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Major depressive disorder (MDD) is a common mental illness worldwide and is triggered by an intricate interplay between
environmental and genetic factors. Although there are several studies on common variants in MDD, studies on rare variants are
relatively limited. In addition, few studies have examined the genetic contributions to neurostructural alterations in MDD using
whole-exome sequencing (WES). We performed WES in 367 patients with MDD and 161 healthy controls (HCs) to detect germline
and copy number variations in the Korean population. Gene-based rare variants were analyzed to investigate the association
between the genes and individuals, followed by neuroimaging-genetic analysis to explore the neural mechanisms underlying the
genetic impact in 234 patients with MDD and 135 HCs using diffusion tensor imaging data. We identified 40 MDD-related genes
and observed 95 recurrent regions of copy number variations. We also discovered a novel gene, FRMPD3, carrying rare variants that
influence MDD. In addition, the single nucleotide polymorphism rs771995197 in the MUC6 gene was significantly associated with
the integrity of widespread white matter tracts. Moreover, we identified 918 rare exonic missense variants in genes associated with
MDD susceptibility. We postulate that rare variants of FRMPD3 may contribute significantly to MDD, with a mild penetration effect.
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INTRODUCTION
Major depressive disorder (MDD) is a common psychiatric disorder
and has a significant impact on an individual’s quality of life,
including both social and economic aspects [1]. MDD is
characterized by the occurrence of a distinct depressive episode
lasting for a minimum of 2 weeks, accompanied by significant
changes in mood, interest, and enjoyment [2]. Both genetic and
environmental factors play key roles in the etiology of MDD, with
estimated genetic inheritance rates up to 25% for a severe
recurrent MDD [3]. Common variants account for ~21% of the
genetic effects of MDD [4], and rare variants with a moderate
penetration effect may contribute to the underlying genetic
causes of MDD through additional inheritance mechanisms [5, 6].
Genome-wide association studies (GWASs) have played a crucial

role in unraveling the genetic basis of complex diseases and
quantitative traits [7]. These studies systematically assess common
variants, usually with a minor allele frequency (MAF) > 5% [8].
Despite these findings, much of the genetic contribution to
complex traits remains undisclosed, even in diseases where large
GWAS meta-analyses have been undertaken [9, 10]. Consequently,
many studies have been proposed to elucidate the genetic causes
of complex diseases from the perspective of “missing heritability”
[11–13]. Recent studies using next-generation sequencing (NGS)
suggest that rare variants (MAF < 1%) are associated with complex

diseases [14–16]. Thus, rare variants analyses would be promising
to clarify additional disease risks or trait variability.
Although studies have indicated a shared genetic basis

between common variants associated with lifetime MDD and
depressive symptoms in the general population, it remains unclear
whether this association applies to rare variants [17]. Advance-
ment in NGS technology can help identify rare variants [18].
Previous studies have conducted gene-based analyses of rare
damaging variants to identify genes related to MDD using the UK
Biobank exome dataset [19, 20]. Zhou et al. revealed that genes
based on rare variants, including FOXO1, MAPK10, DLGAP3, ARID5B,
ASXL2, and MED13, were significantly associated with MDD [19].
Cheng et al. performed a gene-based burden test to identify
OR8B4, TRAPPC11, SBK3, and TNRC6B between patients with MDD
with high polygenic risk scores (PRS) and those with low PRS [20].
The pathophysiology of MDD can be characterized by the

dysfunction of brain networks involved in emotional regulation,
reward processing, and cognitive controls [21, 22]. White matter
tract-based structural connectivity provides a physical and
structural basis for these psychopathology-related brain net-
works [23]. A growing body of evidence has shown micro-
structural abnormalities in white matter tracts measured by
diffusion tensor imaging (DTI) in patients with MDD [24, 25]. For
example, a recent study using DTI data from 1305 patients with
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MDD and 1602 healthy controls from 20 samples worldwide
reported MDD-related lower fractional anisotropy (FA) and
higher radial diffusivity (RD) in the widespread white matter
tracts [26]. White matter microstructures, as measured by DTI,
exhibit generally high genetic heritability [27–29]. Moreover,
several studies have suggested that genetic contributions to
MDD may be mediated by genetically heritable variations in
white matter microstructures [30, 31]. A recent study using data
from the UK Biobank of 6,401 individuals reported that the PRS
for MDD obtained from a previous genome-wide association
study (GWAS) was correlated with lower FA and higher MD in
several white matter tracts [30].
An approach combining WES and neuroimaging phenotypes

in MDD could provide deeper insights into the heritable neural
architecture related to MDD and related genetic variants [32].
However, only a very small number of studies using both DTI
data and a hypothesis-free genetic approach (i.e., PRS or WES)
have been conducted in patients with MDD [33]. Thus, in the
present study, we aimed to combine WES and DTI data in
patients with MDD to investigate the correlation between
genetic variants and abnormalities in white matter structural
connectivity using a relatively large sample compared to
previous WES studies on MDD [32]. Among the widely studied
neuroimaging phenotypes, we opted for tractography-based
parameters of white matter structural connectivity. This choice is
grounded in the observation that white matter microstructures,
as measured by DTI, generally exhibit high genetic heritability,
and few studies have investigated genetic correlations using a
hypothesis-free approach in MDD [33].
In this study, we hypothesized that the complex genetic

inheritance patterns of MDD could be attributed to rare variants
with moderate effects. Moreover, we expected that single
nucleotide polymorphisms (SNPs)—particularly those associated
with neurobiological pathways involved in neural plasticity and
brain development – from the case-control association analysis
would be associated with lower FA and AD (axial diffusivity) and
higher RD and MD (mean diffusivity) in the white matter tracts,
including the superior longitudinal fasciculus (SLF), inferior long-
itudinal fasciculus (ILF), forceps major (FMajor), forceps minor
(FMinor), and uncinate fasciculus (UNC). This hypothesis was
based on results from previous studies utilizing hypothesis-free
genetic approaches on DTI parameters in MDD [30, 31]. To
investigate these hypotheses, we performed WES to analyze the
gene-based rare variants and examined the potential correlations
between SNPs and the DTI parameters reflecting white matter
structural connectivity in patients with MDD.

MATERIALS AND METHODS
Sample participants
A total of 367 patients with MDD were recruited from outpatient
psychiatric clinics at Korea University Anam Hospital, Seoul, Republic of
Korea, from March 2010 to February 2021. Patients with MDD were aged
19 years or older, and their diagnoses were confirmed by board-certified
psychiatrists (B.-J.H. and K.-M.H.) using the Structured Clinical Interview
from the Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition, for Axis I disorders through a full psychiatric assessment. The
exclusion criteria for the MDD group were as follows: (i) the presence of
any other significant psychiatric disorder, (ii) MDD with psychotic
features, (iii) acute suicidal tendencies requiring immediate inpatient
care, (iv) a history of a severe medical illness, (v) primary neurological
disorders (e.g., Parkinson’s disease, cerebrovascular disease, or epilepsy),
and (vi) contraindications for magnetic resonance imaging (MRI). Board-
certified psychiatrists used the life-chart methodology to assess the total
illness duration. For the healthy control (HC) group, a total of 161
participants who were 19 years or older were recruited from the
community with advertisements. Full psychiatric assessments were
conducted by the board-certified psychiatrists for the HCs, and none of
them had any current or past psychiatric disorders. The exclusion criteria
mentioned above were also applied to the HCs. Within the entire sample,

234 patients and 135 HCs underwent MRI and were included in the
analysis of neuroimaging parameters. The detailed demographic and
clinical characteristics for the neuroimaging analyses are presented in
Table 1. After the MRI scan, we used the 17 item Hamilton Depression
Rating Scale developed by Hamilton in 1960 to evaluate the severity of
depressive symptoms in all participants [34]. All participants were
confirmed to have Korean ancestry within the past three generations
via self-reports. The study protocol was approved by the Institutional
Review Board of the Korea University Anam Hospital (2009AN0105,
2015AN0009, 2016AN0213, 2017AN0185, and 2019AN0174). Prior to
inclusion in this study, all participants provided written informed consent
according to the principles outlined in the Declaration of Helsinki.
Notably, statistical methods were not employed to predetermine the
sample size. Additionally, randomization was not performed in the
experiments, and the investigators were not blinded to assignment
during both the experiments and outcome assessments.

WES and processing
Genomic DNA was obtained from the peripheral blood of patients with
MDD (n= 367) and HCs (n= 161) (Table 1); the Agilent SureSelect Human
All Exome V5 kit (Agilent Technologies, Santa Clara, CA, USA) was used
according to the manufacturer’s instructions. WES with 101 bp paired-end
reads was performed on a HiSeq2000, HiSeq2500, or HiSeq4000 (Illumina,
San Diego, CA, USA).
After sequencing, the quality of the raw data was assessed using FastQC

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/; v0.11.9).
Trimmomatic (v0.36) [35] was used to remove low-quality fragments and
adapter sequences. Burrows-Wheeler Aligner-Maximal Exact Match (BWA-
MEM, v0.7.17-r1188) [36] was used to align reads on the GRCh38 reference
genome. The Genome Analysis Toolkit (GATK, v4.2.0.0) [37] was used for
marking duplicates, local realignments, and recalibration scoring based on
GATK Best Practices. For downstream analysis, aligned reads with low
mapping quality (MAPQ < 20) were removed using SAMtools (v1.10) [38].

Germline variants calling and filtering in MDD-related genes
Germline short-variant discovery was performed following GATK Best
Practices (v4.2.0.0) [37]. Briefly, insertions and deletions (INDELs) and SNPs
were detected using HaplotypeCaller in the GVCF mode. Joint genotyping
was performed using GenomicsDBImport and GenotypeGVCFs to identify
potential variants at the individual level. SelectVariants and VariantFiltera-
tion were run to select and filter the SNPs and INDELs based on the
following criteria: QD < 2.0 | | FS > 200.0 || ReadPosRankSum <−20.0. Germ-
line variants within the coding sequences were selected and their
functional consequences, including silent or non-silent variants, were
predicted using (annotate variation; ANNOVAR) [39]. To extract MDD-
related genes, a systematic literature review was performed using the
following terms: (“major depressive disorder” OR “major depression” OR
“depression” OR “depressive”) AND (“WES” OR “WGS”) in English-language
peer-reviewed journals published up to October 2022 using the PubMed
database. In total, 21 articles were selected and after conducting manual
screening of the abstracts and titles, only 5 out of 21 articles were used to
identify novel MDD-related genes for further analyses.

Germline copy number alterations (CNAs)
To detect germline CNAs, CNVkit (v0.9.9) [40] was used for 367 patients
with MDD based on a hidden Markov model approach. Germline CNAs
were filtered using the default parameters to decrease the number of false-
positive segments. Subsequently, significant amplifications and deletions
of the chromosomal arms and focal regions across patients with MDD were
identified using Genomic Identification of Significant Targets in Cancer 2.0
(GISTIC2.0) [41] on the segmentation data produced by the CNVkit.

Case-control association analysis of common SNPs
Germline variants were filtered by the following criteria using PLINK (v1.07)
[42]: excluding SNPs with the Hardy-Weinberg equilibrium exact test
(P < 0.001), eliminating samples with call rates below 95%, and excluding
SNPs with call rates below 95%. A dominant logistic regression model was
used to identify the common SNPs associated with MDD.

Gene-based rare variant association analysis
We performed four gene-based rare variant analyses between patients
with MDD and HCs, including combined multivariate and collapsing (CMC)
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[43], variable threshold model by permutation (VT) [44], sequencing kernel
association test (SKAT) [45], and optimal sequencing kernel association test
(SKATO) [46] using Rvtests (v20190205) [47]. We applied principal
component analysis (PCA) to condense the genetic burden information
associated with the genomic regions using the FastPCA algorithm [48].
Rvtests (v20190205) [47] were run with 1,000,000 permutations and
covariates including age, sex, and two principal components. Rare coding
variants with a minor allele count ≥ 3 were tested for associations under
two MAF thresholds (MAF ≤ 1% and MAF ≤ 0.1%) and two functional
categories (non-synonymous and damaging). Variants were annotated
using ANNOVAR [39]. Additionally, we used the aggregated Cauchy
association test (ACAT) to boost the statistical power of our analysis by
combining all four test results, as described by Liu et al. [49]:

PACAT ¼ 1
4

X4

i¼1

tanfð0:5� piÞπg;

where pi is the p-value of the test (CMC, VT, SKAT, or SKATO); the four tests
are regarded equally in the combination.

MRI data acquisition and imaging processing
234 patients with MDD and 135 HCs from the total sample underwent DTI
using a 3.0 Tesla Trio™ whole-body MR scanner (Siemens Healthcare
GmbH, Erlangen, Germany) at the Korea University MRI Center. The
detailed DTI parameters are described in the Supplementary Material. For
white matter tract analysis, four DTI parameters, FA, MD, RD, and AD, from
the 18 white matter tracts were automatically calculated using the Tracts
Constrained by Underlying Anatomy (TRACULA) developed by Yendiki
et al. [50] implemented in the FreeSurfer 7.2 version (Laboratory for
Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical
Imaging, Charlestown, MA, USA; http://surfer.nmr.mgh.harvard.edu). TRA-
CULA reconstructs 18 major white matter pathways in the bilateral
hemispheres using automated global probabilistic tractography processes
and DTI data [51–53]. In the present study, all four complementary
parameters were used in the analysis.
The 18 major white matter tracts are as follows [50]: FMajor and FMinor

of the corpus callosum, anterior thalamic radiation (ATR), cingulum-angular
bundle (CAB), cingulum-cingulate gyrus bundle (CCG), corticospinal tract
(CST), ILF, superior longitudinal fasciculus-parietal bundle (SLFp), superior
longitudinal fasciculus-temporal bundle (SLFt), and UNC.

Table 1. Demographic and clinical characteristics of patients with major depressive disorder and healthy controls.

Characteristics MDD HC P-value (t, χ2)

Total sample

N 367 161 NA

Age 40.79 ± 14.17 39.62 ± 14.30 0.068 (t= 1.8273)

Sex (Female/Male) 243 (66.2%) / 124 (33.8%) 103 (64.0%) / 58 (36.0%) 0.619 (χ2= 0.248)

Education years 13.11 ± 3.19 15.04 ± 2.26 <0.001 (t=−7.374)

HDRS-17 score 16.39 ± 6.65 0.93 ± 1.69 <0.001 (t= 41.070)

Remission state / depressive state 40 (10.9%) / 327 (89.1%) NA NA

Illness duration (months) 29.02 ± 31.22 NA NA

Neuroimaging sample MDD HC P-value (t, χ2)

N 234 135 NA

Age 40.53 ± 14.25 37.57 ± 14.24 0.055 (t= 1.925)

Sex (Female/Male) 158 (67.5%) / 76 (32.5%) 83 (61.5%) / 52 (38.5%) 0.240 (χ2= 1.378)

Education years 13.05 ± 3.24 15.07 ± 2.26 <0.001 (t=−7.061)

HDRS-17 score 14.95 ± 6.90 1.00 ± 1.79 <0.001 (t= 29.266)

Remission state / depressive state 36 (15.4%) / 198 (84.6%) NA NA

Illness duration (months) 30.26 ± 32.59 NA NA

TICV (cm3) 1436.99 ± 150.87 1465.01 ± 154.01 0.089 (t=−1.706)

Drug-naive / Drug-treated patients (n) 73 (31.2%) / 161 (68.8%) NA NA

Medication, n

Antidepressants

SSRI 64 (39.7%) NA NA

SNRI 39 (24.2%)

NDRI 4 (2.5%)

NaSSA 9 (5.6%)

Others 8 (5.0%)

Combination of AD 37 (23.0%)

Antipsychotics

None 109 (67.7%)

AP 40 (54.8%)

Combination of AP 12 (7.5%)

Data are mean ± standard deviation for age, education years, HDRS-17 scores, illness duration, and TICV.
P-values for sex distribution were obtained using the chi-squared test.
P-values for comparisons of age, years of education, HDRS-17 scores, and TICV were obtained using an independent t-test.
HC healthy controls, MDD patients with major depressive disorder, HDRS-17 17-item Hamilton Depression Rating Scale, TICV total intracranial cavity volume,
SSRI selective serotonin reuptake inhibitor, SNRI serotonin and norepinephrine reuptake inhibitor, NDRI norepinephrine-dopamine reuptake inhibitor, NaSSA
noradrenergic and specific serotonergic antidepressant, combination of AD a combination of two or more types of antidepressants, APs antipsychotics,
combination of AP a combination of two or more types of antipsychotics.
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Statistical methods for neuroimaging-genetic association
analysis
For the neuroimaging-genetic association analysis, we investigated the
association between significant SNPs and structural connectivity of white
matter tracts and applied three-step analyses as follows. First, the SNPs
were selected from two categories: (i) results of case-control association
analysis (P < 0.001) and (ii) variants with high mutation frequency (≥20%)
in samples from MDD-related genes. Second, to compare the neuroima-
ging markers between the two groups, a one-way analysis of covariance
(ANCOVA) was performed, including the diagnostic group (i.e., MDD versus
(vs.) HC) as an independent variable; the extracted values of neuroimaging
markers (i.e., four DTI parameters on 18 white matter tracts) as dependent
variables; and age, sex, and years of education as covariates. Third, the
association between the SNPs and neuroimaging markers was investigated
in the MDD and HC groups. Two-way ANCOVA was used to examine the
effects of genotype (i.e., a dominant model that compares non-risk allele
homozygotes to risk allele carriers) or genotype-by-diagnosis interactions
on neuroimaging markers with the following variables: (i) four DTI
parameters of 18 major white matter pathways as dependent variables;
(ii) genotypes and diagnosis (i.e., MDD vs. HC) as independent variables;
and (iii) age, sex, and years of education as covariates. To prevent type I
errors, the Bonferroni method was used for multiple comparisons in the
neuroimaging-genetic association analysis.

RESULTS
Profiles of germline variants and MDD-related genes
In this study, we analyzed 367 MDD and 161 HC genomes to
detect germline variants. The mean sequencing depth was 117.7X
(47.4–148.8X) for all samples. Using WES, we obtained an average
of 44,633 variants (42,730–52,439 variants per sample; median,
43,968). On average, 9686 non-silent (9426–11,897 per sample;
median, 9671) and 10,141 silent (9890–12,278 per sample; median,
10,132) variants were identified in patients with MDD. The most
common point mutations were T > G (21%) and T > C (20.7%).
After the systematic literature review, a total of 44 MDD-related

genes were identified, and 40 of the 44 genes were found in the
current study in 367 patients with MDD (Supplementary Table S1)
[4, 5, 32, 54–62]. Rare exonic missense variants (with MAF <1%) of
these genes were selected using the 1000 Genomes Project data,
the Korean Variant Archive [63], and the Genome Aggregation
Database. Of the 367 patients with MDD, 338 had 918 rare exonic
missense variants in 40 MDD-related genes. The top five most
frequently mutated genes were XIRP2 (28%), MUC5B (22%), FASN
(22%), CDH23 (18%), and MYH13 (15%), as shown in Fig. 1.

Recurrent CNAs
We detected CNAs in patients with MDD and in HCs to identify
recurrent CNA regions. Forty-five recurrent focally amplified CNA
regions and 50 recurrent focally deleted regions were identified in
MDD genomes (Fig. 2). Copy number gains at 21p12 (40%) and
losses at 21p12 and 15q11.2 (43% observed in both cases) were
the most recurrent CNA regions.
Recurrent focal amplification regions with MDD-related genes

were detected at 1p36.33 (LINC01128), 4q31.21 (GYPA), 6p21.32
(HLA-DQA1, HLA-DQB1, HLA-DRB1, and HLA-DQB1-AS1), 15q13.2
(CHRFAM7A), 16q22.1 (PDPR), 19q13.42 (RFPL4A), 21q22.3 (TSPEAR),
and 22q13.2 (CYP2D6) (Fig. 2a). Recurrent focal deletion events with
MDD-related genes were found at 1p36.33 (LINC01128), 6p22.1
(HLA-J, HCG9, and ZNRD1ASP), 7q11.21 (MIR4283-2), 7q22.1 (POLR2J),
15q13.3 (CHRNA7), 16q12.2 (SLC6A2), 17q21.2 (KRTAP9-1), and
22q11.23 (MIF) (Fig. 2b). In addition, the sizes of the CNAs annotated
as MDD-related genes are provided in Supplementary Table S2.

Gene-based rare variants analysis
We performed CMC, VT, SKAT, and SKATO tests to identify genes
associated with MDD using two MAF thresholds (“MAF ≤ 1%” or
“MAF ≤ 0.1%”) and functional categories of “damaging” or
“nonsynonymous.” The CMC method collapses rare variants across
various MAF categories and performs a joint analysis of rare

variants in common diseases [43]. The VT method accommodates
both trait-increasing and -decreasing variants based on permuta-
tion testing with variable allele-frequency thresholds in missense
variants [44]. SKAT, a commonly used non-burden test, aggregates
rare variants within a region using a new kernel function and
identifies trait associations through the variance component score
statistic [45]. Notably, the power of the SKAT method increases
when causal variants exhibit opposite effects on the trait. For
identifying both trait-increasing and -decreasing effects, the
SKATO, which is based on the SKAT, was developed [46]. We
found that FRMPD3 (P= 4.00 × 10−6) was significantly associated
with MDD in both functional categories, as shown in Table 2. For
the “nonsynonymous” category, POLA1, and FRMPD3 were
significantly found in “MAF ≤ 1%” with the following significance
thresholds: P < 4.60 × 10−6 (0.05 / 8782 genes); and AR, FAM47C,
and ZAN genes were significantly found in “MAF ≤ 0.1%” with the
following significance threshold: P < 4.60 × 10−6 (0.05 / 10,872
genes) (Supplementary Table S3). For the “damaging” category,
RTL9 and FRMPD3 genes were significantly found in “MAF ≤ 0.1%”
with the following significance threshold: P < 1.19 × 10−5 (0.05 /
4201 genes) (Supplementary Table S3).

Neuroimaging-genetic association analysis
DTI parameters of white matter tracts were compared between
234 patients with MDD and 135 HCs, but differences in DTI
parameters for white matter tracts were not significant after
Benjamini–Hochberg correction (adjusted P > 0.05) (Supplemen-
tary Table S4).
In the additional analyses, we performed Pearson’s partial

correlation analysis between disease burden-related variables (i.e.,
illness durations and HDRS scores) and DTI parameters, including
age, sex, education years, and illness durations/HDRS scores within
the MDD group. Illness durations showed significant negative
correlations with the FA of both the CCG (left: r=−0.260, adjusted
P= 0.001; right: r=−0.223, adjusted P= 0.004) and CST (left:
r=−0.151, adjusted P= 0.037; right: r=−0.255, adjusted
P= 0.001), and positive correlations with the RD and MD of
several white matter tracts, which were all significant after
Benjamini–Hochberg correction (Supplementary Table S5). Addi-
tionally, HDRS scores showed significant negative correlations
with the AD, MD, and RD of the white matter tracts within the
MDD group after Benjamini–Hochberg correction (Supplementary
Table S6). Notably, it has been suggested that FA could be a
summary measure of microstructural white matter integrity and
reflect the number and size of axon fibers [64, 65]. In contrast, MD
has been suggested as a marker that is sensitive to cellularity,
edema, and necrosis; RD has been suggested to be sensitive to
demyelination; and AD may be sensitive to axonal pathologies
related to the white matter tissue microstructure and connectivity
[64, 65].
We explored the association between neuroimaging markers

and SNPs in patients with MDD and HCs. A total of 85 SNPs, to be
included in the neuroimaging genetic analysis, were extracted
from the following analyses using the present sample: (1)
significant variants from the case-control association test in the
sample (P < 0.001) (30 SNPs); and (2) variants in the most
frequently mutated genes (>20% in the patients) in the MDD
genome (55 SNPs), which are listed in Supplementary Table S7.
The mean and standard deviations of the read depths for the
reference and alternative alleles of 85 SNPs are provided in
Supplementary Table S7. To correct for multiple testing, we
applied the Bonferroni correction with the following significance
threshold: P < 8.17 × 10−6 (0.05 / [4 DTI parameters × 18 white
matter tracts × 85 SNPs]) for the white matter tracts.
The SNP rs771995197 in MUC6 was identified as having a

significant effect on DTI parameters following Bonferroni correc-
tion (Table 3 and Supplementary Table S8). Specifically, G allele
carriers were associated with increased MD and RD in several
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white matter tracts, including ATR, CCG, CST, FMajor, FMinor, ILF,
SLFP, SLFT, and UNC, in combined samples of patients with MDD
and HCs. However, we did not detect any significant SNPs with
genotype-by-diagnosis interactions.

DISCUSSION
In the present study, we identified 40 MDD-related genes with rare
exonic missense variants in 367 patients with MDD. Among them,

XIRP2, MUC5B, and FASN were frequently mutated in >20% of
patients with MDD. Notably, we discovered a novel gene, FRMPD3,
in which the burden of rare variants was concentrated in patients
with MDD. Furthermore, rs771995197 in MUC6 showed a
significant correlation with microstructural changes in extensive
white matter tracts in the neuroimaging-genetic analysis. Addi-
tionally, we observed 17 recurrent CNAs that were annotated to
MDD-related genes, such as a gain on 16q22.1 and a loss on
7q11.21 in the MDD genome.

Fig. 1 Mutational landscape of the major depressive disorder (MDD) group. The left-side plot displays mutated MDD-related genes (rows)
across patients with MDD (columns), featuring the 40 genes from the 44 MDD-related genes based on mutation frequency across patients.
Four out of the 44 MDD-related genes were not identified in our MDD patients. On the right side, a bar plot shows the number of mutated
patients in the MDD group. Percentages indicate the proportion of patients with an identified mutation in each gene. The stacked bar plot on
the bottom shows the distribution of the single nucleotide variants classified into six transition and transversion events for each sample.
“Multi-Hit” denotes that more than one mutation was detected in a gene within one patient.
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Our first main finding demonstrated that the novel gene,
FRMPD3, had a significant impact on patients with MDD and was
observed to be significant in the “nonsynonymous” and “dama-
ging” categories. FRMPD3, an unexplored homolog of FRMPD4,

acts as a scaffolding molecule involved in the regulation of
dendritic spine morphogenesis by associating with post-synaptic
density protein (PSD)-95 [66]. The overexpression of PSD-95 in
hippocampal neuronal cells enhances the maturation of

Fig. 2 Recurrent copy number alterations (CNAs). a Recurrent focal amplified regions (red line) and b deleted regions (blue line) detected by
GISTIC 2.0 analysis in 367 patients with major depressive disorder (MDD) and 161 healthy controls. The horizontal axis represents the q-value
and the vertical axis represents the chromosome number. MDD-related genes are highlighted in bold-face. The green lines represent the
threshold for significance (q-value < 0.25).

Table 2. Results of gene-based rare variants tests.

Gene Nonsynonymous Damaging

MAF ≤ 0.1% MAF ≤ 1% MAF ≤ 0.1% MAF ≤ 1%

FRMPD3 4.00 × 10−6 3.27 × 10−2 5.20 × 10−5 4.00 × 10−6

Number of genes 8782 10872 3017 4201

P-value threshold 5.69 × 10−6 4.60 × 10−6 1.66 × 10−5 1.19 × 10−5

After adjusting for the number of genes in each group, significant P-values are presented in bold-face.
We used the ACATmethod for P-values, which first converts the P-values from the CMC, SKAT, SKATO, and VTmethods to Cauchy variables, and then uses their
weighted sum as the test statistic to analyze significance.
The four categories were MAF (≤0.1% and ≤1%) and functional prediction (non-synonymous and damaging variants).
MAF minor allele frequency, ACAT aggregated Cauchy association test, CMC combined multivariate and collapsing, SKAT sequence kernel association test,
SKATO optimized SKAT, VT variable threshold, FRMPD3 FERM and PDZ domains containing 3.
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glutamatergic synapses; therefore, PSD-95 plays a pivotal role in
regulating synaptic maturation, indicating its involvement in
stabilizing and modulating synaptic plasticity [67]. Several studies
have shown that the disruption of PSD-95 in depression inhibits
the production of nNOS-derived free radicals and reduces
excitotoxicity by blocking the signaling of calcium-ion-activated
N-methyl-D-aspartate receptors in the amygdala [68, 69]. Further-
more, FRMPD3 is an NPAS4-regulated inhibitory neuronal gene,

suggesting that the activity of FRMPD3 promotes the develop-
ment of excitatory synaptic connections in somatostatin neurons
[70]. Several studies have suggested that NPAS4 may regulate
depression, anxiety, and neurocognitive disorders and play a
critical role in the correlation between long-term stress and
symptoms of depression [71, 72]. Our analysis suggests that
FRMPD3 is involved in synaptic formation and regulation,
potentially influencing MDD development by modulating synaptic

Table 3. Single nucleotide polymorphisms that are significantly associated with white matter tracts in patients with major depressive disorder and
healthy controls.

SNP / White matter tracts Mean SD Mean SD Genotype Diagnosis*Genotype

F P-value F P-value

MUC6 rs771995197 (chr11:
1,016,916)*

AA
(n= 288)

AG+GG
(n= 81)

MD LH CST 7.30 × 10−4 4.51 × 10−5 7.71 × 10−4 5.92 × 10−5 42.52 2.34 × 10−10 0.85 0.358

MD LH SLFP 7.52 × 10−4 4.19 × 10−5 7.89 × 10−4 5.53 × 10−5 40.69 5.41 × 10−10 3.19 0.075

RD LH SLFP 5.69 × 10−4 4.09 × 10−5 6.05 × 10−4 5.11 × 10−5 40.50 5.92 × 10−10 3.79 0.052

RD LH CST 4.85 × 10−4 4.70 × 10−5 5.26 × 10−4 6.19 × 10−5 39.44 9.63 × 10−10 0.86 0.354

MD RH ATR 7.39 × 10−4 3.96 × 10−5 7.71 × 10−4 5.34 × 10−5 35.83 5.15 × 10−9 0.90 0.344

MD RH CST 7.10 × 10−4 5.22 × 10−5 7.52 × 10−4 7.05 × 10−5 35.44 6.20 × 10−9 0.30 0.584

RD RH CST 4.70 × 10−4 5.15 × 10−5 5.12 × 10−4 6.85 × 10−5 34.91 7.94 × 10−9 0.56 0.453

MD RH SLFT 7.31 × 10−4 4.32 × 10−5 7.67 × 10−4 5.72 × 10−5 34.89 8.00 × 10−9 0.05 0.819

RD RH SLFP 5.42 × 10−4 4.40 × 10−5 5.78 × 10−4 5.77 × 10−5 34.55 9.41 × 10−9 0.34 0.559

RD RH UNC 5.53 × 10−4 4.75 × 10−5 5.91 × 10−4 6.28 × 10−5 34.50 9.64 × 10−9 0.45 0.505

MD RH SLFP 7.27 × 10−4 4.49 × 10−5 7.64 × 10−4 6.08 × 10−5 33.57 1.49 × 10−8 0.14 0.707

RD RH ATR 5.59 × 10−4 3.92 × 10−5 5.90 × 10−4 5.01 × 10−5 33.36 1.64 × 10−8 1.62 0.204

RD RH SLFT 5.35 × 10−4 3.87 × 10−5 5.66 × 10−4 5.21 × 10−5 33.35 1.65 × 10−8 0.05 0.822

MD LH ATR 7.44 × 10−4 4.20 × 10−5 7.76 × 10−4 5.13 × 10−5 32.80 2.14 × 10−8 0.85 0.358

MD RH CCG 7.26 × 10−4 4.41 × 10−5 7.60 × 10−4 5.84 × 10−5 31.68 3.64 × 10−8 0.01 0.937

RD RH CCG 4.67 × 10−4 6.03 × 10−5 5.14 × 10−4 8.54 × 10−5 30.54 6.24 × 10−8 0.39 0.533

RD LH ATR 5.63 × 10−4 4.23 × 10−5 5.92 × 10−4 4.80 × 10−5 28.75 1.47 × 10−7 1.65 0.200

MD LH CCG 7.34 × 10−4 4.69 × 10−5 7.67 × 10−4 5.94 × 10−5 28.08 2.02 × 10−7 0.05 0.820

AD LH SLFP 1.12 × 10−3 5.41 × 10−5 1.16 × 10−3 7.45 × 10−5 27.91 2.19 × 10−7 1.55 0.214

AD LH CST 1.22 × 10−3 5.74 × 10−5 1.26 × 10−3 6.70 × 10−5 27.89 2.21 × 10−7 0.45 0.501

RD LH SLFT 5.52 × 10−4 4.12 × 10−5 5.82 × 10−4 4.87 × 10−5 27.65 2.48 × 10−7 1.72 0.191

AD RH SLFT 1.12 × 10−3 6.24 × 10−5 1.17 × 10−3 7.39 × 10−5 27.61 2.53 × 10−7 0.04 0.841

MD RH UNC 7.51 × 10−4 5.05 × 10−5 7.86 × 10−4 6.14 × 10−5 26.90 3.56 × 10−7 0.13 0.723

AD RH CST 1.19 × 10−3 6.66 × 10−5 1.23 × 10−3 8.13 × 10−5 25.71 6.33 × 10−7 0.02 0.884

RD FMinor 5.48 × 10−4 4.23 × 10−5 5.77 × 10−4 5.26 × 10−5 25.29 7.76 × 10−7 0.12 0.726

MD FMinor 7.79 × 10−4 4.05 × 10−5 8.08 × 10−4 5.23 × 10−5 25.18 8.18 × 10−7 0.07 0.794

MD LH SLFT 7.56 × 10−4 4.26 × 10−5 7.85 × 10−4 5.09 × 10−5 24.96 9.12 × 10−7 1.84 0.176

AD LH ATR 1.11 × 10−3 5.44 × 10−5 1.14 × 10−3 6.89 × 10−5 24.61 1.08 × 10−6 0.04 0.847

MD LH UNC 7.90 × 10−4 4.06 × 10−5 8.17 × 10−4 4.92 × 10−5 24.15 1.35 × 10−6 0.03 0.855

MD RH ILF 7.87 × 10−4 4.73 × 10−5 8.18 × 10−4 5.83 × 10−5 23.88 1.54 × 10−6 0.07 0.794

AD RH SLFP 1.10 × 10−3 5.63 × 10−5 1.13 × 10−3 7.38 × 10−5 23.73 1.66 × 10−6 0.00 0.993

AD RH ATR 1.10 × 10−3 5.51 × 10−5 1.13 × 10−3 7.31 × 10−5 23.50 1.85 × 10−6 0.08 0.773

MD FMajor 7.78 × 10−4 4.27 × 10−5 8.17 × 10−4 1.10 × 10−4 22.77 2.65 × 10−6 8.67 0.003

RD LH UNC 5.93 × 10−4 4.34 × 10−5 6.19 × 10−4 4.88 × 10−5 21.29 5.48 × 10−6 0.85 0.356

White matter tracts with significant genotypes are presented (P < 0.05).
Bonferroni correction was used as follows: P < 0.05 / (4 DTI parameters × 18 white matter tracts × 85 SNPs)= 8.17 × 10−6.
Significant genotypes in white matter tracts after Bonferroni correction are shown in bold-face. (P < 8.17 × 10−6) * UCSC GRCh38/hg38.
SNP single nucleotide polymorphisms, SD standard deviation, F degree of freedom, MUC6 Mucin 6, FMajor forceps major, FMinor forceps minor of the corpus
callosum, ATR the anterior thalamic radiation, CCG cingulum cingulate gyrus bundle, CST corticospinal tract, ILF inferior longitudinal fasciculus, SLFP superior
longitudinal fasciculus-parietal bundle, SLFT superior longitudinal fasciculus-temporal bundle, UNC uncinate fasciculus, FA fractional anisotropy, RD radial
diffusivity, MD mean diffusivity, AD axial diffusivity, LH left hemisphere, RH right hemisphere.
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plasticity. Therefore, although the present study did not investi-
gate the association between SNPs in FRMPD3 and DTI
parameters, there is a possibility that genetic variants in this gene
may affect individuals’ predisposition to MDD by leading to white
matter microstructural abnormalities. Further studies are required
on this issue.
In the neuroimaging-genetic analysis, we observed a significant

genotype effect of mucin 6 (MUC6) rs771995197 on several DTI
parameters. Notably, no significant effects of genotype-by-
diagnosis interaction were observed. In particular, the G allele of
MUC6 rs771995197 was associated with widespread impairment
of the white matter tract integrity concerning RD and MD in the
ATR, CCG, CST, FMajor, FMinor, ILF, SLFP, SLFT, and UNC. These
results suggest that the MUC6 gene rs771995197 may be
responsible for changes in the DTI parameters, mainly an increase
in the RD and MD of several white matter tracts, which are
intermediate neuroimaging phenotypes of depression [26].
Importantly, this effect appears consistent across both the MDD
and HC groups, reflecting an undifferentiated impact regardless of
MDD diagnosis.
Despite the lack of a significant genotype-by-diagnosis interac-

tion effect, the above SNP was associated with MDD in an
association test and depression-related neuroimaging phenotypes.
This is similar to our previous combined WES-neuroimaging study,
in which one SNP in CDH23 had a genotype effect on cortical
thickness but no genotype-by-diagnosis interaction effect [32].
Notably, a previous WES study suggested that the variable number
tandem repeat (VNTR) region of MUC6 is associated with late-onset
Alzheimer’s disease [73], and a GWAS of Finnish twins found that a
missense variant in MUC6 is associated with nicotine addiction
[74]. Additionally, MUC6 has been reported to be associated with
the neurotrophin signaling pathway through NFκB1 [74, 75], and
this may be a possible neurobiological pathway between MUC6
rs771995197 and alterations of the white matter integrity.
Higher RD in the white matter tracts, which is one of the most

common DTI findings in MDD [26], can serve as a marker of
demyelination [76]. Given the vital role of neurotrophins in
demyelinating pathologies [77], MUC6 may be involved in
depression-related changes in the structural connectivity of white
matter tracts through its involvement in neurotrophin signaling
and demyelination pathways. To the best of our knowledge, no
previous study has demonstrated a causal relationship between
this novel SNP and microstructural changes in the white matter
tracts. However, further studies are required to elucidate this
postulated mechanism.
By comparing the results of the present study with those of our

previous WES study combined with structural neuroimaging
analysis in patients with MDD [32], we discovered several genes
that were not identified in previous studies, such as XIRP2, MUC5B,
FRMPD3, and MUC6. Furthermore, a previous study found a
significant association between one SNP (rs11592462) of CDH23
and thinning of the right anterior cingulate cortex, whereas the
present study did not find any association between CDH23 and DTI
parameters. This discrepancy might be due to the different sample
sizes of the two studies; the present study had double the sample
size of the previous studies with regard to WES (367 MDD and 161
HCs vs. 184 MDD and 82 HCs) and genetic neuroimaging analysis
(234 MDD and 135 HCs vs. 91 MDD and 75 HCs). Future studies
with larger sample sizes are needed to obtain more robust results.
We have identified 17 regions with recurrently altered copy

numbers containing MDD-related genes. The most frequently
detected CNA regions, involving MDD-related genes, included a
copy number gain on 16q22.1 (19%) and copy number losses on
7q11.21 (28%) and 22q11.23 (23%). A recent study reported that
copy number gains on 16q22.1–q22.2 are related to headache and
anxiety disorders [78]. Another WES study found that copy
number loss on 7q11.21 was associated with schizophrenia [79].
Copy number loss on 22q11.23 was detected in schizophrenia,

autism spectrum disorder, intellectual disability, anxiety, and
depression [80]. Our discovery of MDD-related CNAs in 16q22.1
and 7q11.21 and their associations with MDD is novel. However,
additional studies are required to confirm these findings.
The present study had several limitations. First, our study might

have limited statistical power to detect gene-based rare variants
owing to the relatively small sample size, particularly when
compared to recent WES studies conducted with larger
population-based samples using the UK Biobank [81, 82]. How-
ever, to our knowledge, this case-control study represents the
largest MDD sample size using WES to investigate neuroimaging
genetic variants in Asians. Second, our findings regarding the
association between MUC6 rs771995197 and the white matter
tracts were not validated in independent samples, which may
have introduced some uncertainty into our results. Third, we did
not present results from a validation set and a predictive model
based on identified markers from genetic and neuroimaging
analyses. The validation of these markers necessitates samples of
the same ancestry [83–85]. However, we encountered challenges
in recruiting a sufficient number of participants with the same
ancestry. Further investigations in independent groups with
similar ancestries are necessary to validate the identified markers
and establish a predictive model using these markers. Fourth, no
significant differences were observed in the DTI parameters
between the MDD and HC groups. However, disease burden-
related variables, such as illness duration and HDRS scores,
demonstrated a significant association with lower FA or higher RD
and MD within the MDD group, aligning with the findings from
previous DTI studies on MDD [86, 87]. Despite these associations,
the absence of diagnostic effects on the DTI parameters may limit
our results in the context of neuroimaging-genetic association
analysis. Finally, the MDD group had significantly more years of
education than the HC group in the present study. Thus, although
all neuroimaging-related analyses included years of education as a
covariate of no interest, we cannot exclude the possibility that this
may affect our results from the neuroimaging analyses.
In summary, we identified 918 rare exonic missense variants

associated with MDD, including XIRP2, MUC5B, FASN, CDH23,
MYH13, TRIO, UNC13D, CACNA1B, and CACNA1C, using WES. In the
joint analyses of WES and neuroimaging data, one significant SNP
(rs771995197) in MUC6 was associated with microstructural
changes in the widespread white matter tracts in patients with
MDD and HCs. We also investigated rare variants associated with
MDD at the gene level and found that FRMPD3 was significantly
associated with MDD. To our knowledge, this is the first study to
discover the associations between white matter tracts and SNPs
using WES in Korean patients with MDD. Thus, the current study
provides a comprehensive understanding of the genetic impact of
rare variants, as well as the influence of genetic components on
neurostructural alterations in MDD.
MDD is a highly heterogeneous and complex mental disorder. It

has been suggested that the integration of knowledge on brain
network dysfunction and genomics may uncover intermediate
neuroimaging endophenotypes that provide deep insight into the
biotyping of heterogeneous patients with MDD [88]. Therefore,
the novel approach combining WES and brain structural altera-
tions used in the present study may reveal several intermediate
neuroimaging phenotypes with high heritability and related
genetic risk variants that may be used in the classification of
heterogeneous patients into neuroscience-based depression
subtypes. We believe that these efforts may help introduce the
concept of precision psychiatry for MDD.
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