stratify participants of the UK Biobank cohort based on three readily
measurable common independent risk factors, and to investigate depression genomics in each group to discover common and
separate biological etiology. Two-step cluster analysis was run separately in males (n= 149,879) and females (n= 174,572), with
neuroticism (a tendency to experience negative emotions), body fat percentage, and years spent in education as input variables.
Genome-wide association analyses were implemented within each of the resulting clusters, for the lifetime occurrence of either a
depressive episode or recurrent depressive disorder as the outcome. Variant-based, gene-based, gene set-based, and tissue-specific
gene expression test were applied. Phenotypically distinct clusters with high genetic intercorrelations in depression genomics were
found. A two-cluster solution was the best model in each sex with some differences including the less important role of neuroticism
in males. In females, in case of a protective pattern of low neuroticism, low body fat percentage, and high level of education,
depression was associated with pathways related to olfactory function. While also in females but in a risk pattern of high
neuroticism, high body fat percentage, and less years spent in education, depression showed association with complement system
genes. Our results, on one hand, indicate that alteration of olfactory pathways, that can be paralleled to the well-known rodent
depression models of olfactory bulbectomy, might be a novel target towards precision psychiatry in females with less other risk
factors for depression. On the other hand, our results in multi-risk females may provide a special case of immunometabolic
depression.
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INTRODUCTION
Major depressive disorder (MDD) is a common and heavily
debilitating psychiatric condition [1], with high rates of treatment
resistance, which poses an urgent need for the identification of
reliable biomarkers that characterize distinct subgroups of
patients with distinct therapeutic needs [2, 3]. Although this
strategy, namely precision medicine, seems a promising approach
in MDD therapy, present stratification strategies mainly use
genetic, brain imaging or electrophysiological biomarkers as the
starting point [4–6], all of which biomarkers are of high cost and
requiring specific equipment to assess.
A novel approach to understand the heterogeneous genetic

underpinnings of depression could come from first stratifying
patients according to various, more easily and efficiently measur-
able, established risk factors or endophenotypes of MDD, which
could even aggregate into distinct profiles or constellations to
form data-driven, solid patient subgroups, followed by exploring
unique and specific biomarkers for each identified subgroup.

Because of the easy measurement of clustering variables in the
first step, successfully identified biomarkers in the second step
could pave the way towards tailored interventions or even
prevention methods which are feasible in the everyday practice
of general practitioners or mental health providers.
In order to stratify subjects along this novel approach, three

common, well-established, and easily assessed risk factors of MDD
offer a good choice: neuroticism, body fat percentage, and years
spent in education. Neuroticism is a personality trait, representing a
stable tendency to experience negative emotions, and its high level
is a firm endophenotype for depression, meaning that it lies on the
causal pathway between genes and the disorder [7, 8]. High body fat
percentage [9–11] as an internal, and low level of education as an
external risk factor [8, 12–14] have also been robustly associated with
MDD risk. Moreover, depressogenic effects of these three risk factors
are also dependent on each other: the constellation of neuroticism
and body fat percentage [15], or of neuroticism and socio-economic
status [15, 16] has been reported to be associated with depression
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severity. Another important moderating variable is sex: the
depressogenic effect of high body fat percentage was more
pronounced in women than in men [11], and the depressogenic
effect of low education level was only present in women in a study
[17]. Moreover, effects of polymorphisms within the serotonin
transporter gene on neuroticism and depression were also
dependent on sex, being the homozygotic low-expression genotype
a risk only in men but not in women [18].
Our present aim was to reveal the genomic background of MDD

within separate subgroups that can be characterized by distinct
risk or protective patterns of sex, neuroticism, body fat percentage,
and years spent in education. Such a stratification in genomics may
then lead to the discovery of novel drug targets or biomarkers.

MATERIALS AND METHODS
Participants
Under application number 1602, we analyzed data from white British UK
Biobank participants who had provided a written informed consent.
Invitation and recruitment were based on NHS patient registers of people
aged 40–69 years [19]. Ethical approval was given by the National Research
Ethics Service Committee North West–Haydock [20], and all procedures
were carried out in accordance with the Declaration of Helsinki.
In our present study, we included participants who passed genomic

quality control (QC) and filtered out those who had missing data on any of
the variables of sex, neuroticism score, body fat percentage, years in
education, age, genotyping array, lifetime depression, and current
depression score. These filtering steps yielded 149,879 males and
174,572 females in our present analyses. Age ranged between 39 and 72
years in males, and between 40 and 71 years in females.

Phenotypes
Neuroticism score was calculated as the sum of 12 dichotomous items of
the EPIN-R questionnaire [19], divided by the number of responded items
for each participant, then multiplied by 12, yielding a range between 0
and 12.
Body fat percentage (data field ‘23099’ in UK Biobank) was calculated

based on impedance measurement and body composition estimation.
Body fat percentage is considered high above 25% in males and above
35% in females [15].
Years spent in education was derived from data field ‘6138’, based on

the recoding system by [21] and [22], and yielding a range between 7 and
20 years of education.
Lifetime depression status was based on a lifetime diagnosis of either a

depressive episode (F32 according to ICD-10, data field ‘130894’) or
recurrent depressive disorder (ICD-10 F33, data field ‘130896’).
Current depression score was calculated as the sum of four depression

items detailed in [15] and [23], divided by the number of responded items
and multiplied by four, yielding a range between 4 and 16.
Mean and standard error of mean of each continuous variable is

presented in Supplementary Table 1.
The prerequisite of cluster analyses is that clustering variables should be

relatively independent of each other, being thus capable of showing
various patterns or profiles in distinct subgroups of participants.
Neuroticism, body fat percentage (henceforth body fat), and years spent
in education (henceforth education) showed significant and low Pearson
correlation values with each other (Supplementary Table 2), with the
maximum absolute values of correlation between body fat and education,
which were −0.149 in males and −0.147 in females.

Genotyping, imputation, and genomic quality control
QC procedure of UK Biobank, as well as our additional QC steps for variants
and participants were implemented as detailed in [23], with the only
exception that in this study we involved X and Y chromosomes, as well as
pseudo-autosomal regions of X and Y chromosomes, in addition to
autosomal chromosomes. Single-nucleotide polymorphisms (SNPs) and
genes were positioned according to the GRCh37/hg19 genome assembly.

Analyses
A priori cluster analyses demonstrated that including sex as a clustering
variable in addition to neuroticism, body fat, and education would result in
two clusters of male and female, but both clusters would be excessively

heterogeneous internally (average Silhouette coefficient for the model was
0.4). Consequently, we ran the same cluster analysis model separately in
males and females, with neuroticism, body fat, and education as clustering
variables.
Two-step cluster analysis was run using IBM SPSS 29, with default

settings of cluster features tree tuning and without outlier noise handling
in the first step. In the second step, for the agglomerative clustering, the
optimal cluster number was determined by Schwarz’s Bayesian Informa-
tion Criterion (BIC) with a maximum of 15. All three variables were
standardized for the analysis, and a log-likelihood distance measure was
used. An average Silhouette coefficient above 0.5 indicates a good
solution, with clusters that are internally homogeneous and at the same
time distant from all the other clusters. To ensure the stability of the
clustering solution, the same cluster analysis method was repeated 20
times in each sex, with 20 distinct random orders of the participants. From
the 20 resulting solutions, we chose the one that yields a total correlation
of cluster membership with another solution out of the 20, and at the same
time has the highest possible Silhouette coefficient. From these two highly
correlating models, in each sex we chose the one that would yield a larger
sample size in the smaller cluster.
To compare clusters with each other, descriptive statistics were also

done using IBM SPSS 29.
For SNP-level genome-wide association study (GWAS) within each

cluster, Plink2 [24] was used (accessed on 8–10 February 2024). To control
for population stratification, top ten principal components (PCs) of the
genome were calculated with an approximative method [25] within each
of the four clusters (see below, in Cluster analyses and description of the
clusters part of Results section). Logistic regression models were run for
lifetime depression status as outcome, with each SNP, age, genotyping
array, and the top ten PCs as predictors. In males 6,266,283 SNPs and in
females 6,266,189 SNPs survived genomic QC, which, together with the
two clusters in each sex, entailed a p < 1.9948 × 10−9 Bonferroni-corrected
significance threshold. Continuous variables were standardized in the
analyses. SNP-level GWAS results were entered into further analyses.
The Complex-Traits Genetics Virtual Lab (CTG-VL) web platform [26] was

used for SNP heritability, genetic correlation, and latent causal variable
(LCV) analyses (accessed on 13 February 2024). Within all these analyses,
the European reference population of the 1000 Genomes (phase 3)
database was used for linkage disequilibrium (LD) calculation.
The LD Score Regression (LDSC) method calculates LD score for each

SNP, which means the amount of genetic variation tagged by the SNP. LD
score is calculated as the sum of all R2 scores measured with other SNPs,
and has a between-SNP variability because of LD structure of SNPs. Then,
the method uses this LD score variable as a predictor in a regression model
for GWAS test statistics as outcome, thus disentangling genuine polygenic
association effects from other confounding effects that can inflate GWAS
test statistics [27]. LDSC method was used for SNP heritability, genetic
correlation, and LCV analyses.
The LCV model hypothesizes a latent variable behind the genetic

correlation of two GWAS-s, and calculates genetic correlation of each
GWAS with this latent variable. It introduces the concept of “genetically
causal” reflecting the asymmetry of the effect of this latent variable on the
two GWAS-s [28]. Using this term, the GWAS that can be better explained
by the latent variable is partially “genetically causal”, and the other GWAS
goes beyond the latent variable and has more unique variance. Genetic
causality proportion (GCP) ranges from 0 to 1 in absolute values, with an
absolute value > 0.6 denoting a high level of genetic causality. For both
genetic correlation and LCV analyses, our six tests yielded a
p < 0.0083 significance threshold.
FUMA v1.5.2 (accessed on 13 February 2024) was used for MAGMA v1.08

[29] and GENE2FUNC analyses [30].
MAGMA gene-level analyses used position, with an extended gene

boundary of ±10 kilobase [31], to map SNPs to protein-coding genes
having Ensembl ID. Gene-level p-values were computed with a SNP-wise
mean model, and then were probit-transformed into Z-scores to be
entered into the other two MAGMA analyses, with a high Z-score meaning
a low p-value. 19,868 genes in the four clusters resulted in a
p < 6.2915 × 10−7 corrected significance threshold.
MAGMA gene set-level analyses regressed gene Z-score against gene set

membership, including gene size, minor allele count, LD between SNPs,
and between close genes as additional predictors. A separate model was
run with each gene set, and all gene sets of MsigDB v7.0’s C2 (curated) and
C5 (Gene Ontology—GO) gene set collections were tested. 17,012 gene
sets in the four clusters resulted in a p < 7.3478 × 10−7 corrected
significance threshold.
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MAGMA tissue-specific gene expression analyses regressed gene Z-score
against gene expression level within a specific tissue, including technical
confounders and the average expression across all tissues as additional
predictors. This test is one-sided, hypothesizing a positive association between
gene Z-score and tissue-specific gene expression. Tested tissues included the
11 brain developmental stages of BrainSpan database [32], which, together
with the four clusters, entailed a p< 0.0011 significance threshold.
For additional FUMA analyses, genomic risk loci were defined with a

p ≤ 1 × 10−5 for lead SNPs, and criteria of p ≤ 0.05 and R2 ≥ 0.6 with the lead
SNP, for other SNPs to be included in the genomic risk locus. A minor allele
frequency (MAF) ≥ 0.01 criterion was also applied for all SNPs. The European
reference population of the 1000 Genomes (phase 3) database was used for
calculation of R2 and MAF, and for involving additional SNPs into the loci
that are not present in our database. All types of Ensembl v110 genes were
mapped to SNPs of genomic risk loci if any of the following criteria was met.
First, as in MAGMA analyses, if the SNP is located within gene boundaries
extended by ±10 kilobase. Second, if the SNP-gene pair is significant at a
false discovery rate (FDR) ≤ 0.05 as an expression quantitative trait locus
(eQTL) within any of the available brain tissues or cell types (see
Supplementary File 1). Third, if regions of the SNP and the gene’s promoter
(defined as 250 base-pair upstream and 500 base-pair downstream of the
transcription start site) are in a chromatin interaction loop with each other
at an FDR≤ 1 × 10−6 level within any of the available brain tissues or cell
types (see Supplementary File 1). Genes thus mapped to genomic risk loci’s
SNPs by any of these three methods were then tested with GENE2FUNC
hypergeometric test for enrichment in each of the MsigDB v7.0 C2 and C5
gene sets (detailed above). Benjamini-Hochberg FDR correction was used
within each gene set category (these are: C2 curated gene sets; C5 GO
biological process; C5 GO cellular component; and C5 GO molecular
function), and the adjusted p-value cutoff was set to p < 0.0125 because of
the four clusters. Among significantly enriched gene sets, those with the
highest proportions of our mapped genes were interpreted.

RESULTS
Cluster analyses and description of the clusters
Cluster analyses based on three common and well-established
MDD risk factors revealed a two-cluster solution as the best in

both the male and female groups, with a Silhouette coefficient of
0.6183 in males, and 0.6076 in females. Both values indicate that
neuroticism, body fat, and education, when considered simulta-
neously, can compose patient subgroups (strata) that are
internally homogeneous but markedly distinguishable from
each other.
However, the distribution patterns of input variables in the two

clusters show some differences between the two sexes, particu-
larly in case of neuroticism (Fig. 1). Neuroticism proved to be
somewhat less important in clustering within males than within
females, and somewhat less important in males than any other
input variable in either sex (Fig. 1). Relative frequencies of the
specific values of the input variables in each cluster are shown in
Supplementary Figs. 1 and 2.
As it could be expected, lifetime depression (depressive episode

or recurrent depressive disorder) diagnosis was significantly more
frequent in the male risk cluster (8.8%) than in the male protective
cluster (7.4%), and significantly more frequent in the female risk
cluster (13.3%) than in the female protective cluster (11.8%) (both
Fisher exact test’s p < 0.001). Other descriptive statistics for the
clusters are detailed in Supplementary File 1.
Our genome-wide SNPs explain around 2–4% of the

variability in lifetime depression status within each cluster
(Table 1). Intercept of the regression of GWAS test statistics
against LD score is below 1.10 in each cluster, suggesting that
our SNP-level genetic associations are genuine [33]. An inflation
ratio is calculated from this intercept, and it measures the
proportion of test statistics’ inflation that can be attributed to
causes other than polygenic heritability. It is expected to be
close to zero, but it can be even 10–20% because of LD score
mismatch between sample and reference, or because of low LD-
scored SNPs having larger effect on the outcome [27]. Although
standard errors of ratio are high in each cluster, the expected
value of the inflation ratio is exceeded only in the male
protective cluster (Table 1).

A) Clusters in males B) Clusters in females

Fig. 1 Clusters based on neuroticism, body fat percentage, and years spent in education, separately in males and females. A Clusters in
males; B clusters in females. Clusters sizes and descriptions are shown, as well as input variables’ relative distribution in each cluster within sex,
and their importance in clustering in each sex. In females, two solid clusters can be seen: in one of them, all three input variables show a risk
for depression (female risk cluster), and in the other one all three variables point to a protective direction against depression (female
protective cluster). However, in males, neuroticism shows a protective direction against depression not in the protective cluster but in case of
a risk pattern of body fat percentage and education (male risk cluster). Nevertheless, neuroticism proved a less important input variable in
clustering in males than any other variable in either sex.
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Overlap between the clusters in depression genomics
Table 2 shows that all clusters have a high genetic intercorrelation
in depression genomics with each other, although these genetic
correlation values have relatively high standard errors.
However, these high genetic intercorrelations cannot be

explained by asymmetries in genetic overlap. Particularly, only the
two male clusters showed a significant GCP value with each other,
but it was not high enough to suggest genetic causality (Table 2,
direction of GCP refers to the particular cluster which has more
unique genetic risk for depression, compared to the other cluster).

Unique genetic hits for depression in the clusters
No significant hit emerged in any of the clusters, at SNP level,
MAGMA gene level (Supplementary Tables 3–6), MAGMA gene set
level (Supplementary Tables 7–10), or in MAGMA tissue-specific
gene expression (Supplementary Tables 11–14).
However, FUMA GENE2FUNC analyses, which take the advan-

tage of eQTL mapping and chromatin interaction mapping in

addition to positional mapping of genes to SNPs, revealed
significant hits that survived correction. In the male risk cluster,
the Johnstone_parvb_targets_2_dn gene set of the C2 curated
gene set collection showed an adjusted p-value of 0.00696.
Nevertheless, since this gene set is defined in breast cancer cells,
this result will not be discussed in the present paper.
In the female risk cluster, genes mapped to depression risk

loci significantly enriched in complement-related GO BP gene
sets, from which the most represented were GO BP regulation of
complement-dependent cytotoxicity (proportion of our mapped
genes within: 0.2727), GO BP negative regulation of complement
activation, and GO BP complement-dependent cytotoxicity (both
having a 0.23077 proportion of our mapped genes) (Fig. 2A).
Our mapped genes of these gene sets reside in two distinct loci
within chromosome 1 (Fig. 2B), conveying a reliability to our
results.
Genes mapped to depression risk loci in the female protective

cluster significantly enriched in olfactory gene sets, from which GO

Table 1. SNP heritability (variability of lifetime depression status accounted for by the whole set of SNPs) within each cluster.

Cluster SNP h2 Lower 95% CI of SNP h2 Upper 95% CI of SNP h2 Intercept (SE) Ratio (SE)

male risk cluster 0.0252 0.013832 0.036568 0.9974 (0.0068) <0

male protective cluster 0.022 0.006516 0.037484 1.01 (0.0069) 0.2491 (0.1704)

female risk cluster 0.0277 0.01888 0.03652 1.0029 (0.0069) 0.0432 (0.1035)

female protective cluster 0.0329 0.018788 0.047012 1.0035 (0.0063) 0.0768 (0.1386)

Intercept and ratio from the LD Score Regression model are also shown. The expected value for intercept is <1.10; and for ratio is a maximum of 10–20%.
SNP single-nucleotide polymorphism, h2 heritability, CI confidence interval, SE standard error, LD linkage disequilibrium.

Table 2. Genetic correlations (in gray cells) and latent causal variable model’s GCP results (in white cells), in depression GWAS-s between each pair of
clusters.

Significant results are marked with bold. Latent causal variable model hypothesizes a latent variable behind the genetic correlation of two GWAS-s, and tests
the asymmetry in the effect of this latent variable on the two GWAS-s (“genetic causality”). The GWAS we assume to be “genetically causal” represents the
latent variable (i.e., the genetic variance shared between the two GWAS-s) more, while the other GWAS has relatively more unique genetic variance. Positive
direction of GCP refers to the GWAS in the given row as “genetically causal”, and negative direction refers to the GWAS in the given column as “genetically
causal”. |GCP| ranges 0–1, with an absolute value > 0.6 denoting a high level of genetic causality.
GCP genetic causality proportion; GWAS genome-wide association study; SE standard error.
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Fig. 2 Significant enrichment of genes mapped to SNPs of depression risk loci of the female risk cluster, in gene sets of C5 GO BP; and
genes mapped by eQTL association (green), chromatin interaction (orange), or by both (red), to this cluster’s depression risk loci (blue)
on chromosome 1. A Our mapped genes, as well as their proportion within each gene set, and p-value of their enrichment in each gene set are
shown. Benjamini–Hochberg FDR correction was applied within each gene set category, and the adjusted p-value cutoff was p< 0.0125 because of
the four clusters. Only results surviving correction are shown. B Top SNP of each risk locus is named, and all SNPs are shown as dots on a −log10p-
value axis and in their chromosomal position, with red dots representing an R2 > 0.8 and orange dots an R2 > 0.6 linkage with the top SNP. CFH,
CD55, CR1L, and CD46 are the mapped genes from two distinct loci that show a significant enrichment in complement gene sets. SNP single-
nucleotide polymorphism, GO Gene Ontology, BP biological process, eQTL expression quantitative trait locus, FDR false discovery rate.
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MF olfactory receptor activity and Reactome olfactory signaling
pathway were the most represented by our mapped genes, with
proportions of 0.03367 and 0.029, respectively (Fig. 3A–C). All but
one mapped genes of these gene sets encode odorant receptors,

and are located in the same locus of chromosome 12 (Fig. 3D).
The only exception is the transcriptional activator gene LHX2
located in another part of the genome, on chromosome 9,
strengthening the reliability of our result.
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DISCUSSION
Despite high genetic intercorrelations between the specific
clusters in depression genomics, as well as no detectable
asymmetry in this genetic overlap between the clusters, the two
female clusters have shown unique genetic results. Complement
system genes emerged in the background of depression of the
female cluster with a risky pattern of high neuroticism, high body
fat, and low education, suggesting a possible pathophysiological
role of inflammation and this specific part of the immune system
within this well-characterized female subgroup. On the other
hand, olfactory genes enriched in the background of depression in
the female cluster having a protective constellation of low
neuroticism, low body fat, and high education, pointing to a
specific relevance of rodent and human olfactory models of
depression within this specific subgroup.
Our findings that depression has sex-dependent unique genetic

background was suggested by previous studies. For example,
depression has been associated in women’s brain with down-
regulated immune-related, oligodendrocyte-related and
microglia-related genes but upregulated synapse-related genes,
while in men, an opposite pattern of upregulated oligodendrocyte
and microglia genes as well as downregulated synapse genes
were observable in MDD compared to controls [34]. The two sexes
have also shown some differences in the relative importance of
biological pathways behind MDD: in women’s brain transcrip-
tomics, MAPK activity, inflammatory response, and synaptic
transmission had the highest ranks, while in men’s brain,
transmission of nerve impulse, organic acid metabolism, and
catecholamine metabolism regulation mattered best in MDD [35].
However, our present results suggest that in addition to sex-
dependent biological pathways, there are some other pathways
behind depression, e.g., olfaction, that may depend not only on
sex but on its constellation with other moderating factors. These
additional moderating factors may also refine some former sex-
dependent results, such as inflammatory response and immune
system functioning into complement system, in the case of a
specific subgroup of women. Nevertheless, our study also
suggests with regard to depression genomics that different
constellations of neuroticism, body fat, and education seem useful
in the further stratification only of women but not of men.

Clusters are distinct based on the pattern of input variables,
but are quite similar in terms of depression genomics
Neuroticism as an endophenotype, body fat percentage as an
internal, and education level as an external risk factor for
depression, in addition to sex, seem appropriate variables to
define phenotypically distinct but internally homogeneous sub-
groups (strata) of the general adult (middle-aged and elderly)
British population. Despite the phenotypic differences, these strata
cannot be apparently distinguished by the genomic background
of MDD.
Compared to our results, SNP-based heritability of MDD has

been suggested to be somewhat higher, around 5–6%, in the
whole UK Biobank [36] or another population sample [37], and
much higher, 19–21%, if enrolling severe MDD participants [38] or
MDD patients with atypical symptoms of hypersomnia and weight
gain [36]. However, our depression phenotype was composed of

the lifetime occurrence of either a single episode or a recurrent
disorder, thus combining typical and atypical depression cases of
any severity, which may explain these discrepancies, although
convey the widest perspective of further applicability to our
results.

Complement system in a refinement of the immunometabolic
depression concept, for the special case of multi-risk women
A conceptual model of immunometabolic depression has been
proposed on the association of depression with immunometabolic
dysregulations, also highlighting the role of depression hetero-
geneity in these associations [10]. The model has already
emphasized the impact of obesity and low socio-economic status
[10, 39], but our results now can add the neuroticism endophe-
notype as a further moderating factor in depression heterogene-
ity. Moreover, our results with complement system genes suggest
one possible way to refine the concept of immunometabolic
depression, particularly for the special case of females at risk for
depression according to three well-characterized factors: body fat,
education, and neuroticism.
Different complement activation pathways converge on C3

protein, which has shown a higher mRNA level in the prefrontal
cortex of depressed suicide victims compared to controls [40]. In
line with this result, C3 knock-out mice were resistant to
depressive-like behavior induced by the chronic unpredictable
mild stress (CUMS) model [40]. Driven by the potential role of
complement system in synaptic pruning within the central
nervous system, a recent study investigated plasma levels of
seven complement proteins in MDD patients and controls, and
found levels of C1q, complement factor B, and complement factor
H (CFH) higher in MDD compared to controls [41]. CFH was among
the genes mapped in brain tissues to depression risk SNPs in our
female risk cluster, and also has shown a genetic association with
MDD in a former study [42]. A plasma CFH level higher in MDD
compared to controls has been corroborated by other studies
[43, 44], with some results pointing to the association of high
plasma CFH level with anhedonia [44, 45], although CFH plasma
level was lower in MDD compared to controls in a Han Chinese
sample [42]. It is important to note that all these studies with CFH
had a female predominance in their MDD samples [41–43, 45],
even if slightly [44], which is in line with our results specific to a
female cluster.

Olfactory genes as MDD biomarkers that are specific for the
female protective cluster
Only in females with low levels of neuroticism and body fat
percentage but with many years spent in education, odorant
receptor genes emerged as a potential unique biomarker of MDD.
MDD has been linked to multiple stages of olfactory perception,

from periphery to cortex. Projections from the entorhinal cortex to
the hippocampus [46] and visual cortex [47] may play a role in the
pathogenesis of depression. Alternatively, the association of
olfactory functions with depression may be due to their
association with emotional processing in general, underpinned
by a study that demonstrated lower right hippocampal brain
responses to emotional pictures in patients with acquired
olfactory loss compared to controls, independently of depressive

Fig. 3 Significant enrichment of genes mapped to SNPs of depression risk loci of the female protective cluster, in gene sets of C2 curated,
C5 GO BP, and C5 GO MF gene set collections; and genes mapped by either eQTL association (green) or chromatin interaction (orange),
to this cluster’s depression risk loci (blue) on chromosome 12. A–C Our mapped genes, as well as their proportion within each gene set, and
p-value of their enrichment in each gene set are shown. Benjamini–Hochberg FDR correction was applied within each gene set category, and
the adjusted p-value cutoff was p < 0.0125 because of the four clusters. Only results surviving correction are shown. D Top SNP of each risk
locus is named, and all SNPs are shown as dots on a −log10p-value axis and in their chromosomal position, with red dots representing an
R2 > 0.8 and orange dots an R2 > 0.6 linkage with the top SNP. OR6C74, OR6C3, OR6C75, and OR6C4 are the mapped odorant receptor genes that
show a significant enrichment in olfactory gene sets. SNP single-nucleotide polymorphism, GO Gene Ontology, BP biological process, MF
molecular function, eQTL expression quantitative trait locus, FDR false discovery rate.
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symptoms [48]. Olfactory bulbectomy is a rodent model of
depression, entailing perturbations in the frontal cortex that are
similar to those of human MDD [49]. In addition, olfactory bulb
dysfunction in rats can be induced by the CUMS model, which
deterioration is mediated by mechanisms of neurogenesis,
energy metabolism [50], purine and lipid metabolism [51].
Regarding human MDD, reduced volume parameters of the
olfactory bulb [52] and olfactory sulcus [53] are suggested to be
stable trait markers of MDD, deteriorating response to psy-
chotherapy, and worsening residual symptoms, respectively. In
contrast, odor identification performance, which is specifically
impaired in mood disorders but not in anxious patients [54], will
improve after remission of MDD [55, 56]. Although olfactory
dysfunctions in MDD can be as well attributed to impaired
feedback mechanisms of reward systems [56], or to anhedonia
[57], our GWAS hit with odorant receptor genes underpins the
‘bottom-up’ way of depression pathogenesis as opposed to
the ‘top-down’ way. This ‘bottom-up’ way is also reflected in that
the depressogenic CUMS intervention in rats damages olfactory
epithelium and olfactory receptor neurons as well [56]. However,
‘bottom-up’ ways can also be permanently modulated by ‘top-
down’ ways, since a reduced turnover rate of olfactory receptor
cells in depression can also be due to a reduced attention to
odors, and thus an enhancement of awareness to odors by a
“smell training” may improve depression via improvement of
attention to odors [58]. Moreover, unilateral “smell training” in
healthy participants has been shown to increase olfactory bulb
volume on the contralateral side as well, while worsening odor
thresholds [59]. All these former results may converge to
putative novel therapeutical or even prevention possibilities in
a well-characterized non-risk subgroup of women.
Our results are specific for only one of the four clusters, which is

in line with the former inconclusive associations between
depression and olfactory dysfunctions [58]. Our results suggest
that in females, in the absence of well-established depression risk
associated with high body fat percentage or low education level,
MDD does not emerge via the causal pathway of the neuroticism
endophenotype, but may be associated with olfactory genes.
Neuroticism has been suggested to be an equifinal endpoint of
several critical developmental periods [60] and biological path-
ways [33], all of which may have different weights in each
individual, therefore they may mask the effect of each other on
the way to depression. In contrast, we may see more primary or
elementary mechanisms in depression genetics in case of
emotional stability and in the simultaneous lack of other classical
risk factors.

Limitations
Our study has some limitations to consider. First, FUMA
GENE2FUNC hypergeometric test does not correct for LD between
close genes. However, our mapped complement and olfactory
genes are both from two distinct genomic loci, conveying
reliability to our results in both female clusters. Moreover, our
GENE2FUNC results for the female protective cluster are also
corroborated by MAGMA gene-level results, which, although not
surviving correction for multiple testing, yield OR6C1 and OR6C3 at
a 10−6 p-level, OR6C75, OR6C76 at a 10−5 p-level, and OR6C70,
OR6C65, and OR6C2 at a 10−4 p-level (all of them are mapped in
GENE2FUNC), and provide further odorant receptor genes, OR6C6
from the same locus of chromosome 12, as well as OR1J4, OR1N1,
and OR1J2 from another locus on chromosome 9, all at a 10−4 p-
level (Supplementary Table 6). MAGMA gene-based tests used a
SNP-wise mean model, which is more sensitive to the mean SNP
association within a gene, somewhat compensating the draw-
backs of GENE2FUNC tests.
Furthermore, the inflation ratio value of MDD’s SNP heritability

within the male protective cluster exceeds the desirable 20% [27],
which suggests us to interpret results of this cluster with caution.

Moreover, study design of the UK Biobank is unable to explore
real causal relationships behind the revealed association patterns.
Consequently, our present results should only be used as
descriptors of distinct subgroups in the future, but not regarded
as firm causes of depression.
In addition, only participants with a white British ancestry

(defined as self-report and genetic ancestry as well) were
included because this is the subset that constitutes the majority
of UK Biobank participants [61]. Future research should
replicate our findings within population samples of different
ancestries.
Finally, our SNP heritability results highlight the limited

translatability of complement genes and olfactory genes into
potential future precision medicine strategies. Particularly, only
2.77% and 3.29% of lifetime depression variability can be
explained by the whole set of our SNPs in the female risk and
protective cluster, respectively.

CONCLUSIONS
We identified MDD genetic risk factors that are dependent
simultaneously on sex, on an endophenotype, as well as on
internal and external modifying risk factors of depression.
At the expense of relatively small variances explained by the

whole set of genetic variants, our results can be more general-
izable to either typical or atypical depression of any severity. We
intended to conceptualize depression heterogeneity not at a
clinical level (such as [10]) but only from a possible pathophysio-
logical perspective. This perspective, along with a successful
identification of three readily measurable putative moderating
factors of depression genomics in females among the numerous
moderators, can even be more useful in future depression
prevention than considering clinical heterogeneity of the already
manifested disorder.
In spite of a considerable genetic overlap between the

phenotypically distinct clusters in depression genomics, the two
female clusters yielded unique genetic results for depression.
Reliability of complement system genes in the female risk cluster
is corroborated by two distinct genomic loci. Moreover, reliability
of olfactory genes in the female protective cluster is corroborated
by two distinct genomic loci as well as highly significant gene-
level results from another testing model.
After replication in populations of diverse genetic ancestries

and/or socio-cultural background, our results can provide some
contribution to novel precision medicine approaches in the
prevention and maybe even therapy of MDD.
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