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It has been previously established that paternal development of a strong incentive motivation for cocaine can predispose offspring
to develop high cocaine-seeking behavior, as opposed to sole exposure to the drug that results in drug resistance in offspring.
However, the adaptive changes of the reward circuitry have not been fully elucidated. To infer the key nuclei and possible hub
genes that determine susceptibility to addiction in offspring, rats were randomly assigned to three groups, cocaine self-
administration (CSA), yoked administration (Yoke), and saline self-administration (SSA), and used to generate F1. We conducted a
comprehensive transcriptomic analysis of the male F1 offspring across seven relevant brain regions, both under drug-naïve
conditions and after cocaine self-administration. Pairwise differentially expressed gene analysis revealed that the orbitofrontal
cortex (OFC) exhibited more pronounced transcriptomic changes in response to cocaine exposure, while the dorsal hippocampus
(dHip), dorsal striatum (dStr), and ventral tegmental area (VTA) exhibited changes that were more closely associated with the
paternal voluntary cocaine-seeking behavior. Consistently, these nuclei showed decreased dopamine levels, elevated neuronal
activation, and elevated between-nuclei correlations, indicating dopamine-centered rewiring of the midbrain circuit in the CSA
offspring. To determine if possible regulatory cascades exist that drive the expression changes, we constructed co-expression
networks induced by paternal drug addiction and identified three key clusters, primarily driven by transcriptional factors such as
MYT1L, POU3F4, and NEUROD6, leading to changes of genes regulating axonogenesis, synapse organization, and membrane
potential, respectively. Collectively, our data highlight vulnerable neurocircuitry and novel regulatory candidates with therapeutic
potential for disrupting the transgenerational inheritance of vulnerability to cocaine addiction.
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INTRODUCTION
Drug abuse is a pervasive public health crisis that has far-reaching
consequences for individuals and communities worldwide.
According to global estimates, approximately 275 million people
between the ages of 15 and 64 have used substances at least once
within the past year, among which around 13% suffer from
substance use disorders (SUDs) [1]. Furthermore, studies have
found that children of parents who have undergone substance
abuse have a higher propensity for developing particular self-
health conditions [2–5]. Previous studies have attempted to
explain the causes of intergenerational inheritance, focusing
mainly on the effects of maternal drug exposure during pregnancy
on offspring [6–10]. However, recent evidence suggests that
paternal drug use can also exert profound consequences on future
generations [11, 12]. Offspring of fathers with a history of cocaine
use show behavioral changes such as cocaine resistance [13],
reduced sensitization to cocaine [14], impaired memory [15], and
enhanced anxiety-like behaviors [16]. Previous investigations in
our laboratory have provided evidence that male rats showing
high seeking motivation for cocaine in cocaine self-administration

(SA) behavior could transmit vulnerability to drug reinforcement
to descendants, whereas yoked animals receiving the same dose
of cocaine injection at the same time, were resistant to cocaine-
seeking behavior [17]. The comparison of the two groups allows
us to distinguish between factors of active drug seeking, leading
to vulnerability to drug reinforcement, from “drug exposure”
factor, leading to protective effects of cocaine resistance.
However, the specific effects of these factors on the central
nervous system of offspring have remained unclear.
The development of susceptibility to specific drugs in offspring

may arise from systemic alterations in the reward circuit during
the developmental process. Various brain regions within the
reward circuit play distinct roles in the drug addiction process
[18, 19]. Notably, the VTA plays a crucial role as a significant source
of dopamine in the brain [18], and the VTA-Str pathway has been
proposed as a pivotal route contributing to cocaine addiction
[20, 21]. Conversely, OFC-Str projection has been suggested to be
associated with the development of compulsive drug use
behaviors [19, 22]. Additionally, the hippocampus may play a role
in the formation of drug dependence through its involvement in
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goal-directed behaviors [23, 24]. Existing studies of developmental
brain disorders suggest that impairments in brain function may
originate from functional impairments in hub genes, leading to
widespread adaptions across the brain. Current studies on how
parental drug addiction affects the central nervous system of
offspring have primarily focused on individual brain regions or
specific genes [14, 16, 25]. The comprehensive landscape of these
changes remains undisclosed, and uncovering these alterations
could provide more profound insights into the neurological
consequences of cocaine addiction on offspring. Here we utilized
our previous model to study the neuroadaptations caused by
paternal cocaine self-administration, incorporating comparisons
between cocaine self-administration (CSA), yoked cocaine infusion
(CY), and saline self-administration (SSA) (Fig. 1A), and performed
mRNA sequencing on seven brain regions associated with reward,
under drug-free state or after (Fig. 1B). The transcriptional results
were preliminarily verified by changes in assays on monoamine
transmitters and cellular activation levels in response to cocaine
(Fig. 1C). Through identifying various transcription factors and
quantitative validation of core genes, we sought to uncover the
underlying mechanisms of the transgenerational inheritance of
drug-seeking (Fig. 1D). Finally, we proposed a basic model to
summarize the transgenerational inheritance changes induced by
paternal highly-motivated cocaine-seeking (Fig. 1E).

METHODS AND MATERIALS
Experiments were conducted in strict accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory Animals.
Detailed descriptions of experimental design and approaches are provided
in Supplemental Methods.

RESULTS
Paternal highly-motivated cocaine-seeking experience
enhanced cocaine self-administration in offspring
We first established the cocaine SA procedure in outbred SD rats
to generate F0 generations. Rats were randomly assigned to three
groups, saline self-administration group (SSA), cocaine self-
administration group (CSA), and cocaine yoked-injection group
(CY). SSA and CSA groups were subjected to voluntary lever-
pressing for saline or cocaine for 30 days under a fixed ratio
program (5-day FR1, followed by 25-day FR5), while CY was kept in
identical but lever-omitted chambers, programmed to passively
receive the same dose of the cocaine while the paired CSA animal
received each cocaine injection (Fig. 2A). A progressive ratio test
(PR) succeeded in the FR sessions and was used to evaluate
motivation for cocaine seeking in CSA (Fig. 2B). To discern rats
with high seeking motivation for cocaine, we scored the 47 CSA
rats using the PR lever pressed, and a clear drop in score appears
in the top eighth of the 47 individuals. In this way, we designated
the top 7 rats (14.9%) as “highly motivated” rats (Fig. 2C), which
approaches the rate (< 20%) of drug users who become addicted
[1, 26]. Seven “highly motivated” rats, together with their yoked
animals, and seven SSA controls, were randomly chosen and
mated with naïve female rats to generate F1 (Fig. 2D). SSA-F1,
CY-F1, and CSA-F1 rats (7 litters respectively) were obtained, and
3-4 adult male rats from each litter were subjected to the cocaine
self-administration tests (Fig. 2D). Compared with SSA-F1 and
CY-F1, the CSA-F1 rats exhibited higher lever presses for cocaine
injections during the FR program and higher break points in the
PR program (Fig. 2E, FR5: PCSA-F1 vs CY-F1 < 0.001, PCSA-F1 vs SSA-F1

= 0.008; PR: PCSA-F1 vs CY-F1= 0.006, PCSA-F1 vs SSA-F1= 0.011). At the
same time, we calculated per-litter-averaged lever press to ensure
that the enhanced cocaine-seeking behavior presented by CSA-F1
stemmed from inter-group differences induced by the paternal
cocaine acquisition paradigm (Figure S1A, B, right). We also
conducted dimension reduction analysis with behavioral

characteristics, including active, and inactive lever in drug, no-
drug session in FR, and PR during the self-administration.
Interestingly, F1 rats’ behavioral performance diverged in Dimen-
sion 1 of UMAP according to parental drug intake, and diverged in
Dimension 2 according to paternal drug-seeking experience
(Fig. 2F). Moreover, correlation analysis showed that the offspring’s
cocaine-seeking motivation was not correlated with paternal
cocaine intake (Fig. 2G), which restated our previous findings that
paternal highly-motivated drug-seeking experience, but not drug
exposure per se, leads to a higher level of drug-seeking in the F1
generation.

Paternal highly-motivated cocaine-seeking induced
differentiated transcriptional responses in cortical and
mesolimbic regions of F1 generation
To comprehensively analyze the potential mechanism underlying
the increased drug-seeking in CSA-F1, RNA sequencing was
performed in the above 3 groups, in seven brain regions including
the orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC),
nucleus accumbens (NAc), dorsal striatum (dStr), dorsal hippo-
campus (dHip), amygdala (BLA), and ventral tegmental area (VTA).
Two different conditions, drug-naïve (Naïve) and cocaine self-
administration (Coc. SA) conditions, were included in the hope of
modeling differences in the innate and cocaine abuse-induced
changes in neuronal plasticity over time (Fig. 3A).
First, we used DEG counts to grossly evaluate the extent of

changes in all groupwise comparisons in two states separately
(Fig. 3B), as well as changes by cocaine administration in all F1
groups (Figure S3A-C). Four brain regions, including dHip, OFC, dStr,
and VTA, exhibit significant between-group variance (DEG count
>500) under naïve or Coc.SA-experienced states (Fig. 3B). Among
these regions, OFC exhibited cocaine self-administration-magnified
between-group variance in DEG number (Fig. 3B). To further
differentiate if the changes in DEG number between naïve and
Coc.SA states were conserved, and fold changes of CSA-F1 vs. SSA-
F1 were ranked, compared with CSA-F1 vs. SSA-F1, and plotted, as
shown in Fig. 3C-F. As indicated, 76.3% of DEGs showed a greater
magnitude of change in CY-F1 (Fig. 3C) in response to cocaine self-
administration (Figure S3B-D). While in dHip, the significant
between-group variance under drug-free state diminished after
Coc. SA (Figs. 3B, D). Interestingly, the transcriptional profiles of OFC
and dHip in naïve and Coc. SA states were not strongly correlated
(Fig. 3G, H, Figure S4A, B, E, F, I). Besides, a significantly larger
number of DEGs were observed in dStr and VTA in response to
Coc.SA experience (Fig. 3B), and the changes in dStr and VTA
between CSA-F1 and CY-F1 were positively correlated between
naïve and Coc.SA states (Fig. 3I, J, Figure S4I). In addition, the
percentage of classified changes in VTA was relatively stable under
both naïve and Coc. SA states (Fig. 3F). Therefore, in summary,
differences across groups in cortical structures, OFC and dHip, were
not maintained after cocaine self-administration (Fig. 3G, H, R
OFC= 0.19; R dHip= 0.05) whereas subcortical mesolimbic structures,
dStr and VTA, exhibited stable features (Fig. 3I, J, R OFC= 0.47; R
dHip= 0.52), indicating that cocaine-seeking magnified the changes
that already exist under naïve state in these regions.

Pattern analysis disentangles the transcriptomic effects of
paternal cocaine exposure, motivation, and passive infusion
on offspring
A notable distinction between the three F1 groups is that while
both CSA-F0 and CY-F0 were exposed to cocaine, only CSA-F0
had voluntary access to cocaine (Fig. 4A). Although both groups
received the same dose of cocaine, it is important to consider that
cocaine, being a psychoactive drug [27, 28], may induce different
psychoactive effects in the two groups due to the absence of
operant behavior in CY rats [29]. The act of drug-taking involves
the immediate ingestion or use of the drug to experience its
effects, and both CSA and CY rats undergo this process. However,
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Fig. 1 Experimental schematic for sampling and integrative analysis. A Experimental design. Naïve male rats were randomly assigned to
perform saline self-administration (SSA), cocaine self-administration (CSA), or yoked infusions of cocaine (CY) when the contingent CSA rat
received cocaine injections. The F1 generation of each group was obtained by mating with naïve female rats. F1 generation rats were
subjected to cocaine self-administration tests (Coc. SA) or housed in homecage (Naïve). Candidate brain regions (OFC, mPFC, NAc, dStr, dHip,
BLA, VTA) were collected and subjected to RNA-seq and data analysis. B Transcriptome differential analysis and patterning. Differential
expression analysis across each group under naïve or Coc.SA conditions (CSA-F1 vs SSA-F1, CSA-F1 vs CY-F1, CY-F1 vs SSA-F1) were performed
to evaluate the broad transcriptome changes caused by paternal- or Coc.SA-induced transcriptome changes in each brain region. RRHO across
brain regions was performed to evaluate the coordinated regulation of genes across brain regions. Candidate DEGs were attributed to
different expression patterns related to parental drug-seeking experience for further biological significance interpretations. Pattern B genes,
possibly responding to parental cocaine-seeking but not non-contingent cocaine injections, were stressed in subsequent analyses. C Key brain
region screening and biological verifications. Pattern B gene-enriched brain regions were selected, and the complication of all DEGs in the
selected regions was subjected to co-expression analysis and functional annotation. Resting-state dopamine levels in all candidate brain
regions were determined by HPLC. c-Fos+ cell counts after acute cocaine injection were used to assess cocaine responses in naïve F1 animals.
D Co-expression and transcriptional regulatory mechanisms. Potential co-expression modules and key transcription regulators associated with
Pattern B were identified by comparing the structure of the co-expression network across all groups. Quantitative PCR was used to verify the
co-expression pattern analyzed. Co-regulatory networks by key transcription factors were deduced. E Major functional changes caused by
paternal cocaine-seeking experience. Based on transcriptional data and biological verification, we summarized the key features of the
offspring from transcriptional regulation to behavioral differences. Our analysis identified crucial transcriptional factors, including MYT1L,
POU3F4, and NEUROD6, in the paternal cocaine-seeking-induced neuron-related transcriptional changes observed in the offspring. The
transcriptional changes can be separated into two distinct categories: (1) “pharmacological” factor-induced evoked changes in the OFC and
(2) “psychological” factor-induced changes in the limbic system. Additionally, our findings revealed that the dStr of CSA-F1 exhibits stronger
reinforcement during Coc.SA, which could lead to an increased tendency towards drug-seeking behavior.
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the crucial difference lies in the motivation behind drug-seeking.
Additionally, the passive acquisition of drugs by CY rats may
generate potential stress, that may obstruct drug-seeking
behavior in offspring. Therefore, three key factors contribute to
the paternal influence on offspring: 1) the direct effects of the
drug itself, 2) the drug craving induced by voluntary drug-
seeking, and 3) the potential stress induced by passive acquisition
(Fig. 4A), which could be further attributed to 3 clusters according
to its biological relevance: Pattern A, expression profiles as
responsive to “drug exposure” factors (cocaine exposure-induced
changes, i.e., consistent significant changes in CSA-F1 vs. SSA-F1
and CY-F1 vs. SSA-F1); Pattern B, genes attributed to the “highly
motivated” category (Significant in CSA-F1 vs. SSA-F1 & CY-F1, but
not changed in CY-F1 vs. SSA-F1); Pattern C genes were
associated with the “passive infusion” impact (Significant in CY-
F1 vs. SSA-F1 & CSA-F1, but not changed in CSA-F1 vs. SSA-F1)
(Fig. 4A, S5). We unsupervisedly classified DEGs into 12 expression
patterns to disentangle the effects of the three factors. The DEG
counts and GO enrichment analysis within each pattern reveal
that distinct paternal factors lead to specific transcriptional
changes in the F1 generation (Figure S5, S6). Notably, genes
related to posttranscriptional gene silencing and protein trans-
port were uniquely influenced by Pattern A, the paternal

“pharmacological” factor, in OFC, with no significant enrichment
observed in Pattern B and C clusters. Conversely, dStr, dHip, and
VTA were primarily affected by Pattern B, relating to the “highly
motivated” factor (Figure S5, S6). Overall, the paternal psychoac-
tive effects differ from the pharmacological effects, which exert a
wide-ranging influence on multiple brain regions, particularly the
mesolimbic system. These transcriptomic changes are likely to
have significant implications for nervous system development
and neuronal function (Figure S6).
To capture the full breadth of information in the transcriptome

data and avoid overlooking key details through simple gene
classification, we employed gene-weighted gene co-expression
network analysis (WGCNA) [30] to summarize gene expression
modules within each brain region. The impact of paternal factors
on each gene module was assessed based on the enrichment
degree of pattern genes (Fig. 4B). To thoroughly investigate the
impact of paternal psychoactive influences on the neurological
function of offspring, we specifically directed our attention to the
genes annotated to the “Synapse” GO term within the enriched
modules associated with pattern B and pattern C (Fig. 4C). The
significance of genes, as well as annotated GO terms were used to
further characterize the Pattern B changes. Notably, these changes
were observed to be predominantly up-regulated in dStr, while
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exhibiting a down-regulated pattern in the dorsal hippocampus
dHip and VTA, and no significant changes in OFC (Fig. 4C).
Specifically, the synaptic differences in the dHip were exclusively
observed in the drug-naïve state (Fig. 4C, Figure S7E). Conversely,
the differences in synapses within the dStr and OFC exhibited
more pronounced disparities between groups after cocaine self-
administration (Fig. 4C, Figure S7D, F). In contrast, the ratio of
groupwise differences in the VTA remained consistent across
conditions (Fig. 4C, Figure S7G). As the synaptic differences
observed in VTA were independent of cocaine exposure in the F1

generation, and the close neural connections between the striatum
and VTA, it is plausible that the paternal psychoactive effects on the
VTA may exhibit stability and have long-lasting impacts (Fig. 4C, D).

Paternal highly-motivated cocaine-seeking reduced basal
dopamine level and increased neural activation induced by
cocaine in F1 rats
Dopamine-releasing neurons located in the ventral tegmental area
(VTA) play crucial roles in reward-related and goal-directed
behaviors [18, 19, 22]. Given the central role of the VTA in
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transcriptomic analysis, we hypothesized that dopamine-centered
rewiring of the midbrain circuit could increase cocaine seeking of
the CSA offspring. HPLC-based monoamine neurotransmitter
quantification of naïve F1-generation rats (n= 5 per group) revealed
reduced dopamine and dopamine metabolites content in the OFC,
NAc, and dStr of CSA-F1 (Fig. 5A, B, Figure S8A, B). Furthermore,
mPFC DOPA level exhibited a significant positive correlation with
OFC and VTA in CSA-F1 (Fig. 5C). The decrease in dopamine levels

and the altered correlation of basal dopamine content between
nuclei suggest that VTA plays a key role in the regulation of the high
drug-seeking motivation phenotype in the CSA-F1 group, which is in
general agreement with the transcriptomic results.
Decreased baseline dopamine level may lead to D2 disinhibition

and potentially result in increased cellular activation. To assess
cocaine-induced neuronal activation, 10mg/kg of cocaine was
intraperitoneally injected into each naïve F1 rats and then sampled
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after 1 hr. cFos+ cell density within each region was calculated
(Fig. 5D, E). Differential cFos+ cell density was observed in NAc,
dStr, and VTA (Wilcoxon rank-sum test, NAc, P CSA vs CY= 0.026; dStr,
P CSA vs CY= 0.038; VTA, P CSA vs CY= 0.026). The results showed that
highly-motivated paternal cocaine-seeking caused enhanced activa-
tion in the offspring upon cocaine exposure (Fig. 5E). Paternal
cocaine exposure in CSA-F1 and CY-F1 has been found to potentially
induce a heightened co-activation pattern in the reward circuitry of
offspring (Fig. 5F, left), and in particular, OFC and VTA correlated
more strongly with other nuclei. This result may correlate with the
down-regulation of dopamine levels and also suggests that there
may be coherent changes in the way nuclei correspond to cocaine,
prompting us to explore the possible role of coherent changes in
inter-nucleus transcripts on drug-seeking behavior in CSA-F1.

Modular transcription factor regulation underlies the
coordinated transcriptional changes across brain regions of
F1 generation
To evaluate the potential synergy of transcriptomic changes in
different reward-associated brain regions, we ranked genes in

each region based on their P-values (CSA-F1 vs SSA-F1 and CY-F1
vs SSA-F1) and then utilized rank-rank hypergeometric overlap
(RRHO2) [31, 32] to assess the similarity of gene ranking between
different regions (Figure S9). In the naïve state of CSA-F1, there
was a more coordinated up- and downregulation of transcrip-
tional signatures between the OFC and mPFC, vs. dStr, dHip, and
VTA, as revealed by RRHO analysis (maximum Fisher’s exact test
(FET) P < 1.0 × 10−50) (Figure S9 upper-left). An interesting switch
exists in dStr vs. mPFC, and OFC vs. mPFC on Coc. SA, as all genes
showed a high degree of inversion coordination. To gain deeper
insights into the molecular mechanisms underlying the transge-
nerational inherent vulnerability to cocaine reinforcement across
multiple brain regions, we performed multi-brain-region co-
expression network analyses in SSA-F1, CSA-F1, and CY-F1 rats.
This approach allowed us to integrate data from all seven brain
regions studied, utilizing an established pattern gene set (union of
A, B, and C pattern genes in Figure S5). We next used module
differential connectivity (MDC) analysis (detail provided in
Supplementary Materials) to quantify changes in network
connectivity between groups (Fig. 6A for CSA-F1, Figure S10A
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for SSA-F1, S10B for CY-F1). We screened the modules that were
potentially differentially regulated in CSA-F1 based on MDC
(Fig. 6A, black dashed lines). The enrichment of the GO term
supports the hypothesis that neuroplastic changes in reward
circuitry affected by paternal highly motivated cocaine-seeking
induce vulnerability to cocaine reinforcement in offspring.
(Fig. 6B). By analyzing the conservation of the gene modules,
the screened modules were remodeled by the parental cocaine-
seeking experience, suggesting a potential transcriptional regula-
tory mechanism (Figure S10C).

To find the key nodes in the transcriptional regulation process,
we performed transcription factor prediction analysis using ChEA3
[33]. Based on the expression profiles, predicted candidate
transcription factors were clustered into three groups (Fig. 6C).
Cluster I is primarily regulated by NEUROD6, THRA, and THRB,
Cluster II by MYT1L, ZNF25, and PEG3, and Cluster III by SIX3,
POU3F4, and SP9, etc. Some genes exhibited patterns under co-
regulation of Cluster II and III transcriptional factors, such as genes
annotated under DACH2 and CSRNP3 (Fig. 6C). When assigned to
brain regions, genes in Clusters I and III were found to be
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predominantly expressed in VTA and dStr, while Cluster II did not
show a specific regional distribution pattern (Figure S10D).
Additionally, the main signaling pathways involved in each cluster
and downstream of transcription factor were distinct (Fig. 6D). For
example, genes in Cluster I are involved in neuron migration and
dendrite development regulated by NEUROD6, genes in Cluster II
are involved in exocytosis and response to cocaine regulated by
MYT1L, and genes in Cluster III are involved in neurotransmitter
signaling and regulation of membrane potential regulated by
POU3F4 (Fig. 6D). Next, the top 15 genes with the most molecular
interactions in the co-expression network were chosen as hub
genes to generate a co-expression network (Fig. 6E). The final
network revealed that genes in Cluster II and III act as the hub
nodes. Notably, MYT11L was identified as a key transcriptional
regulator and hub of the gene network, leading to the hypothesis
that it plays a crucial role in the transmission of vulnerability to
cocaine across generations (Fig. 6E). To confirm the validity of the
bioinformatic analysis relying on transcriptional network altera-
tions and potential transcription factors, we conducted unsuper-
vised dimensionality reduction on the global brain-scale
expression of all candidate genes. This analysis revealed that the
expression patterns of the candidate genes across the entire brain
were similarly grouped into three categories, aligning with the
outcomes of the transcription factor prediction (Fig. 6F). Further-
more, we carried out independent qPCR validation for two key
candidate genes within each group, and the results consistently
matched the expression patterns observed in the sequenced
samples (Fig. 6G). These results underscore the reliability of our
bioinformatics analysis and further revealed that Cluster II and III
mainly represent differential Coc. SA-induced changes, while
Cluster I, with main GO annotation of axonogenesis, neuronal
migration, and dendrite development, likely drive the develop-
mental diversity between the three groups.
In conclusion, transcriptional hubs that underly shared tran-

scriptional changes across multiple reward-associated brain
regions were identified in CSA-F1 rats, and these hubs may lead
to the specific transcriptomic profile of reward circuitry in CSA-F1
rats. These findings plan a general direction for the subsequent
exploration of the transgenerational effects of paternal highly-
motivated drug-seeking.

DISCUSSION
Prior studies have primarily concentrated on parental-induced
germ cell changes during intergenerational inheritance, yielding
significant findings related to DNA methylation, modifications in
histones, and noncoding RNAs in germ cells [3, 34, 35]. However,
there has been limited exploration into the broader impact of
these epigenetic changes on the central nervous system (CNS) of
adult offspring [25]. Additionally, existing histological analyses
have often been confined to single-brain region perspectives,

such as research focused on transcriptomic alterations in the
offspring’s hippocampus influenced by maternal glucocorticoid
exposure during pregnancy [36] and the transcriptomic effects of
paternal adolescent stress on the offspring’s amygdala [37]. While
these studies have suggested potential target brain regions, such
as mPFC, NAc, hippocampus, and amygdala, their findings have
yet to be comprehensively integrated. Consequently, in our study,
we have investigated transcriptomic changes in seven brain
regions within the reward circuit of offspring, under the influence
of paternal cocaine addiction, utilizing cocaine self-administration
versus yoked administration as an animal model. This research
aims to provide an extensive overview of the transcriptomic
effects of paternal cocaine addiction on the reward circuit of
offspring (Fig. 3B, Figure S3A-C). We leveraged two statistical
approaches (pattern identification and gene co-expression net-
work analysis) to characterize gene expression patterns (Figure S5,
Fig. 4A, Fig. 6A, Figure S10A, B). At the individual gene level, our
findings align with existing studies, mirroring changes in BDNF
expression in the forebrain region, which were both detected and
identified as candidate targets [13] (Figure S10D). Moreover, our
data also revealed shifts in mRNA expression of molecules related
to neurogenesis, such as Btg3 and Nr4a1, consistent with prior
research [17]. Taking a broader perspective encompassing multi-
ple brain regions, we systematically delved into two key areas of
investigation. First, we explored the potential mechanisms
responsible for the divergent behavioral outcomes arising from
simple paternal drug intake versus highly motivated drug-seeking
in offspring (Fig. 4). Second, we examined potential transcriptional
regulatory mechanisms driving alterations in the gene expression
network within the offspring’s reward circuit (Fig. 6).

Distinct transcriptional changes in F1 generation underly
paternal pharmacological, highly motivated, and passive
infusion factors
Our study has yielded significant insights into the distribution of
pattern genes across seven distinct brain regions (Figure S5).
Specifically, we observed a clear enrichment of paternal “pharma-
cological” factor-induced Pattern A genes (Figure S5). The
transcriptomic effects of paternal cocaine exposure were con-
centrated in the OFC and triggered by recurring cocaine-seeking
behavior in the offspring (Fig. 3C, Figure S4A-E, Figure S5). The
effects of paternal highly-motivated seeking on the transcriptome,
i.e., “highly motivated” factor, appeared to be more complex
(Figure S5, which led to widespread changes in the expression of
genes associated with various aspects of neural function in the
offspring (Figure S6). Although the changes induced by paternal
“passive infusion” were relatively minimal in terms of quantity,
they still resulted in noteworthy alterations in the offspring’s
transcriptome, particularly affecting processes such as neuron and
glial differentiation in NAc and VTA (Figure S6). To gain a deeper
understanding, we integrated transcriptome analysis with assays

Fig. 6 The presumed gene co-regulatory network within the offspring’s reward-associated brain regions. A Circos plots for the WGCNA
result of all pattern genes across seven brain regions in CSA-F1. Each slice of the chart represents a gene co-expression module. The
outermost represents the modular size of this slice. The secondary outer rectangle is an arbitrary color as the module name. The innermost
concentric circles represent the modular connective difference (MDC) between networks provided in Figure S10A, B. Modules selected for
subsequent analysis are marked with dashed lines. B Pathway analysis of screened modules in A, colors reflect adjusted P value in enrichment
analysis. C The regulatory effects of predicted transcription factors on modular genes. Each row reflects one of the top 20 predicted
transcription factors, each column reflects a gene in dashed modules in A. The grid is marked in color and numbered if the gene is predicted
to be regulated by the transcription factor (left). Bar charts show the percentage of genes within each regulatory cluster (right). D Enriched
pathways of each transcription regulatory cluster. Edge represents the gene overlap across GO terms. Node size represents the gene counts in
each GO term. Color represents the fraction of genes in each cluster. A light-colored shading denoted the GO terms which are controlled by
major transcriptional factors. E Screening hub genes of predicted differential regulatory modules in A. The top 15 are displayed using the
network diagram. The color of nodes represents the cluster to which the node belongs as noted in C. grey = no cluster, blue = Cluster II, red =
Cluster III. F Dimensionality reduction analysis of candidate genes based on whole-brain gene expression. Colors represent clusters of
transcriptional regulation predicted based on transcription factors, red = cluster I, blue = cluster II, red = cluster III. G Independent qPCR
validation was performed on the predicted transcription factors and their downstream, and detailed results are provided in Figure S12. Colors
represent Scaled expressions. The index of the sample is provided on top of the heatmap.
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measuring resting-state dopamine levels (Fig. 5A-C, Figure S8) and
cellular activation (Fig. 5D-F). Based on our analysis of available
data and experimental results, we ventured to propose a
conjecture regarding the potential mechanisms through which
paternal highly-motivated cocaine-seeking may impact the reward
circuitry in offspring. We suggest that these effects occur through
two distinct mechanisms - (a) Paternal “pharmacological” effects:
This mechanism involves evoked changes in the OFC. The primary
function of this change is to identify substances associated with
paternal exposure. - (b) Paternal “psychoactive effects” factor-
induced changes in the mesolimbic system: This mechanism
mainly induces differentiated preferences in the offspring.
Based on the distribution of pattern A genes (Figure S5, Figure

S7A-C) and the stronger co-activation observed in the reward
circuitry of CSA-F1 and CY-F1 (Fig. 5D, F), it appears that the
paternal “pharmacological” effects may have a significant impact
on the formation of connections in OFC (Figure S5, Figure S6,
Figure S7A-C). The OFC plays a crucial role in integrating new
information with pre-existing cognitive frameworks and associat-
ing values with specific events [24, 38]. Therefore, the distinct
network patterns observed in the OFC of the F1 generation could
potentially mediate changes in how offspring respond to
substances related to paternal exposure. Even if this idea is a
simple conjecture at the moment, the fact that cocaine exposure
does not affect the offspring’s sucrose-seeking or nicotine-seeking
behavior seems plausible [13, 14, 17, 39].
In contrast, transcriptomic changes in the mesolimbic system

induced by paternal psychoactive effects appeared different. VTA
shows stable down-biased transcriptomic change and dHip and
dStr exhibit relative labile transcriptomic changes (Fig. 4C, Figure
S4I). In our results, the plasticity changes in the VTA-striatum
circuits in the transgenerational inheritance of vulnerability to
cocaine were comprehensive. The lower dopamine baseline in the
offspring, which is consistent with previous studies in highly
addicted rats in neurochemistry [40], (Fig. 5A, B) may be linked to
the stable transcriptomic changes occurring in the VTA. This
alteration in dopamine baseline could have a significant impact on
individual decision preferences and may be critical in accounting
for individual differences in drug susceptibility [41–44]. However,
it is important to note that changes in dopamine baseline alone
cannot fully explain the behavioral changes in offspring, as the
alterations in dopamine baseline in response to both “highly
motivated” and “passive infusion” factors appear similar in the
striatum (Fig. 5A, Figure S8C). Stronger response to cocaine
(Fig. 5E) may be a key factor leading to changes in drug
susceptibility in offspring [40, 45]. We also observed transcrip-
tomic changes in the dHip induced by the “highly motivated”
factor (Fig. 4B), up-regulation of the glutamate receptor signaling
pathway in the dStr (Fig. 4D), and co-activation changes in
response to cocaine exposure (Fig. 5D-F). Integrating the above
evidence we speculate that the difference in dopamine baseline
with distinct responding patterns to cocaine (Fig. 5) affects the
long-term potential of striatal spiny projection neurons (SPNs). In
addition, OFC-dStr circuits, which establish compulsive behavior
[46] and present a stronger coactivity in CSA-F1 (Fig. 5F), may also
participate in the distinct striatal plasticity in F1 generation. As a
result, the differences in reinforcement to drug may result in the
stabilization of innate differences and mediate the distinct
vulnerability to cocaine in the F1 generation. However, it is
essential to acknowledge that this paper does not have enough
evidence to fully support this argument; it merely proposes this
hypothesis as a potential avenue for further investigation and
understanding of the underlying mechanisms.

Potential regulatory mechanisms of intergenerational
inheritance of cocaine addiction
Previous research has indicated that certain transcription factors
confer risk for drug addiction [47–49]. Additionally, drug addiction

would reshape transcriptome-wide responses in the central nervous
system, a process likely mediated by specific transcriptional
regulatory mechanisms [48, 50–52]. In light of these insights, we
constructed a gene expression network by amalgamating transcrip-
tomic data from various brain regions both before and after cocaine
administration. Our objective was to examine alterations in this gene
expression network to gain insights into the intergenerational
genetic mechanisms of drug addiction and their downstream
regulatory effects. We identified key transcription factors, such as
MYT1L, POU3F4, NEUROD6, etc. (Fig. 6C), which are involved in
nervous system development [53–56] but have diverse downstream
functions (Fig. 6D). MYT1L is widely distributed in the brain, while
POU3F4 and NEUROD6 have specific spatial and temporal distribu-
tions [57]. POU3F4 plays a role in early neurodevelopment and
regulates membrane potential-related genes (Fig. 6D), while
NEUROD6 is concentrated in the cerebral cortex and regulates
axonogenesis-related genes (Fig. 6D). Besides, MYT1L is a potential
downstream of POU3F4 [58, 59]. We speculate that POU3F4
mediates epigenetic signals that induce neuronal precursor
differentiation during embryonic development and cause a
transcriptional cascade [60–62] of transcription factors and genes
related to membrane potential (Fig. 6D). This may explain why some
genes have similar expression patterns across the brain but show
different expression changes between brain regions (Figure S11).
In conclusion, our study provides a unique transcriptomic

resource of the reward circuits in the context of paternal cocaine
addiction. Through large-scale transcriptomic analysis, we gained
an initial understanding of the molecular basis of intergenerational
genetic effects of highly-motivated drug-seeking across multiple
brain regions. This work partially explains the intergenerational
genetic mechanisms of vulnerability to cocaine and suggests
potential targets for reversing the negative intergenerational
effects. However, we must exercise caution in generalizing our
results from male rats to females, as even the most basic behavioral
phenotypes differ significantly between the sexes [13, 16]. It is
important to emphasize that this paper introduces a novel multi-
brain transcriptome perspective on the intergenerational genetic
effects of cocaine, providing new insights into this intricate process.
Nevertheless, we acknowledge that these findings are exploratory
and warrant further in-depth research and validation.
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