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Depression and cognition are associated with lipid
dysregulation in both a multigenerational study of depression
and the National Health and Nutrition Examination Survey
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Chronic dysregulation of peripheral lipids has been found to be associated with depression and cognition, but their interaction has
not been investigated. Growing evidence has highlighted the association between peripheral lipoprotein levels with depression
and cognition with inconsistent results. We assessed the association between peripheral lipids, depression, and cognition while
evaluating their potential interactions using robust clinically relevant predictors such as lipoprotein levels and chronic medical
disorders that dysregulate lipoproteins. We report an association between peripheral lipids, depression, and cognition, suggesting a
common underlying biological mechanism driven by lipid dysregulation in two independent studies. Analysis of a longitudinal
study of a cohort at high or low familial risk for major depressive disorder (MDD) (n= 526) found metabolic diseases, including
diabetes, hypertension, and other cardiovascular diseases, were associated with MDD and cognitive outcomes. Investigating a
cross-sectional population survey of adults in the National Health and Nutrition Examination Survey 2011–2014 (NHANES)
(n= 2377), depression was found to be associated with high density lipoprotein (HDL) and cognitive assessments. In the familial
risk study, medical conditions were found to be associated with chronic lipid dysregulation and were significantly associated with
MDD using the structural equation model. A positive association between chronic lipid dysregulation and cognitive scores was
found in an exploratory analysis of the familial risk study. In a complementary study, analysis of NHANES revealed a positive
association of HDL levels with cognition. Further analysis of the NHANES cohort indicated that depression status mediated the
interaction between HDL levels and cognitive tests. Importantly, the protective effect of HDL on cognition was absent in those with
depressive symptoms, which may ultimately result in worse outcomes leading to cognitive decline. These findings highlight the
potential for the early predictive value of medical conditions with chronic lipid dyshomeostasis for the risk of depression and
cognitive decline.
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INTRODUCTION
Multiple studies have found that peripheral lipoproteins, which
are associated with chronic medical conditions, including
cardiovascular disease, are linked to depression and cognitive
decline. Lipid parameters exert their influence on cognition not
only through direct biological pathways but may also affect it
indirectly through psychological factors like depression. Depres-
sion itself is known to be a major risk factor for neurocognitive
decline [1]. Considering the link between lipoproteins and
depression, we hypothesized that the presence of depression
plays a mediating role in the association between lipoprotein
levels and cognition. Few studies have attempted to investigate
this interaction, however, multiple studies have identified a
strong association between atherogenic factors and depression.
For example, decreased total serum cholesterol, decrease in
high-density lipoprotein (HDL), and increase in low-density

lipoprotein (LDL) and LDL/HDL ratio, are associated with
depression [2–9]. A study by the National Health and Nutrition
Examination Survey (NHANES; 2015–2016) showed that the level
of TG was one of the most important features in predicting
depression [10]. However, conflicting results from previous
analyses of NHANES (2009–2015) reported that low levels of
total cholesterol (TC) were not associated with an increased risk
of depression [11], while two other studies reported an inverse
relationship between depression and levels of TC [12–14].
Recently, Jia et al. [15] showed that HDL was positively
correlated with depressive symptom severity, but LDL, triglycer-
ide levels (TG), and TC were negatively correlated with
depressive symptom severity as well as cognitive performance
[15]. More recent analyses of the NHANES have reported that
non-high-density lipoprotein cholesterol, an increase in athero-
genic coefficient, or an increase in the non-high-density
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lipoprotein cholesterol to high-density lipoprotein cholesterol
ratio were associated with an increased prevalence of depres-
sion [16–18].
Chronic dysregulation of peripheral lipids, including HDL, LDL,

TC, and TG levels, has been shown to predict cognitive
performance [19–21], suggesting potential shared mechanisms
determining pathological outcomes. Lipid dyshomeostasis can
affect cognition through direct biological pathways such as
synaptic transmission, neuroplasticity, and antidepressant action
[22–26]. Further, depression itself is known to be a major risk
factor for neurocognitive decline [1]. However, studies to date
have shown conflicting outcomes and have been limited by
sample size. It is, therefore, not known if chronic lipid
dyshomeostasis shares a biological mechanism with underlying
neurological changes leading to changes in depressive state and/
or cognition. Given the association of lipid dysregulation with
cognitive deficits [19–21], and major depressive disorder (MDD), a
biological pathway involving lipid dyshomeostasis is highly likely.
For example, a previous study in unipolar and bipolar depression
found cognitive abilities were associated with altered levels of
Apolipoprotein B (ApoB) [27]. Another study found TG levels
significantly correlated with cognition in those with MDD
compared to healthy controls [28]. Further, in NHANES (cohort
2011–2014), depression was associated with decreased cognitive
scores and shown to be synergistic with diabetes, thus high-
lighting the impact of additional metabolic disorders on
cholesterol pathways [29]. Considering the link between lipopro-
teins and depression, we posit that the presence of depression
plays a mediating role in the association between lipoprotein
levels and cognition.
Multiple chronic medical conditions and metabolic diseases are

known to disrupt lipid metabolism over the lifetime including
diabetes, gallbladder disease, hypertension, and cardiovascular
disease [30–32]. In this study, we aimed to elucidate the relation-
ship between lipid dyshomeostasis, depression, and cognition. Our
study tested the same biological hypothesis in two independent
and distinct populations, a deeply phenotyped 30-year cohort
study of individuals at high and low risk for depression based on
family history, and a highly powered study, the National Health and
Nutrition Examination Survey (NHANES). We addressed three
hypotheses (1) medical conditions such as diabetes, gallbladder
disease, hypertension, and other cardiovascular diseases, which
reflect chronic dysfunction in lipid metabolism, are likely to be
associated with lifetime MDD in a longitudinal study of familial risk
for depression; (2) these lipid-associated medical disorders (LAMD)
are associated with decreased cognitive performance in the familial
risk study; and (3) based on our biological hypothesis, we analyzed
a highly powered cross-sectional study, the NHANES, using
different methodologies to test the association and potential
interactions among depression, lipids, and cognition. The NHANES
study, which has more robust and clinically significant predictors
such as clinical measures of peripheral lipids, including HDL, was
analyzed to test the hypothesis that depression mediates the
interaction of peripheral lipids and cognition.

METHODS
Familial risk study analysis
Population. The analysis is based on a cohort of individuals at high and low
risk for depression based on family history (n= 526). In the original familial
risk study, individuals (first generation=G1) with MDD were recruited from
New Haven, Connecticut. Nondepressed probands were selected, at the
same time, from an epidemiologic sample of adults in the same area and had
no history of psychiatric illness, as determined by multiple interviews. For
generations 2 (G2) and 3 (G3), high risk was defined as having at least one
parent or grandparent, respectively, diagnosed with MDD. The New York
State Psychiatric Institute IRB approved all procedures, and informed consent
was obtained. The study began in 1982, and there were seven waves (W1-
W7) of data collection, which occurred at baseline, and 2, 10, 20, 25, 30, and

35 years thereafter [33–37]. Demographic characteristics of this study are
shown in Table 1. Full details regarding familial risk studies have previously
been reported [33–37].

Familial risk study assessments
Psychiatric assessments: The assessments used to measure psychiatric
symptoms, diagnoses, and general medical problems were previously
described [38]. The diagnostic interview used at every wave was the
Schedule for Affective Disorders and Schizophrenia–Lifetime Version
(SADS-L) [39] for adults and the child version Schedule for Affective
Disorders and Schizophrenia for School-Age Children (Kiddie-SADS-E) [40].
Data from all waves were pooled to create one variable indicating a
lifetime diagnosis of MDD.

General medical problems: A standard medical checklist, which
includes 57 conditions [38], was used to collect data on medical illness.
Individuals were asked whether a doctor diagnosed them with a particular
condition and if any medication was prescribed. Information was collected
at each wave, and in the case of minors, parents reported on their children.
Medical problems were categorized a priori into 14 distinct categories,
representing the bodily site or system affected, and data were combined
to create variables indicating a lifetime history of a medical condition.

Cognition: A subset of the main sample for cognition scores consisted
of 150 individuals from the offspring of the proband generation (G1),
including the second generation (G2= 63) and the third generation
(G3= 87) of the multigenerational study who were interviewed at wave 6
(W6) follow-up (Table 1). The cognitive testing included a detailed battery
of assessor-administered criterion-standard tests of speed, reasoning/
intelligence, attention, executive function, and memory. Full details about
the assessments were previously described including the Wechsler
Abbreviated Scale of Intelligence (WASI) [41].

Familial risk status: The covariate 'familial risk status' represents the risk
status of each individual in the families of generations 2 and 3 of the G1
depressed probands. We used this to indicate whether a relative was at
high or low risk for depression based on whether the participant was a
high or low-risk offspring based on their relationship with the proband.

Cluster analysis. In an exploratory study, we applied an unsupervised
algorithm—hierarchical clustering method-to group medical disorders with
similar incidence into clusters based on their closeness (i.e., Euclidean
distance) in the R software (version 3.6.1) using package “lavaan”. To
maintain consistency with our primary analysis of LAMD, LIMD, and IAMD,
three theoretical groups (k= 3) were selected for this analysis (Table 2)
According to the output of the identified three clusters, we conducted two
structural equations models that used k1, k2, and k3 as latent variables to
examine their association with lifetime MDD or cognition scores in a
parsimonious model and controlled for the potential confounding covariates
age, sex, and familial risk status as described above (Fig. 1).

Structural equation models. Medical disorders were classified into three
broad categories, (1) lipid-associated medical disorders (LAMD), a
hypothetical construct variable representing chronic lipid disorders
(diabetes, gallbladder disease, hypertension, and other cardiovascular
diseases) was compared to two other constructs that consisted of medical
disorders which are hypothesized to be independent or moderately
associated with lipid dyshomeostasis: (2) lipid-independent medical
disorders (LIMD; cancer), and (3) intermediately associated medical
disorders (IAMD; convulsion, head injury, stroke) (Table 3, Supplemental
Table 1). In order to determine the association of medical disorders with
depression as an outcome, we used structural equation models (SEM) [42]
to investigate a priori hypotheses on relationships between observed and
latent variables. Based on longitudinal data from the multigenerational
familial risk study, we examined the association between lifetime MDD as
an outcome and the three medical disorder categories (LAMD, LIMD,
IAMD) while controlling for participant’s age at the last interview (wave 6;
W6) sex, and familial risk status by applying structural equation models in
the R software (version 3.6.1) and package “lavaan”. For analyses of the
cognition scores in a subset of participants (N= 150) collected at W6,
structural equation models were applied to WASI [43]: Similarities T-scores
and Verbal IQ sum of T-scores as the outcome to separately investigate
their association with three medical disorder categories, controlling for age
at W6, sex, and familial risk status as described above.
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Survival analysis. In order to determine if the lifetime incidence of LAMD
affected the cumulative incidence of depression, we conducted a survival
analysis. The longitudinal nature of the multigenerational familial risk
study allowed us to conduct a survival analysis of the cumulative
incidence of depression, comparing individuals who had an LAMD during
their lifetime with those who did not. We conducted survival analysis [44]

using the non-parametric LIFETEST procedure in SAS (version 9.4) to
estimate the survival probabilities of lifetime MDD stratified by LAMD
(Fig. 2A) and the age-specific hazard rates of MDD in 10-year intervals
stratified by LAMD (Fig. 2B).

NHANES study
Population. This study used the combined data from the two NHANES
cycles (2011–2012, 2013–2014). The specific sampling strategy has been
published [45]. After meeting the study criteria, a total of 2377
participants were included in the analysis (Supplemental Table 2,
Supplemental Fig. 1).

Multivariate analysis. Multivariate linear regression models were con-
ducted in SAS on Demand to analyze the association between HDL and
Cholesterol–HDL ratio (as continuous and binary variables, respectively).
Models were adjusted for age, sex, depression, and body mass index (BMI)
as covariates. Estimated effect size (β) was reported, and statistical
significance was set at α= 0.05. To determine how the presence or
absence of depression might influence the indirect pathway of the
relationship between HDL levels and cognitive performance, we con-
ducted a mediation analysis. To determine if depression mediates the
interaction between HDL and cognitive z-scores, a multivariate linear
regression model for HDL and cognitive scores was performed after
stratifying by depression status. We also conducted multivariate mediation
analysis for estimating total, direct, indirect, and controlled effects using
SAS [(Procedure Causal Mediation (proc causal med)] within the same
model.

NHANES study assessments. The National Center for Health Statistics of
the Centers for Disease Control and Prevention (CDC) is a continuous cross-
sectional survey to represent the US population of non-institutionalized

Table 1. Demographic characteristics and cumulative rates of medical disorders for main sample and subset.

Characteristic Main Sample (N= 526) Subseta (N= 150)

Mean (SD) Range Mean (SD) Range

Age at last interview/W6 32.5 (16.1) 4.4–67.9 31.3 (15.2) 6.0–59.1

N (%) N (%)

Generation (G)

G2 273 (51.9) 63 (42.0)

G3 253 (48.1) 87 (58.0)

Sex

Female 279 (53.0) 78 (52.0)

Male 247 (47.0) 72 (48.0)

Familial Risk Status

High Risk 354 (67.3) 90 (60.0)

Low Risk 172 (32.7) 60 (40.0)

Lifetime MDD

Yes 217 (41.3) 78 (52.0)

No 309 (58.7) 72 (48.0)

Medical Disorder Yes No Unknown Yes No

Lipid-Associated Medical Disorder (LAMD) 139 (26.4) 387 (73.6) 0 52 (34.7) 98 (65.3)

Hypertension 70 (13.3) 434 (82.5) 22 (4.2) 25 (16.7) 125 (83.3)

Cardiovascular 42 (8.0) 479 (91.1) 5 (0.9) 13 (8.7) 137 (91.3)

Hyperthyroidism 12 (2.3) 514 (97.7) 0 4 (2.7) 146 (97.3)

Hypothyroidism 28 (5.3) 480 (91.3) 18 (3.4) 13 (8.7) 137 (91.3)

Gallbladder disease 18 (3.4) 477 (90.7) 31 (5.9) 8 (5.3) 142 (94.7)

Diabetes 21 (4.0) 487 (92.6) 18 (3.4) 8 (5.3) 142 (94.7)

Lipid Independent Medical Disorder (LIMD) (cancer) 37 (7.0) 489 (93.0) 0 15 (10.0) 135 (90.0)

Intermediately Associated Medical Disorder (IAMD) 108 (20.5) 418 (79.5) 0 29 (19.3) 121 (80.7)

Convulsion 19 (3.6) 507 (96.4) 0 3 (2.0) 147 (98.0)

Head injury 57 (10.8) 469 (89.2) 0 22 (14.7) 128 (85.3)

Stroke 41 (7.8) 485 (92.2) 0 7 (4.7) 143 (95.3)
aThe subjects who had records of Similarities subtest T-scores and Verbal IQ sum of T-scores at W6.

Table 2. Structural equation models based on the hierarchical
clustering method (Euclidean distance) with lifetime MDD as outcome.

Predictor Estimate z-value P(>|z|)

1. Basic model

k1 2.56 2.91 0.004

k2 0.17 2.22 0.026

k3 0.03 0.30 0.763

2. Controlling for high-risk, age, and sex

k1 0.52 0.82 0.413

k2 0.23 3.62 <0.001

k3 0.01 0.22 0.827

High risk 0.18 4.47 <0.001

Age at last interview/W6 0.01 10.00 <0.001

Sex 0.10 2.44 0.015

k1= Cancer+Other Cardiovascular+ Hypothyroidism+ Stroke+Dia-
betes+ Hyper-thyroid+ Convulsions+Gallbladder disease; k2= Head
injury; k3= Hypertension.
Bold values are associated with significant findings.
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civilians that conducts in-home interviews and physical examinations at
mobile examination centers [46].
Depressive symptoms were measured using the Patient Health

Questionnaire-9 (PHQ-9) [47]. The TC to HDL ratio was generated and is
now increasingly utilized as a useful predictor of cardiovascular heart
disease (CHD) risk compared to LDL or TC alone [48, 49]. For the TC to HDL
ratio, a cut of 3.5 suggested by the American Heart Association was used to
create a binary variable [49]. Cognitive performance was obtained through
the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) [50].
Word Learning sub-tests, including delayed word recall tests (DWRT),
Animal Fluency test (AFT), and the Digit Symbol Substitution test (DSST) as
previously published [46]. The cognitive test scores were converted to z-
scores using sample mean and standard deviation.

RESULTS
Familial risk study
A total of 526 individuals from the multigenerational familial risk
study, 273 (51.9%) from G2 and 253 (48.1%) from G3, were
included. Mean age was 32.5 (±16.1) years, 279 (53%) were
females, and 354 (67.3%) were at familial high risk for depression.
Demographic, health, and family history characteristics are
summarized in Table 1, including the subset of individuals who
had cognitive testing, including the WASI [43] at W6.

Table 3. Structural equation models with lifetime MDD and cognition as outcome.

Predictors Outcome: Lifetime MDD

Sample: G2+G3, N= 526 Sample: High risk, G2+G3, N= 354

Estimate z-value p(>|z|) Estimate z-value p(>|z|)

1. Basic model

LAMD (Lipid-Associated Medical
Disorder)

1.37 4.08 <0.001 1.50 3.83 <0.001

LIMD (Lipid-Independent Medical
Disorder)

0.00 0.03 0.976 −0.03 −0.19 0.848

IAMD (Intermediately Associated
Medical Disorder)

2.01 0.96 0.339 1.35 0.65 0.519

2. Controlling for familial risk, age, and sex

LAMD 0.37 1.76 0.078 0.52 1.98 0.048

LIMD −0.04 −0.41 0.680 −0.06 −0.54 0.586

IAMD 2.98 1.77 0.078 2.91 1.27 0.204

High risk 0.19 4.59 <0.001

Age at last interview/W6 0.01 9.76 <0.001 0.01 9.83 <0.001

Sex 0.10 2.45 0.014 0.05 1.11 0.266

Predictors Outcome: Similarities subtest T-scores Outcome: Verbal IQ sum of T-scores

Sample: G2+G3, N= 150

Estimate z-value p(>|z|) Estimate z-value p(>|z|)

1. Basic model

LAMD 16.79 1.83 0.068 22.61 1.73 0.084

LIMD −1.70 −0.58 0.564 −2.70 −0.52 0.605

IAMD −28.37 −1.75 0.081 −42.96 −1.52 0.128

2. Controlling for familial risk, age, and sex

LAMD 25.80 2.12 0.034 39.97 2.05 0.040

LIMD −4.60 −1.38 0.169 −8.83 −1.43 0.154

IAMD −31.56 −1.83 0.067 −52.30 −1.66 0.098

High risk 4.19 2.92 0.003 8.66 3.34 0.001

Age at last interview/W6 0.08 1.67 0.095 0.14 1.62 0.105

Sex 2.01 1.42 0.155 2.22 0.87 0.384

Bold values are associated with significant findings.

Fig. 1 Familial risk study medical disorders cluster into three
groups. Shortest Euclidean distance cluster analysis of familial risk
cohort with dendrogram (G2+ G3, N= 526). An unsupervised
algorithm was used to group medical disorders with similar
incidence into clusters based on their association strength. To
maintain consistency with our primary analysis of LAMD, LIMD, and
IAMD, three theoretical groups, k= 3 were selected for this analysis.
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We aimed to investigate the association between lifetime LAMD
and lifetime depression in a longitudinal cohort. We hypothesized
that depression is associated with lipid dyshomeostasis, which
underlies multiple medical conditions, including diabetes, gallblad-
der disease, hypertension, and other cardiovascular diseases based
on disease etiology. We identified medical conditions associated with
lipid dyshomeostasis that clustered in an unsupervised model. The
results of the cluster analysis show that the k1 predictor cluster
(cancer, other cardiovascular, hypo- and hyperthyroidism, stroke,
diabetes, convulsions, and gallbladder disease) is significantly
associated with MDD in the basic model (β= 2.56, z-value= 2.91,
p= 0.004) (Table 2, Fig. 1). In the second model, which included
covariates familial risk status, age, and sex, the effect of k1 became
insignificant, but k2 (head injury) was a significant predictor of MDD
(k2: β= 0.23, z-value= 3.62, p-value < 0.001).
To complement the cluster analysis, we constructed a hypothetical

composite construct variable for LAMD and two control hypothetical
construct variables for medical conditions with etiologies LIMD or
IAMD on lipid dyshomeostasis, based on relevance to LAMD. Table 3
shows the findings of the structural equation models for the main
sample (N= 526) with lifetime MDD as the outcome. The analysis
was performed in the basic model and in a controlled model.
Individually, LAMD was not associated with MDD after adjusting for
familial risk status, age, and sex in a logistic regression model
(Supplemental Table 1). However, the composite variable for LAMD
was significantly associated with MDD while lipid-independent and
intermediately associated conditions were not (Table 3). In the basic
model, the LAMD composite variable was positively associated with
lifetime MDD (β= 1.37, p < 0.001), although it did not maintain
significance in the controlled model (β= 0.37, p= 0.078). However,
among individuals with high familial risk for depression (N= 354),
the structural equation models with lifetime MDD as the outcome
show that LAMD is a significant predictor of MDD in the basic model
(β= 1.50, p < 0.001) and after controlling for familial risk, age, and sex
(β= 0.52, p= 0.048) (Table 3). Additionally, age was a significant
predictor of MDD (β= 0.01, p < 0.001), suggesting that age is an
important factor to consider when identifying individuals at higher
risk for depression. However, sex was not a significant predictor of
MDD in the high-risk sample. Interestingly, the hypothesized
composite variables LIMD and IAMD were not significant predictors
of MDD, suggesting that LAMD is unique among co-morbid medical
conditions for predicting depression (Table 3).
Survival curves show the cumulative probability of surviving

depression from age 0 to the age of MDD onset (Fig. 2). The Y-axis is

the probability of being lifetime non-depressed, and the X-axis is the
age of onset of MDD. The red line on the graph shows that
individuals who have LAMD, are more likely to develop depression
(censor). This indicates that the lifetime occurrence of LAMD is
associated with an increased risk of developing depression. This
finding is recapitulated in the hazard function for LAMD (Fig. 2B), in
which the instantaneous risk of depression is greater in the LAMD
group. Two groups of depression-onset individuals were compared,
i.e., those with depression onset before lipid disorder onset and
those with depression onset after onset of lipid disorder. There was
no difference in the two groups suggesting that the sequence of
occurrence of the two disorders is independent of the survival
probability of depression (data not shown).
We used a subset of the sample (N= 150) for exploratory

analysis of the association of LAMD with cognition at W6. In the
adjusted model, LAMD was positively associated with two verbal
outcomes from the WASI [43]: Similarities subtest T-scores
(β= 25.8, p= 0.034) and Verbal IQ sum of T-scores (β= 39.97,
p= 0.040) (Table 3). We found through specific analysis that
lifetime MDD did not mediate the effect of LAMD on cognition
(data not shown). However, we cannot be certain that our sample
size was sufficient to detect a mediation effect.

NHANES Study
A total of 2377 individuals with a mean age of 69 (±7) years, 1207
(54%) females, and 1105 (59%) high values of HDL (>40mg/dL)
were included. All the demographic characteristics are presented
in Supplemental Table 2 and exclusion criteria for this study are
presented in Supplemental Fig. 1. The results of the multivariate
linear regression model of lipid parameters predicted by cognitive
z-scores in an unadjusted (Model 1) and a model adjusted model
for age, sex, and body mass index (BMI) (Model 2) are shown in
Supplemental Table 3. We observed that higher levels of HDL
were associated with higher digit symbol substitution test (DSST)
z-scores (β= 0.006, SE= 0.001, p < 0.001), Animal Fluency test
(AFT) z-scores (β= 0.007, SE= 0.001, p < 0.001) and Delayed Word
Recall test (DWRT) z-scores (β= 0.004, SE= 0.001, p < 0.001) in the
adjusted model. In both the unadjusted and adjusted models,
high HDL was associated with higher cognitive z-scores in all
domains, suggesting a protective effect of HDL on cognitive
status. In the unadjusted model, a higher Cholesterol/HDL ratio
was associated with a lower DSST cognitive z-score. In the
adjusted model, the Cholesterol/HDL ratio remained negatively
associated with DSST z-scores (β=−0.046, SE= 0.016, p= 0.004).

Fig. 2 Subjects with lipid-associated medical disorders (LAMD, red) display reduced survival probability and enhanced hazard rate
compared to those with no lipid disorder (blue). Survival analysis—age of onset of depression stratified by lifelong incidence of lipid
disorder using a non-parametric statistical LIFETEST procedure in the SAS software (version 9.4) to estimate (A) the survival probabilities of
lifetime MDD stratified by LAMD, and (B) the age-specific hazard rates of MDD in 10-year intervals stratified by LAMD.
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Multivariate linear regression analysis examining the relation-
ship between HDL levels and cognitive test scores, stratified by
depression status, are shown in Fig. 3 and Supplemental Table 4.
In the adjusted model (Model 2), there was a statistically
significant positive relationship between HDL levels and AFT z-
scores only in the group without depression (Depression “No”:
β= 0.220, SE= 0.063, p < 0.001 vs. Depression “Yes”: β=−0.049,
SE= 0.103, p= 0.629). For the DWRT test, there was a significant
relationship between HDL levels and cognitive scores in those
without depression however, the significance was lost in the
adjusted model. Finally, for DSST scores, there was a statistically
significant positive relationship between higher HDL levels and
cognitive test z-scores for the group without depression
(β= 0.299, SE= 0.060, p < 0.001), but not for the group with
depression, (β= 0.054, SE= 0.102, p= 0.598) in the adjusted
model suggesting that depression mediated the effect of HDL
levels on cognitive scores.
We performed mediation analysis to examine the relationship

between HDL levels and cognitive test scores to identify if
depression status is a mediator in the pathway between HDL and
cognitive measures. We observed that HDL levels are positively
associated with cognitive z-scores, evidenced by significant total
effects across all measurements (Supplemental Table 5; p < 0.001
for DSST, AFT, and DWRT in HDL [mg/dL]). This effect persisted in
the adjusted model. The analysis revealed a significant natural
indirect effect of depression on all cognitive measures (β= 0.0005,
p= 0.037 for DSST; β= 0.0003, p= 0.049 for AFT, and β= 0.0003,
p= 0.049 for DWRT on HDL [mg/dL]), suggesting that part of
HDL’s influence on cognition may be mediated by the presence of
depressive symptoms. These results are strengthened by adjusting
for demographic and health variables, such as age, sex, and BMI,
indicating that depression is a potential mediator of the relation-
ship between HDL and cognitive z-scores (Fig. 2 and Supple-
mental Table 5).

DISCUSSION
Our analysis of the multigenerational familial risk for depression study
showed that lifetime major depressive disorder (MDD) and verbal
cognitive scores were significantly associated with the hypothesized
composite variable scores representing lipid-associated medical

disorder (LAMD, Table 3). Because the familial risk study is a
longitudinal study and deeply phenotyped, we can assess the lifetime
incidence of depression and LAMD. We tested the hypothesis that the
composite variable representing the combined LAMD was associated
with lifetime MDD using log-rank tests. Additionally, using survival
analysis, we found that over time, individuals with LAMD are more
likely to develop depression than the controls at the same age, since
cumulative probability of survival is less in the LAMD group compared
to the nonLAMD group (Fig. 2A). These findings are consistent with
the hazard function for LAMD (Fig. 2B), in which we found that the
instantaneous risk of depression is greater in the LAMD group. We
found that lifetime MDD was associated with LAMD in the adjusted
model only in the subgroup with a high risk for depression but not in
the full sample (Table 3). This result may suggest that the high-risk
subgroup, which is known to have a genetic predisposition to
depression [33–37, 51], also may have common genetic drivers
for LAMD.
Having established the role of lipid dysregulation in depression,

we wanted to evaluate the effect of chronic lipid dyshomeostasis
on cognition in the LAMD groups. Since the subsample size with
cognition scores does not reach the minimum (N= 200) required
for a structural equation model, we performed an exploratory
cross-sectional analysis for the association between LAMD and
cognition at wave 6 (Table 3). We found a significant association
between LAMD and cognitive scores in the verbal domain.
Based on this exploratory analysis, we conducted a higherpower

study in NHANES, resulting in similar findings. Although the studies
vary in time, site demographics, and sample size, both have assessed
metrics that can be used to address our current hypotheses regarding
depression status, lipid dyshomeostasis, and cognition. This enabled
us to determine the consistency of results in broader and
independent samples, which strengthens the validity of our findings
through replicability across diverse sample sets and a range of
populations. The limitations of the familial risk study are tempered by
the larger sample size and availability of clinical lipid measures in
NHANES. However, the NHANES study is, limited by the cross-
sectional design, thereby benefitting from the deeply phenotyped
longitudinal study of familial risk for depression.
Based on our findings in the familial risk study regarding the

association of LAMD, depression, and cognition, we interrogated
NHANES, which reports clinical measures of peripheral lipids and

Fig. 3 Digital symbol substitution test (DSST), animal fluency test (AFT), and composite cognitive test have higher standardized z-scores
with higher HDL levels among those without depression but not in those with depression. The boxes contain the 25th–75th percentile
values and the solid black lines show the median. The whiskers mark the 5th and 95th percentiles. Outliers are excluded. Significance is
indicated by (*) at p < 0.05.
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also has more power to determine if depression is moderating the
effect of lipid dyshomeostasis on cognition. Our analysis of the
NHANES found that depression status mediates the effect of HDL
levels on cognition (Fig. 3, Supplemental Tables 4 and 5).
Plasma HDL has a well-established protective role in cardiovas-

cular disease. Recent studies strongly indicate that LDL is
associated with cognitive impairment, while HDL improves
memory [52, 53]. To our knowledge, this study is the first to find
that HDL is associated with increased cognitive scores, and this
association is only found in people who were not depressed,
suggesting mediation of the protective effect of HDL by
depression. Further, the Cholesterol/HDL ratio, which is a predictor
for poor metabolic health, has been shown in our study to be
negatively correlated with cognition scores. These results suggest
a positive effect of “good” cholesterol on cognitive scores only in
those who are not depressed. When stratified by depression
status, the effect of HDL level on cognition was not seen in the
group with depression, suggesting that depression status is a
mediator that impacts the association between lipid levels and
cognition. Although the overall effect (β) of the mediating effect of
depression on the association of HDL with cognitive score is small
and may not represent a clinically meaningful change in diagnosis
or disease progression, these studies serve to identify the
mechanistic pathway between lipid dyshomeostasis, depression,
and cognition. This mediation effect may ultimately hold promise
clinically, suggesting that earlier detection of mental health status
as well as peripheral lipid dyshomeostasis which are pharmaco-
logically tractable, may ultimately impact cognition.
The significant association of the composite LAMD with MDD

and cognitive scores suggests that a chronic state of lipid
dyshomeostasis, common to these medical conditions, underlies
changes in cognition, especially in the verbal domain. This is
consistent with alterations in circulating lipid concentrations
which may be linked to pathophysiological pathways related to
depression [54]. Further, alterations in lipid metabolism may
represent a consequence of depressive symptoms in which
patients with depression are more likely to engage in unhealthy
behaviors, such as sedentariness and poor nutrition, which may
lead to dyslipidemia resulting in metabolic syndrome [12, 55–57].
Mental illness-related distress has been known to impact
neurocognitive decline biologically through vascular changes in
memory and excessive release of corticosteroids, both causing
damage to brain areas associated with memory and learning [58].
Through indirect psychological mechanisms, depressive symp-
toms are also known to cause deficits in information processing
speed and executive functions [59]. The mediating impact of
depression further highlights the role of indirect biological and
psychological pathways through which depression may aggravate
cognitive decline or reduce the benefits of protective lipoprotein.
Our work refines the understanding from previous NHANES

analyses which report contrasting results. Previous analyses of the
NHANES have reported that cognitive deficits associated with
depression are synergistic with diabetes [29]. However, clinical lipid
levels have not directly been reported to be associated with
cognition in the NHANES, supporting the novelty of our findings.
Recently, Lee et al. (2021) also determined the association between
lipid parameters and cognition in the NHANES, however, only one
cognitive domain was included, and Cholesterol/HDL ratio was not
included as a predictor [60]. Additionally, Cepeda et al. (2020),
reported that low levels of TC in NHANES (2009-2015) were not
associated with an increased risk of depression [11] in contrast to
several other studies which report an inverse relationship between
depression and levels of TC [12–14]. One difference in our study is
that we stratified depression status by a PHQ-9 score of 5 while the
previous work in NHANES used a PHQ-9 score of equal or greater
than 10 to define depression. Our study may be more sensitive to
changes in a non-depressed cohort compared to these previous

studies, which are inclusive of those with higher PHQ-9 scores
indicative of mild to moderate depressive symptoms.
Lipid dyshomeostasis is known to be an underlying mechanism

for vascular dementia as well as Alzheimer’s disease (AD), as
previous studies have shown lipid dysregulation to promote AD
through both genetic and metabolic pathways [52]. However, the
direct effect on cognition has yet to be determined in the context
of these medical conditions. Our findings are corroborated by
recent work that shows that the major genetic risk factor for late-
onset AD involved in cholesterol trafficking, apolipoprotein Eε4,
alters cholesterol levels in the brain and may underlie cognitive
deficits associated with the disease [61–63]. Additional long-
itudinal studies regarding cognitive decline and clinical measures
of lipid dyshomeostasis are needed to determine the nature of the
interaction between lipid dyshomeostasis and depression in
shaping cognitive outcomes. Finally, our findings suggest that
multimorbidity might be an important variable in understanding
depression and also may have value for predicting those at higher
risk for depression availing earlier interventions [64]. Moreover,
identification of this interaction will lead to future studies to
determine if changes in cognition are the result of dietary and
lifestyle changes due to depressive symptoms or, alternatively, if
yet unknown genetic factors, common to chronic lipid dysho-
meostasis in LAMD, drive alterations in brain lipid content and
neuronal functioning, ultimately leading to cognitive changes.
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