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Alzheimer’s disease is one of the most important health-care challenges in the world. For decades, numerous efforts have been
made to develop therapeutics for Alzheimer’s disease, but most clinical trials have failed to show significant treatment effects on
slowing or halting cognitive decline. Among several challenges in such trials, one recently noticed but unsolved is biased allocation
of fast and slow cognitive decliners to treatment and placebo groups during randomization caused by the large individual variation
in the speed of cognitive decline. This allocation bias directly results in either over- or underestimation of the treatment effect from
the outcome of the trial. In this study, we propose a stratified randomization method using the degree of cognitive decline
predicted by an artificial intelligence model as a stratification index to suppress the allocation bias in randomization and evaluate its
effectiveness by simulation using ADNI data set.
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INTRODUCTION
Alzheimer’s disease (AD) is an irreversible neurodegenerative
disease that causes brain cells to degenerate, and its symptoms,
such as memory impairment, greatly impact the activities of daily
living of affected patients. As of 2022, there were an estimated 6.1
million patients with AD, and this number is estimated to grow to
13.8 million by 2060 in the USA alone [1]. On the other hand, AD
has few available treatments, and there has been a high rate of
failure in AD drug development programs [2]. Those trials have
often failed to show efficacy in slowing or halting cognitive
decline [3, 4]. Participants with mild cognitive impairment (MCI)
who are in the prodromal stage of AD are generally involved in
clinical trials. For such trials, one of the most often used end points
is the change in the Clinical Dementia Rating-Sum of Boxes (CDR-
SB) score, which has been shown to be able to stage the severity
of both AD and MCI accurately [5, 6].
There are many difficulties in clinical trials for AD [7]. For trials

using cognitive decline as an end point, two challenges are
associated with the end point itself. One generally known
challenge is that due to the large individual variance in the speed
of cognitive decline, which has been suggested in previous
studies [8–10], the recruited participants usually contain a
considerable proportion of slow decliners or non-decliners. For
those participants having small or no cognitive decline, the effects
of treatment on suppression of cognitive decline, which can be
expected to be on only a portion of the decline, will be even
smaller or null and weaken the total observed effect of treatment

on all participants in the trial. Several previous studies have aimed
to select fast decliners for clinical trials, and various methods,
including machine learning, have been proposed to predict
disease progression [11–17]. Because selecting fast decliners for a
trial may involve the uncertainty of whether a drug is actually
more effective for fast rather than slow decliners, a more
appropriate way of using such methods for participant selection
would be to exclude only non-decliners from trials.
Another impact of the large individual variance in the speed of

cognitive decline in clinical trials of AD is that it may cause biased
allocation of fast and slow decliners to treatment and placebo
groups in the randomization procedure, which could result in the
over-/underestimation of treatment effects in the trial outcomes.
Allocation biases in cognitive decline between treatment and
placebo groups appear directly in the outcome of a trial as an
over-/underestimated effect of the treatment. Although other
biases exist in allocated groups of participants, such as adverse
events and individual responses to treatment, may also result in
over-/underestimation of the trial outcome, allocation bias in
cognitive decline remains the dominant challenge because of the
large variation in the speed of cognitive decline compared with
the outcomes of previous trials. Therefore, suppressing the
allocation bias in cognitive decline could be expected to suppress
the over-/underestimation of trial outcomes. The influence of
allocation biases in cognitive decline on clinical trials for AD in
which cognitive decline is used as the end point was recently
investigated [18]; however, this problem has yet to be solved.
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As shown in Fig. 1, when participants are allocated to treatment
and placebo groups unbiasedly, that is, when the slow and fast
cognitive decliners allocated for treatment and placebo groups
have the same ratio, the treatment effect can be estimated
properly based on the trial outcome. When fast cognitive decliners
are allocated more to the placebo group and less to the treatment
group, the cognitive scores of the participants in the placebo
group decline more than that in the treatment group. In this case,
the effect of treatment will be overestimated based on the trial
outcome. An overestimation of the treatment effect in an earlier
phase of the trial will lead to an underestimation of the necessary
sample size for the next phase, which may lead to failure in the
next phase of the trial. On the other hand, when slow cognitive
decliners are allocated more to the placebo group and less to the
treatment group, the effect of treatment will be underestimated
based on the trial outcome. An underestimation of the treatment
effects of the trial can result in the wrong decision regarding
dropping a promising drug that could benefit patients. Therefore,
an unbiased allocation of fast and slow cognitive decliners into
treatment and placebo groups is an important task for clinical
trials on AD using cognitive decline as the end point.
Generally, using risk factors of AD related to cognitive decline,

such as biomarkers of amyloid beta 42 (Aβ42), phosphorylated
Tau (pTau), and apolipoprotein E (ApoE) ε4, as a stratification index
in randomization can reduce the allocation biases in cognitive
decline. ApoE ε4 has already been used for stratification
randomization in some recent trials [19–21]. As individual risk
factors have limited predictive power for cognitive decline, a
recent survey on the prediction of disease progression in AD
suggested the possibility of utilizing artificial intelligence (AI)
technology to reduce allocation biases [22].
The purpose of this study was to propose an AI-based

approach for randomization procedure of clinical trials for AD
and to evaluate its impact of allocation bias reduction on trial
efficiency. First, we developed a hybrid multimodal deep
learning model, as shown in Fig. 2, to predict CDR-SB changes
during the trial period using both image information including
T1-weighted images and non-image information including
demographic information, cognitive test scores and biomarkers

available at baseline. This predictive model was extended from a
previously proposed hybrid multimodal deep learning model
[15] that achieved high performance for the prediction of
disease progression from MCI to AD. Next, as shown in Fig. 3, we
proposed an AI-based randomization method in which the
prediction of cognitive decline outputted by the AI model was
used as the stratification index in stratified randomization [23,
24]. Finally, we evaluated the impact of the AI-based randomiza-
tion method on trial efficiency by simulating different randomi-
zation methods using the North American Alzheimer’s Disease
Neuroimaging Initiative [25] (NA-ADNI) data set, and quantita-
tively comparing their effectiveness in allocation bias reduction
and power on treatment effect detection. Compared to
conventional non-stratified randomization, the proposed AI-
based randomization could reduce the allocation bias by
approximately 22%, resulting in a reduction in sample size of
nearly 37%.

RESULTS
Accuracy of prediction of CDR-SB changes using the AI model
We extracted 1194 samples of 506 participants from the NA-
ADNI database (http://adni.loni.usc.edu/ADNI) using inclusion
criteria similar to those used in recent trials (for details, see the
Methods section). The prediction model was trained, validated,
and tested using tenfold cross-validation and test setting with all
the samples. Predictions of 506 samples of each participant at
baseline were obtained from test sets in the tenfold cross-
validation and test setting for use in the simulations. The
prediction accuracies of the samples used in the simulations are
shown in Fig. 4 and Table 1. The mean value and standard
deviation (SD) of actual CDR-SB changes (ground truth [GT]) of
all 506 samples were 0.978 and 1.899, respectively. The
distributions (histogram) of the absolute error (AE) of CDR-SB
changes predicted by the AI model are shown in Fig. 4a, in
which the horizontal axis shows AEs with an interval of 0.25 and
the vertical axis shows the number of samples whose prediction
accuracy by the AI model fell into each interval. The correlation
between CDR-SB changes as predicted by the AI model and the

Fig. 1 Three cases of biases occurred in allocating participants to the treatment and placebo groups (T and P in the figure, respectively)
in clinical trials. Solid lines in the right part of the figure represent the cognitive decline in the treatment and placebo groups observed
during the trial period, and dashed lines represent the cognitive decline in the two groups when there were no allocation bias and no
treatment applied. When the participants were unbiasedly allocated to the treatment and placebo groups, the treatment effect could be
properly evaluated with the outcome of the trial. Otherwise, when more fast cognitive decliners were allocated to the placebo group, the
treatment effect was over-evaluated, and vice versa in the opposite case. The over-/underestimated effects were equal to the allocation bias
between the treatment and placebo groups.
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GT is shown in Fig. 4b. The mean absolute error (MAE) of the AI
predictions was 1.065 and the correlation coefficient for the AI
predictions and actual values was 0.601. Table 1 also shows the
same information for the inner and outer samples, that is, the
samples in or out of the 2σ interval of the distribution of
the actual CDR-SB changes (GT) for all samples, where σ is the
SD of the distribution of GT. The prediction error was larger for
samples with large actual CDR-SB changes (GT), especially the
predicted CDR-SB changes for the samples having large positive
actual CDR-SB changes (n= 23), which were almost irrelevant
compared with the actual values.

Simulation results for the reduction in allocation biases
Allocations were first simulated for a typical phase II trial with
sample size of 500 using both non-stratified and stratified
randomization in which the AI prediction of CDR-SB changes
was used as the stratification index. Figure 5 shows the
distributions of the allocation biases obtained by the two
randomization methods. The SD of the distribution was used to
evaluate the size of the allocation biases obtained by each
randomization method (referred to in the present study as the
standard allocation error [SAE]). The SAEs of the above non-
stratified and stratified randomization methods were 0.1704 and

Fig. 2 A hybrid multimodal machine learning framework for predicting CDR-SB changes. Multiple DNN models were trained to extract
image features from several subregions of the brain related to cognitive decline, such as the hippocampus and anterior temporal lobe. A
multitask loss including image recovery, decliner and non-decliner classification, and CDR-SB changes regression was used to train the DNN
models to extract the image features robustly. The extracted image features and non-image information were then used in linear support
vector machine regression (SVR) to predict CDR-SB changes.

Fig. 3 Scheme of stratified randomization using predictions of CDR-SB changes outputted by the AI model. According to the predicted
CDR-SB changes, the participants were first stratified into subgroups (or strata). The participants in each subgroup (or stratum) were then
randomly allocated into treatment and placebo groups (T and P in the figure, respectively) in equal numbers. The participants allocated to the
treatment groups in all stratified subgroups was collected to the treatment group of the trial, and the others to the placebo group.
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0.1322, respectively. The 95% ranges of the distributions of the
allocation biases obtained by the two methods were [–0.3340,
0.3340] and [–0.2592, 0.2592] (dashed gray lines in the figure),
respectively. The 95% range of the distribution of the allocation
biases was equivalent to the 95% range of the effect size which
could be observed when the treatment effect in the trial was null.
Below, the effect size possibly observed with a null-effect
treatment is referred to as the possible effect size (PES). A narrow
95% range of the PES implies a smaller priori effect size to be
considered in a trial, which largely influences the design of the
trial and the reliability of the evaluation of its outcome.
For a comprehensive comparison, stratified randomization

using demographic information (age), biomarkers (ApoE ε4,
Aβ42, and pTau), and cognitive scores (CDR-SB, the Mini–Mental
State Examination [MMSE], and the Alzheimer’s Disease Assess-
ment Scale–Cognitive [ADAS-cog]) as stratification indices was
also simulated. Stratified randomization using actual CDR-SB
changes (GT) was also simulated to provide a reference value
for the allocation biases. For each randomization method, a
distribution of allocation biases was obtained from the simulation,
and its SD was calculated as the SAE of each method. The results
of the comparison of SAEs across all randomization methods are
shown in Fig. 6. The SAEs in Cohen’s d (that is, the SD of the
distribution of allocation biases in Cohen’s d) of the allocation
biases of all randomization methods are also shown in the figure.
The SAEs in the CDR-SB changes and Cohen’s d were proportional
(see Supplementary Table E1); therefore, they can be considered
equivalent. As shown in the figure, the stratified randomization
method using AI prediction of CDR-SB changes as a stratification
index could reduce the SAE much more than the other indices.
Compared with non-stratified randomization, simulations using
stratified randomization with AI prediction could reduce the SAE
by 22.4%, whereas using ADAS-cog, the best among the other
indices, could reduce the SAE by only 10.5% (see Supplementary
Table E1). On the other hand, using the stratified randomization

method with actual CDR-SB changes (GT) as a stratification index
could reduce the SAE by 73.9%, which strongly encourages the
improvements of AI prediction model.

Simulation results for improvements in efficiency of trial
If the 95% range of the PES is the priori effect size to be
considered in a trial, then the sample sizes needed for different
randomization methods to control the priori effect size in a given
range are different. Figure 7 shows the minimum sample size
necessary for each randomization method to obtain the same 95%
range of the PES, that is, the a priori effect size to be considered in
the trial. The horizontal axis in the figure shows the 95% range of
the PES with its upper bound, and the vertical axis shows the
sample size needed to obtain the 95% range of the PES. In the
figure, we can see that for a given 95% range of the PES bounded
to [–0.3, 0.3], the non-stratified randomization method needed at
least 661 samples to ensure the 95% range of the PES to be within
the given range, whereas the stratified randomization using
predictions outputted by the AI model as a stratification index
could reduce the sample size to 391, which was a 37% reduction
from that using non-stratified randomization. For an additional
comparison, using age as a stratification index in randomization
could reduce the sample size by 2.1%, using CDR-SB, ApoE ε4, and
pTau as stratification indices could reduce the sample size by
6.0–7.7%, and using Aβ42, MMSE, and ADAS-cog scores could
reduce the sample size by 15.3–18.8%. When actual CDR-SB
changes (GT) were used for stratification, the sample size could
even be reduced by 83.6% (for more details, see Supplementary
Table E2).

Simulation results for over-/underestimation suppression in
clinical trials
A critical problem of allocation biases is that they result in over-/
underestimation of the treatment effect from trial outcomes,
especially when the sample size is relatively small. In actual clinical
trials, treatment effects are usually evaluated based on the
P values of t tests carried out on the outcomes of placebo and
treatment groups, and allocation bias influences the P value.
Figure 8a shows the distributions of P values (vertical axis) of
t tests on outcomes of trials with a sample size of 500 for several
treatment effects using different randomization methods. The
distributions are shown with their median and 25th and 75th
percentiles. Effects were defined as suppressing the actual CDR-SB
changes (GT) in the treatment group by x%, where x ranged from
10 to 50 with an interval of 2 (horizontal axis). In the figure, we can
see that the medians of the P values obtained by each
randomization method completely overlapped with those

Fig. 4 Prediction results of the samples used for randomization simulation. a Histogram of absolute errors of predicted CDR-SB changes by
the AI model; (b) correlation of predicted CDR-SB changes and the ground truth.

Table 1. Accuracy of the model for the samples used for
randomization simulation.

Samples SN MAE Correlation

All 506 1.074 0.580

Inner 481 0.892 0.620

Outer 25 4.567 –0.036

Inner/outer samples within/outside a 2δ interval of the distribution of the
actual CDR-SB changes (ground truth [GT]) for all samples.
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obtained by perfect allocation in which the distributions of CDR-
SB changes of two groups were the same as that of the whole
population; therefore, the P values located above/below the
medians can be considered the result of over-/underestimation.
The ranges from the 25th to 75th percentiles of the P value
distributions show that the distributions of P values obtained by
AI-based randomization were narrower than those obtained by
non-stratified randomization, which implies that using AI predic-
tion in randomization can suppress both the over-/underestima-
tion of treatment effects compared with non-stratified
randomization.
In clinical trials, treatment effects are often detected by a

P value threshold, which was set to 0.05 in the present study. As
shown in Fig. 8a, with perfect allocation, all effects larger than the
borderline corresponding to the threshold are detected, whereas
all those smaller than the borderline are not. With other
randomization methods, due to allocation biases, over-/under-
detection happens in effects smaller or larger than the borderline,
respectively. Figure 8b shows the detection rates of different
treatment effects applied to the treatment group using different
randomization methods, separately evaluated based on two cases:
whether the mean actual CDR-SB change (GT) of the placebo
group were larger (above) or smaller (below) than those of the

treatment group after allocation and before effect application.
With randomization using AI predictions, the detection rates were
improved and suppressed when the actual treatment effects were
relatively large and small, respectively. For example, when the
actual treatment effect was 38%, using AI-based randomization
maximally improved the treatment effect detection rate, from
52.6% when non-stratified randomization was used, to 64.9%, and
further to 98.5%, by using the GT of CDR-SB changes. On the other
hand, when the actual treatment effect was 20%, a detection rate
of 49.4% was achieved by non-stratified randomization, which was
suppressed to 37.3% by stratified randomization using AI
prediction and further to 1% by using the GT of CDR-SB changes.
While the benefit of improved detection rates for large actual
treatment effects is self-explanatory, that of suppressing detection
rates when actual treatment effects are relatively small is only
revealed in a multiple-phase trial; this is described further in the
Discussion section and Supplementary Materials.

DISCUSSION
In this study, we developed a hybrid multimodal deep learning
model to predict CDR-SB changes, which are frequently used as a
primary end point in clinical trials of AD, by extending a previously

Fig. 5 Distributions of allocation biases of CDR-SB changes. Distributions of allocation biases of CDR-SB changes in the treatment and
placebo groups caused by the non-stratified randomization method (a) and stratified randomization method predictions of CDR-SB changes
outputted by AI mode for stratification (b). Each distribution was obtained by simulating the corresponding randomization method 10,000
times. Dashed gray lines show the 95% range of the distributions, which corresponds to the 95% range of effect sizes possibly observed when
the treatment effect was null. The effect size possibly observed when the treatment effect was null is called the possible effect size (PES) in this
study.

Fig. 6 Standard allocation error (SAE) in CDR-SB changes and Cohen’s d of each randomization method. Rnd: non-stratified
randomization, and age, CDR-SB, ApoE ε4, pTau, Aβ42, MMSE, and ADAS-cog: stratified randomization using each index for stratification. AI
and GT: stratified randomization using predictions of the AI model and actual CDR-SB changes (ground truth [GT]) for stratification,
respectively. The SAE in CDR-SB changes and that in Cohen’s d are approximately in constant proportionality for all randomization methods.
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Fig. 7 Minimum sample sizes needed for different randomization methods to obtain the same given 95% range of possible effect size
(PES) in CDR-SB changes. Horizontal axis: the upper bound of the 95% range of PES. Rnd: simple randomization without stratification. Age,
CDR-SB, ApoE ε4, pTau, Aβ42, MMSE, and ADAS-cog: stratified randomization using each index. AI and GT: stratified randomization using
predictions by the AI model and actual values (ground truth; GT) of CDR-SB changes, respectively. For example, the minimum sample sizes for
non-stratified and stratified randomization using AI predictions to obtain the same 95% range of the PES of [–0.3, 0.3] were 661 and 391,
respectively.

Fig. 8 Distributions of P values and over-/under-detection of actual treatment effects. a Distributions of P values (shown with median, 25th
and 75th percentiles) obtained by non-stratified randomization (Rnd), stratified randomizations using AI predictions (AI) and the ground truth
(GT) of CDR-SB changes. The horizontal axis shows the treatment effects, defined as suppressing CDR-SB changes in the treatment group by x
%, and the vertical axis shows P values. P values calculated with perfect randomization without bias (NoBias) are also shown. Medians of the
P values of three randomization methods overlapped with that obtained with perfect randomization. The borderline of treatment effects
corresponding to the threshold P value (P= 0.05) existed where the P value obtained by perfect randomization was equal to the threshold.
Under-detection of treatment effects occurred in the 1st quadrant formed by the threshold of P= 0.05 and the borderline. On the other hand,
over-detections occurred in the 3rd quadrant. b Detection rates of treatment effects applied to the treatment group, separately evaluated for
two cases of whether the mean value of the GT of CDR-SB changes of the placebo was larger (above) or smaller (below) than that of the
treatment group after allocation and before treatment effects were applied.
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proposed model that achieved high performance in predicting
disease progression from MCI to AD. We further proposed an AI-
based randomization method by using the prediction of CDR-SB
changes outputted by the model as the stratification index in a
stratified randomization scheme. We showed the effectiveness of
the proposed randomization method in allocation bias reduction
by simulation using the NA-ADNI data set. The crucial role of
allocation bias in clinical trials has recently been noticed and
investigated, and researchers have started to recognize that AI
technology could provide a new approach to solving this problem.
However, to our best knowledge, neither how to embed AI
technology into allocation procedures to reduce allocation bias
nor whether it can be effective in clinical trials has been
investigated yet. Our study is the first to use prediction of
cognitive decline by an AI model as the stratification index in
stratified randomization, and to report the effectiveness of using
such a randomization method in clinical trials of AD.
We also investigated the effectiveness of the AI-based

randomization when participant selection was simultaneously
applied. Previous studies have suggested that selecting fast
progressors of AD for a clinical trial might improve trial outcomes
[16, 17]. On the other hand, fast progressors generally have
relatively large individual variation in cognitive decline, as shown
in Supplementary Table E3, where slow and fast progressors were
classified by the disease progression risk factors of age, ApoE ε4,
and cerebrospinal fluid (CSF) pTau. The large variation in cognitive
decline usually results in a large allocation bias, and this was
already shown in a previous study [18] in which allocation biases
in low- and high-risk groups were investigated by simulation.
Here, we reproduced the same simulation as that in the previous
study but added a simulation of randomization using AI prediction
for the fast progressor group. To maintain a fair comparison, all
simulations were carried out with a fixed sample size of 500
(oversampling was applied for subgroups with fewer than
500 samples). The simulation results are shown in Supplementary
Fig. E1. With non-stratified randomization, the results indicated
that the SAEs (as well as the 95% range of the PES, that is, the
effect size possibly observed when the treatment effect is null)
obtained from fast decliners classified by the risk factors of age,
ApoE ε4, and pTau (e–g) were larger than those obtained from all
participants containing both slow and fast decliners (a). In
addition, a reversal occurred for slow decliners (b–d). Using the
stratified randomization with AI prediction as a stratification index,
the distributions of allocation biases obtained from the fast
decliners revealed that the 95% ranges of the PESs obtained from
the fast decliners classified by the risk factors of age, ApoE ε4, and
pTau were 0.271, 0.299, and 0.294, respectively (h–j). All were
smaller than the 95% range of the PES obtained for all participants
containing both slow and fast decliners (0.334) when non-
stratified randomization was used.
As shown in the Results section (Fig. 8b), when the treatment

effect was smaller than the borderline where the P value obtained
by perfect randomization was equal to the threshold of P= 0.05,
the detection rates of the treatment effects were suppressed by
stratified randomization using AI prediction for stratification. On
the other hand, when the treatment effect was larger than the
borderline, the detection rates were improved. As shown in
Supplementary Fig. E2, when the sample size became larger, the
borderline became lower. This suggests that when the sample size
is relatively small, using AI-based randomization may suppress
over-detection of a wide range of treatment effects (Fig. 8b
above), resulting in suppressing the underestimation of the
sample size for the next phase of the trial, but when the sample
size was relatively large, as shown in Supplementary Fig. E3a, the
detection rate was improved for a wide range of treatment effects
by using AI-based randomization, resulting in an improved
success rate for a large-scale trial. On the other hand, the over
detection rate was suppressed by AI-based randomization only in

a narrow range of small treatment effects (Supplementary
Fig. E3b).
When a trial with multiple phases was considered, the early

phase, such as a proof-of-concept phase, was often conducted
with a relatively small sample size, followed by a large-scale phase
for which the sample size was estimated from the outcome of the
early phase. Supplementary Fig. E4 shows the simulation results
for a multiple-phase trial, where the early phase was conducted
with a sample size of 500, and the late phase with a sample size
estimated from the observed effective size (OES) or outcome of
the early phase. Using AI prediction as a stratification index in
randomization improved the total success rate when the actual
effect was larger than 18%. For example, when the actual effect
was 30%, using AI prediction in randomization was improved from
52.1% to 60.8% compared with non-stratified randomization.
When the actual treatment was small, that is, smaller than 18%,
non-stratified randomization performed slightly better than AI-
based randomization, although neither method had much chance
of success. Details of the simulation can be found in the Methods
section.
In the present study, we found that using AD risk factors such as

age, ApoE ε4, biomarkers (amyloid β42 and pTau), and cognitive
scores (CDR-SB, MMSE, and ADAS-cog) as stratification indices in
stratified randomization could also reduce the allocation bias in
CDR-SB changes to a certain degree. One obvious explanation for
this is that the risk factors related to the progression of AD are also
related to declines in CDR-SB scores; therefore, using these risk
factors as stratification indices in stratified randomization could
reduce the allocation bias in CDR-SB changes. Supplementary
Fig. 5E shows the relationship between the SAEs obtained by
randomization methods and the correlation coefficients between
the stratification indices used in randomization and the actual
CDR-SB changes (GT). The results show that the SAEs and
correlation coefficients were reversely proportional to each other
(Supplementary Fig. E5a), and highly correlated to each other with
a correlation coefficient of −0.969 (Supplementary Fig. E5b),
which implies that stratification indices with higher correlations
for cognitive decline generally result in smaller allocation biases.
This study did have some limitations. First, all of our simulations

and results were based on the NA-ADNI data set, in which samples
were primarily collected from Europid populations. Using only the
NA-ADNI data set may restrict the generalizability of our results to
the global population or other cohorts. Second, although the NA-
ADNI study was designed to reflect a potential clinical trial
population, and we selected samples using recruitment criteria
similar to those used in the most recent trials for simulations, our
approach should be further evaluated with actual trial data. Third,
a lot of trials, especially phase II trials, used end points other than
CDR-SB changes, such as biomarkers, as the primary end point, so
a different prediction model should be developed and validated
for other types of end points. In addition, in our simulations, we
considered only trials with two arms and a single stratification
index. The effectiveness of using AI prediction in more compli-
cated trial designs, such as those with multiple arms, randomiza-
tion with stratification on multiple indices, and/or advanced
adaptive randomization, should be further investigated.
For the prediction model, there remains room for improvement.

Cognitive decline used as primary end points in AD trials is
typically evaluated using neuropsychological tests, which usually
contain noise, so a regression model for such noisy targets
remains an open challenge. In the present study, we introduced
multitask loss, that is, we combined regression loss with
classification and image recovery losses, to make robust predic-
tions of noisy targets. However, large prediction errors still exist for
the outlying samples, as shown in Table 1. Therefore, more
sophisticated robust losses should be considered. To overcome
another challenge in our study, which is a lack of enough training
data, we constructed a hybrid framework that proved to be
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effective for predicting the progression of MCI to AD when the
available data were limited [15]. However, end-to-end models,
including those using other state-of-the-art architectures such as
vision transformer as backbones, should be continuously investi-
gated because projects like the NA-ADNI are ongoing and data
sets will continue becoming larger.

METHODS
Data sets used in this study
The data used in this study were obtained from the ADNI-1, ADNI-GO, and
ADNI-2 data sets in the NA-ADNI database (http://adni.loni.usc.edu/ADNI).
The NA-ADNI is a cohort study launched in 2003 as a public–private
partnership, led by principal investigator Michael W. Weiner M.D., and
carried out across 55 research centers in the USA and Canada. The clinical
coordination center of the NA-ADNI established a network of clinical sites
and developed a plan for the recruitment and retention of subjects, and
furthermore, prepared the final clinical protocol and informed consent,
which were distributed to each site for local institutional review board
approval [25]. All subjects were willing and able to undergo all testing
procedures, including neuroimaging and follow-up, and to provide written
informed consent. Over 2000 participants with normal cognition and
patients with MCI or AD were recruited for the present study. The first
cohort, referred to as ADNI-1, consisted of 800 individuals: 200 cognitively
normal (CN) individuals, 400 with late MCI, and 200 with mild dementia.
ADNI-GO, the second cohort, included about 200 additional individuals
with early MCI. In ADNI-2, more participants at different stages of AD were
recruited to monitor the progression of AD. ADNI-3, which is presently
enrolling additional CN individuals and patients with MCI and dementia,
was not included in our study, because no diagnosis information is
currently available. The ethical approval for this study was given by both
FUJIFILM Corporation and National Center of Neurology and Psychiatry.
The hybrid model was trained, validated, and tested using samples from

longitudinal data in the NA-ADNI data set selected based on the following
criteria: (1) a clinical diagnosis of MCI or AD with an MMSE score ≥24; (2)
amyloid beta-positive in CSF or on positron emission tomography imaging;
(3) a global CDR scale score of 0.5; and (4) had the information needed for
model training and an available 2-year follow-up CDR-SB score. A total of
1194 samples from 506 participants were used for model training,
validation, and testing, and 506 samples at the baseline visit of each
participant were used for the randomization simulation. Characteristics at
baseline of the participants used in simulation were shown in Supple-
mentary Table E4. Predictions of CDR-SB changes used for the simulation
were obtained from the test sets in a participant-based tenfold cross-
validation test setting.

Image normalization and brain segment extraction
The three-dimensional (3D) T1-weighted magnetic resonance images (MRI)
used in our study were first transformed into Montreal Neurological
Institute (MNI) [26] space by aligning them with atlas images (standard
images) created in MNI space. The template images of the MNI152 NLIN
2009a atlas [27] were used. A coarse-to-fine approach containing
landmark- and image registration-based linear alignment was used to
align the T1-weighted MRI images, which were obtained under protocols
used in the NA-ADNI and J-ADNI studies, robustly and accurately to the
template images of the atlas, which were created in MNI space. In this
method, six landmarks in the brain with distinct local anatomic structures
were first detected from the T1-weighted MRI images using a region-based
convolutional neural network [28]. Then, an initial linear alignment
between the T1-weighted MRI and atlas images was obtained from the
correspondences of the detected landmarks in the T1-weighted MRI
images and that predefined for the atlas images. The initial alignment was
further refined using an image registration technique that utilizes mutual
information as an image similarity metric [29–31].
As T1-weighted MRI images acquired in different sites with different

equipment may have different biases in terms of intensity distribution,
image intensity normalization is an important pre-procession for many
image analysis tasks. In this study, we adopted a similar example-based
intensity normalization approach that uses patches of the acquired T1-
weighted MRI images and corresponding patches of an atlas template
image that contain tissue contrasts desired for normalized patches in T1-
weighted MRI images [32]. Instead of normalizing the global intensity
distribution of whole brain images, this method normalizes the intensity

distributions of local patches of T1-weighted MRI images to those of atlas
images. To assure that the local intensity distributions used for the
intensity normalization were calculated on same anatomic structure in the
T1-weighted MRI and atlas images, the linear alignment between the T1-
weighted MRI and atlas images was further refined using nonlinear (i.e., B-
Spline) alignment, and local intensity distributions were calculated based
on nonlinearly aligned patches. More details about the shape and intensity
normalization of T1-weighted images can be found in a previous study
[15].
After the intensity normalization was carried out, a skull-stripping

process was performed on the shape-normalized images to extract the
brain regions. To achieve this, we trained a V-net [33] with four layers using
the same data set as that used for the landmark detection.
From the normalized (in shape and intensity) and skull-stripped image,

brain segments of the hippocampus (left and right) and anterior temporal
lobes (left and right) were extracted. The locations of these segments were
manually identified in the atlas template image, and their sizes were fixed
to 64 × 64 × 64 voxels, which was large enough to contain each segment of
interest with a necessary margin in the normalized image. For each sample,
four brain segments, which contained hippocampi and anterior temporal
lobes, both left and right, at the same locations specified in the atlas
template images, were extracted from its normalized image, respectively.

Training deep neural networks (DNNs) for image feature
extraction
Two DNN models of the same structure were trained to extract image
features from brain segments of hippocampi (left and right) and anterior
temporal lobes (left and right), respectively. The DNN models adopted a
densely connected 3D convolutional network (DenseNet3D), extended
form DenseNet-121 [34], as a backbone. To improve the stability of the
DNN models on limited training samples, we added a self-attention (SA)
[35] layer and an auto-encoder (AE) [36, 37] to the backbone, because SA
can highlight important positions in a feature map and help extract the
global relationship, and an AE task, which is considered more robust than
classification and regression with a small number of samples, can be
expected to improve the robustness of the entire architecture of the
model. More details of DNN models can be found a previous study [15].
A mixed loss function of the multitask framework, defined as follows,

was used to optimize the training parameters of the DNN models:

Loss ¼ ð1� βÞðαLregression þ 1� αð ÞLclassÞ þ βLAE (1)

where Lregression is the MAE for the continuous prediction of CDR-SB
changes, Lclass represents the classification error function defined by the
cross-entropy loss for the binary prediction of whether CDR-SB changes
were greater than 0, LAE denotes the image recovery error function defined
by smooth L1 loss, and α and β are weight parameters, both of which
being set to 0.8 empirically. As the regression task is generally sensitive to
label noise, we combined it with a binary classification task that has a
similar purpose, but is more robust to label noise.
The two DNN models were trained independently on the brain

segments of hippocampus and the anterior temporal lobe. Because the
left and right segments of the brain are basically symmetrical, images of
the left hippocampus were flipped horizontally and then used with images
of the right hippocampus to train the hippocampus DNN model; this
process was also applied to the anterior temporal lobe segment. The
output of the global average pooling of the trained network was extracted
as image features and used with other nonimage features for final
prediction, as described below.

Linear support vector regression (SVR)
Because the number of training samples in our study was limited, we
adopted a hybrid framework in which linear support vector regression
(SVR) was used as the final predictor of CDR-SB changes instead of end-to-
end deep learning. After a 128-dimension image feature was extracted
from each brain segment by the DNN models, principal component
analysis was used to reduce the dimension to 1 for each segment. Then,
nonimage information, including cognitive scores (MMSE, CDR-SB, and
ADAS-cog), age, and biomarkers (ApoE ε4, Aβ42, and pTau), was combined
with the reduced image features of the four segments as the SVR input.
Here, we transformed ApoE type to a value representing AD risk based on
the following rules [38]: for ε2/ε3, value= 0.6; for ε3/ε3, value= 1.0; for ε2/
ε4 and ε3/ε4, value= 3.2; and for ε4/ε4, value= 11.6. Because the
distributions of these multimodal inputs differ greatly, we used quartile

C. Wang et al.

8

Translational Psychiatry          (2024) 14:105 

http://adni.loni.usc.edu/ADNI


normalization to normalize the combined features before applying SVR.
For validation and testing, the same quartile normalization used for
training was applied to the combined features. The SVR predictor
outputted a continuous value of CDR-SB changes for each participant
using image features and nonimage information at baseline.

Allocation simulation
In most trials of AD, multi-arms for different doses or combinations of
therapies are adopted in the design [3, 39–43] to improve the efficiency
of the trial. In this study, because we concentrated on the effectiveness of
introducing prediction AI into the randomization procedure, for simplicity,
we considered only the trial of two arms containing placebo and treatment
with single therapy and simulated a non-stratified randomization method
and nine stratified randomization methods using age, ApoE ε4, amyloid
β42, pTau, CDR-SB, MMSE, ADAS-cog, CDR-SB changes as predicted by an
AI model, and actual CDR-SB changes (GT) as stratification indices. Block
randomization [24, 44] was used to ensure that the numbers of samples
allocated to placebo and treatment groups were balanced. For simplicity,
in our simulation, we used blocks containing two permutation blocks of
[P, T] and [T, P], where P and T stand for placebo and treatment,
respectively.
Allocation was simulated for each randomization method with a sample

size of 500. In each simulation, randomization tables consisting of randomly
selected permutation blocks were first generated. Then, 500 participants were
randomly extracted from the total population consisting of 506 participants,
and allocated to placebo and treatment groups according to the randomiza-
tion tables generated above. For the non-stratified randomization method, a
randomization table containing a random sequence of 250 permutation
blocks was generated and used. With the randomization table consisting of
two permutation blocks, 500 randomly extracted samples were allocated to
two groups at an exact ratio of 1:1.
For each stratified randomization method, a randomization table with a

maximum length of 250 permutation blocks was first generated for each
stratification subgroup (or stratum), which was defined by predetermined
ranges of the stratification index. Randomly extracted samples were first
separated into subgroups (or strata), and then participants in each subgroup
were allocated to placebo and treatment groups according to the
randomization table generated for the subgroup. Participants in the placebo
groups of all subgroups were selected to obtain the placebo group for the
trial, and the same was done for the treatment group. As the number of
participants in a subgroup may be odd, the ratio of the number of participants
in the two groups was kept to approximately 1:1. The minima, maxima, and
interval used to define the subgroups of stratification indices are shown in
Supplementary Table E5. Because the predictions of CDR-SB changes
outputted by the AI model were continuous values, and the actual CDR-SB
changes were discrete values, the minima for the subgroup definition was
shifted by 0.25, which was half the interval of actual CDR-SB changes.

Calculation of the SAE
After allocation, we obtained two groups of participants, each of which
contained approximately 250 participants. Then, we calculated the mean
values of actual CDR-SB changes during the follow-up period for both
groups. When a perfect allocation was obtained, the mean values of actual
CDR-SB changes of the two groups were the same. However, in the case of
an existing allocation bias, the mean values of actual CDR-SB changes (GT)
of the two groups differed from each other. The difference in the mean
values of GT of the two groups was regarded as the allocation bias caused
by the randomization method used. As the participants in the allocation
simulation were randomly extracted, the allocation bias will change based
on the type of simulation. To examine statistically the allocation bias of
each randomization method, we repeated the simulation 10,000 times (as
was done in a previous study [18]) for each randomization method to
obtain a distribution of allocation biases. The SD of the distribution of
allocation biases obtained after 10,000 simulations was calculated (referred
to as the SAE in this study). The 95% range of PESs, which were the effect
sizes possibly observed with a null-effect treatment, obtained by each
randomization method was then calculated as [−1.96σ, 1.96σ], where σ
was the SAE obtained by the randomization method.

Calculation of sample sizes for non-null-effect conviction
For a given randomization method, the 95% range of the PES depends on
the sample size, that is, a large sample size results in a small 95% range. To

calculate the sample size of a given 95% range of the PES, a simulation of
sample sizes up to 3000 was carried out for each randomization method. In
each simulation, allocation biases in two allocated groups were recorded
for each sample size from 50 to 3000 (a sufficiently large sample size
compared with most trials) when a randomly extracted participant was
allocated. The simulation for each method was repeated 10,000 times to
obtain a distribution of allocation biases for each sample size from 50 to
3000. When the number of samples exceeded the number of participants
in the total population, oversampling was used. From the distribution of
allocation biases of each sample size, an SAE was calculated. For a given
95% range of the PES, the minimum sample size was identified from the
SAEs calculated above as follows:

ŝ ¼ min
s

sj1:96 ´ SAE sð Þ<rf g (2)

where r is the 95% range of the OES and s is the sample size.

Simulations of trials with actual treatment effects
Trials for different actual treatment effects were simulated for a typical
phase II trial with a sample size of 500 using the different randomization
methods described in the allocation simulation subsection. Supplemen-
tary Fig. E6 shows a flowchart of the simulation. Randomly extracted
participants were first allocated to placebo and treatment groups using
different randomization methods. Then, an assumed actual treatment
effect was applied to the distribution of actual CDR-SB changes in the
treatment group. The actual treatment effect was assumed to suppress
the total CDR-SB changes in the treatment group by x%. Here, x ranged
from 10 to 50 with a step of 2. A t test was carried out on two
distributions of CDR-SB changes for the placebo and treatment groups,
and the P value of the t test was calculated. Without loss of generality, a
two-tailed t test was used. The above procedure was repeated 10,000
times to obtain a distribution of P values for each randomization method
and actual treatment effect. Additionally, we also calculated P values for
the different actual treatment effects using a perfect allocation, that is,
the means and variances of CDR-SB changes for both treatment and
placebo groups, without applying a treatment effect to the treatment
group, were the same as that of the total population. Whereas the
P values obtained by the perfect randomization method were uniquely
determined for a given actual treatment effect, those obtained by other
randomization methods were distributed around the median, which
were identical to the P values obtained by perfect randomization. The
distributions of P values are represented by their medians and 25th and
75th percentiles. Simulations were carried out for all the assumed actual
treatment effects described above using the randomization methods
described in the Results section.
The detection rates of the actual treatment effects were calculated for

two cases: (1) the mean value of CDR-SB changes in the placebo group was
smaller than that in the treatment group without applying a treatment
effect, and (2) the reverse. Whereas the former was much more likely to
cause underestimation of the OES (or outcome) of the trial, the latter was
much more likely to cause overestimation.

Simulation of trials with multiple phases
A multiple-phase trial, consisting of a proof-of-concept phase and an
effect-confirming phase, was simulated for different actual treatment
effects using different randomization methods. The proof-of-concept
phase with a sample size of 500 was first simulated as described in the
previous subsection. As the purpose of the trial was to show the priority
of treatment to placebo, we used a one-tail t test in the multiple-phase
trial simulation. The P value threshold to judge whether the treatment
effect was significant was set to 0.1 for the proof-of-concept phase and
to 0.05 for the effect-confirming phase. The effect-confirming phase was
conducted only when the P value obtained in the proof-of-concept
phase was less than the threshold of 0.1. The sample size of the effect-
confirming phase was estimated based on the OES (or outcome) of the
proof-of-concept phase for the next phase to achieve a P value of 0.01 to
include an extra number of samples to that needed for threshold of 0.05.
The effect-confirming phase was then conducted using the estimated
sample size, and was judged as successful if the P value of the t test for
the outcome was less than 0.05. The above simulation was repeated
10000 times for each randomization method to calculate a ratio of
successful cases in which both the proof-of-concept and effect-
confirming phases succeeded.
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DATA AVAILABILITY
The data used for model training, validation, and testing are publicly available at the
following URLs: 1. NA-ADNI data set: http://adni.loni.usc.edu/ 2. J-ADNI data set:
https://humandbs.biosciencedbc.jp/en/hum0043-v1.

CODE AVAILABILITY
The DenseNet code, which was used as the backbone of our architecture, is available
at https://github.com/liuzhuang13/DenseNet. The Faster R-CNN code used for brain
landmark detection is available at https://github.com/rbgirshick/py-faster-rcnn. The
Insight Toolkit ITK, on which our image registration algorithm was implemented, is
available at https://itk.org.
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