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Pramipexole restores behavioral inhibition in highly impulsive
rats through a paradoxical modulation of frontostriatal
networks
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Impulse control disorders (ICDs), a wide spectrum of maladaptive behaviors which includes pathological gambling, hypersexuality
and compulsive buying, have been recently suggested to be triggered or aggravated by treatments with dopamine D2/3 receptor
agonists, such as pramipexole (PPX). Despite evidence showing that impulsivity is associated with functional alterations in
corticostriatal networks, the neural basis of the exacerbation of impulsivity by PPX has not been elucidated. Here we used a hotspot
analysis to assess the functional recruitment of several corticostriatal structures by PPX in male rats identified as highly (HI),
moderately impulsive (MI) or with low levels of impulsivity (LI) in the 5-choice serial reaction time task (5-CSRTT). PPX dramatically
reduced impulsivity in HI rats. Assessment of the expression pattern of the two immediate early genes C-fos and Zif268 by in situ
hybridization subsequently revealed that PPX resulted in a decrease in Zif268 mRNA levels in different striatal regions of both LI and
HI rats accompanied by a high impulsivity specific reduction of Zif268 mRNA levels in prelimbic and cingulate cortices. PPX also
decreased C-fos mRNA levels in all striatal regions of LI rats, but only in the dorsolateral striatum and nucleus accumbens core (NAc
Core) of HI rats. Structural equation modeling further suggested that the anti-impulsive effect of PPX was mainly attributable to the
specific downregulation of Zif268 mRNA in the NAc Core. Altogether, our results show that PPX restores impulse control in highly
impulsive rats by modulation of limbic frontostriatal circuits.
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INTRODUCTION
Impulse control disorders (ICDs) represent a set of heterogeneous
maladaptive behaviors characterized by a deficit in urge regula-
tion and inhibition that are core symptoms of several neuropsy-
chiatric conditions, that include, for instance, intermittent
explosive disorder, pathological gambling and hypersexuality [1].
Despite the profound consequences ICDs have on the quality of

life of patients, their neurobiological basis has not yet been
elucidated. However ICDs show a relatively high prevalence in
Parkinson’s disease (PD) [2, 3], restless leg syndrome [4–6],
fibromyalgia [7] and hyperprolactinemia [8–10], the treatment of
which involves dopamine D2/3 receptors agonists such as
pramipexole (PPX) or ropinirole. This implicates the iatrogenic
effect of dopaminergic drugs and a potential abnormal dopami-
nergic function in the development of ICDs.
Alongside their apparent reliance on aberrant dopaminergic

mechanisms, the compulsive nature of ICDs, which is not without
similarities with that of substance use disorders [11–18], has led to
their conceptualization as a form of behavioral addiction [19–21].
Similarly to psychostimulant use disorder, the vulnerability to
develop ICDs has been shown to be associated with a high

impulsivity trait [14, 17, 21–24], which is characterized by a
tendency to act prematurely, without forethought or concerns for
adverse upcoming consequences [25]. Impulsivity is a multi-
faceted construct [26] that encompasses the inability to tolerate
delays to reinforcement and adapt to risks, referred to as cognitive
impulsivity, on one hand, and the inability to withhold prepotent
responses, resulting in poor or adverse outcomes, so-called motor/
waiting impulsivity [25], on the other hand. Cognitive impulsivity
is principally assessed in delayed discounting [27–29] or risk taking
[30–32] tasks whereas waiting impulsivity is canonically assessed
as the rate of premature responses in the 5-choice serial reaction
time task (5-CSRTT) [33, 34].
The respective contribution of each of these dimensions of

impulsivity, which are behaviorally and neurally dissociable
[17, 35–37], to the emergence of ICDs following exposure to
dopaminergic drugs such as PPX has not yet been elucidated.
While preclinical studies in rodents and non-human primates have
demonstrated that PPX exacerbates cognitive impulsivity, as
assessed in delay discounting [27–29] and risk taking [30–32]
tasks, the influence of PPX on waiting impulsivity is less clear.
Indeed, PPX has been shown to exacerbate waiting impulsivity as
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assessed in differential reinforcement of low rate of responding
and fixed consecutive number tasks [38]. In the 5-CSRTT, one
study [39] found PPX to have a detrimental effect mainly on
accuracy, the index of attention, and to bring omissions rate up to
almost 50%, suggesting that the animals were no longer engaged
in the task in that study, precluding any assessment of the effect
of the drug on waiting impulsivity per se. In addition, the
interaction between PPX treatment and impulsivity trait was not
investigated.
Considering the heuristic and translational value of high

impulsivity trait, characteristic of individuals belonging to the
upper quartile of the population ranked on the rate of premature
responses in the 5-CSRTT, with regards to the vulnerability to
develop compulsive behaviors [40–43], in the present study we
sought to test the hypothesis that PPX may exert an impulsivity
trait specific effect on impulse control associated with functional
alterations in underlying corticostriatal circuits [25]. A pro-
impulsive action of PPX in highly impulsive (HI) rats characterized
in the 5-CSRTT would provide experimental evidence towards a
facilitation of the development of compulsivity by dopaminergic
drugs in this vulnerable population.
At the neural systems level, impulsivity has been shown to

depend on the functional engagement of a distributed corticos-
triatal network [25] that involves the insular cortex, the nucleus
accumbens core (NAc Core) and shell (NAc Shell) and the
dorsomedial striatum (DMS) [25, 37, 44, 45]. In contrast,
compulsive behaviors that result from the interaction between a
pre-existing impulsive trait and dopaminergic drugs have
repeatedly been shown to be associated with, if not mediated
by, dopaminergic mechanisms in the dorsolateral striatum (DLS)
[46, 47]. Thus, using in situ hybridization we quantified the mRNA
levels of the cellular activity and plasticity markers C-fos [48–50]
and Zif268 [51–55], respectively, in corticostriatal structures and
used a mediation analysis that aimed to identify the functional
signature of the effect of PPX on impulsivity in vulnerable
individuals.

MATERIALS AND METHODS
Subjects
Experiments were performed on 48 male Sprague Dawley rats (Janvier,
France) that were 6 weeks old (weighing 200 g) when they were
habituated to the animal facility in which they were housed 1 per cage
under a 12 h/light/dark cycle (lights ON at 7 am). Rats were food restricted
to 90% of their theoretical free feeding weight for 5-CSRTT training, but
had ad libitum access to water throughout the experiment. Protocols
complied with the European Union 2010 Animal Welfare Act and the new

French directive 2010/63 and were approved by the French national ethics
committee n°004.

5-CSRTT training
The 5-CSRTT procedure has been adapted for Sprague-Dawley from
previous studies [33, 56–59]. Briefly, the apparatus consisted of eight
25 × 25 × 25 cm operant chambers (Med associates, St Albans, VT) each
equipped with a curved rear wall. Set into the curved walls were five
2.5 × 2.5 cm square holes, 4 cm deep and 2 cm above the floor. Each hole
was equipped with an infra-red beam crossing the entrance horizontally
and a cue light at its rear that provided illumination. A houselight was
located at the top of this wall. 45 mg sucrose pellets (TestDiet, VA) were
delivered from a pellet dispenser to a tray at the front of the cage, also
equipped with a cue light and infra-red beam.

Phase 1: Learning. The procedure began one week after food restriction
was initiated. To prevent neophobia, rats were exposed to 10 sucrose
pellets in their home cage for two consecutive days. The following two
days, rats were placed in their operant box for 15min habituation sessions,
during which ten pellets were placed in the magazine and two pellets were
placed in each hole, all cue- and house-lights were turned ON.

Phase 2: Task acquisition. As detailed in Fig. 1A each daily session
consisted of 100 discrete trials with stable performance being achieved
after about 40 sessions. In order to facilitate brief stimulus detection by
Sprague-Dawley rats, the house-light remained OFF during the length of
the session and was turned on during time out periods [60]. Rats were
trained to enter the food magazine to initiate a trial. After a 5 s intertrial
interval (ITI), a brief light stimulus was pseudo-randomly presented in one
of five holes to indicate the individual the location of the correct response
for that trial. Following a nosepoke in this hole (‘correct response’), rats
were rewarded with the delivery of one sucrose pellet in the food tray. A
nosepoke response in any of the adjacent holes (‘incorrect response’), or a
failure to respond within 5 s after the onset of the stimulus (‘omission’),
resulted in no pellet delivery and a 5 s time-out period signaled by the
house light being turned ON. Additional nosepokes performed after a
correct or incorrect response (referred as ‘perseverative response’) were
recorded but had no consequence. Nosepokes made during the ITI, that is,
before the onset of the stimulus (or ‘premature responses’) were recorded
as a measure of waiting impulsivity, and resulted in a 5 s time-out (house
light turned ON) and reward omission. Nosepokes made during this time
out period (‘time-out response’) were recorded, but had no programed
consequence. The stimulus duration was progressively reduced from 20 s
to 1 s across training stages, as previously described [58, 59]. Progress
across the different stages was determined by at least 80% accuracy and
less than 20% omissions on any particular stage. Rats which failed to fulfill
these criteria were excluded from the study (n= 4).

Phase 3: Challenge with long intertrial interval. Following acquisition of the
task, rats were challenged with three 7 s-long intertrial interval (LITI)
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Fig. 1 Structure of the 5-CSRTT and identification of low, moderate and high impulsivity rats. A 5-CSRTT trial structure. B Segregation of
low impulsive (LI, n= 11), moderately impulsive (MI, n= 22) and highly impulsive (HI, n= 11) rats. BL baseline, LITI long intertrial interval. Data
are shown as means ± SEM. HI vs. LI @@@p < 0.001; HI vs. MI ^^^p < 0.001; MI vs. LI ++p < 0.01; +++p < 0.001.
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sessions separated by two baseline sessions with the regular 5 s ITI.
Subjects were ranked according to their level of premature responses
during second and third LITI [45] and those in the upper and lower quartile
(n= 11 each) [45] were considered as having high (HI) or low impulsivity
(LI), respectively. The rest of the population was considered to be
moderately impulsive (MI, n= 22).

Pharmacological procedures
Individuals of the HI, MI and LI groups were randomly allocated to a PPX or
a vehicle treatment group so that the PPX-treated HI and LI rats (n= 6 and
5 respectively), as well as MI rats (n= 12) showed a similar level of
premature responses before initiation of treatment as that shown by Veh-
treated HI, LI and MI rats (n= 6, n= 5 and n= 10, respectively). The
experimenter was not blinded to group allocation to facilitate treatment
administration and ensure equitable distribution of operant cages. Rats
received an intraperitoneal administration of 0.2 mg/kg/day PPX
(Sigma–Aldrich, St. Louis, MO), diluted in 0.9% NaCl, or vehicle (Veh)
30min prior to each daily behavioral session, with treatment starting one
day before to the first of twelve sessions (11 baseline 5 s ITI sessions and
one final 7 s LITI session) over which the effect PPX on impulsivity in HI and
LI rats was measured. The dose of pramipexole used here was carefully
chosen because it exacerbates impulsivity in a delay discounting task
(Magnard & Carnicella, unpublished) and improve motivational function in
dopamine-deficient rats [61] (see for review [62]), while it does not
influence locomotion [63, 64].

Tissue collection
15min after the final LITI session, rats were deeply anesthetized by
isoflurane and killed by decapitation. Brains were quickly removed and
snap frozen in liquid nitrogen, then stored at −80 °C until they were
processed into 14 µm-thick coronal brain sections with a cryostat (Microm
HM 500, Microm, Francheville, France) and collected on permafrost gelatin-
coated slides (Colorfrost Plus, Fisher scientific, Pittsburg, PA) that were
stored at −80 °C.

In situ hybridization
The in situ hybridization (ISH) procedure was carried out as previously
described [65, 66] with oligonucleotide probes specifically complementary
to the sequence of the mRNA of the immediate early genes C-Fos
(nucleotides 159-203 of the NCBI Reference Sequence NM_022197.2) or
Zif268 (nucleotides 1680-1724 of the NCBI Reference Sequence
NM_012551.3), tailed by 3’OH incorporation of 35S-dATP (1250mCi/mmol,
Perkin Elmer, UK) by a terminal Deoxynucleotidyl transferase (Promega,
M1875) with a specificity of 2.5 × 106 cpm/ml (C-Fos) or 3 × 106 cpm/ml
(Zif268).
Following fixation and pre-hybridization treatments aiming at reducing

non-specific hybridization, slides were incubated overnight at 42 °C in the
hybridization buffer (50% deionized formamide, 10% dextran sulfate, 50 ng/
ml denaturated salmon sperm DNA, 5% Sarcosyl, 0.2% SDS, 1mM EDTA,
300 nM NaCl, 5X Denhardt’s in 2X standard sodium citrate (SSC)) with the
probes diluted at a concentration of 8.75 ng/ml (C-Fos) or 6.25 ng/ml
(Zif268). Slides were then washed in decreasing concentration of SSC and
dehydrated in increased ethanol concentration baths. Sections were
exposed to Biomax MR films (Kodak, Rochester, USA) for four weeks
(Zif268-labeled sections) or 6 weeks (C-Fos-labeled sections) at room
temperature. Films were revealed in a dark room. Pictures of each brain
section were taken on a Northern light (Imaging Res Inc.) light table with a
Qicam (QImaging) camera equipped with a SIGMA 50mm 1:2.8 DG MacroD
Fast 1394 (Nikon) objective and subsequently analyzed with ImageJ
software [67]. A region of interest was drawn for each striatal territory in
which the optical density reflective of the mRNA level was measured
(according to the rat brain atlas [68]). As shown in Supplementary Fig. 1A, B,
the optical density in an mRNA-free part of the brain (i.e., corpus callosum)
was defined as background, and this value was subtracted to that obtained
from the area of interest to compute the relative optical density used as the
dependent variable in subsequent analyses.

Data and statistical analyses
Data, presented as mean ± SEM with or without superimposed individual
data points, were analyzed using SigmaStat (Systat software Inc., San Jose,
USA) and SPSS (IBM, Amorak, NY). Sample size was estimated based on
previous studies using the same procedures [42, 45]. Three-way repeated
measure analyses of variance (RM ANOVAs) were used to compare groups

across sessions, with sessions as within-subject factor, impulsivity (LI, MI or HI)
and treatment (Veh or PPX) as between-subject factors. Two-way RM
ANOVAs were used to compare levels of impulsivity between LI, MI and HI
rats during the screening period, with sessions as within-subject factor and
impulsivity as between-subject factor. Two-way ANOVAs were also used to
compare LI, MI and HI rats for BL11 and LITI sessions with impulsivity and
treatment as between-factors. Two-way ANCOVA was used to control for the
omission and BL11 premature response performances on premature
responses during LITI, with impulsivity and treatment as the between-
subject variables, LITI omissions and BL11 premature responses as covariants.
Differences between LI, MI and HI rats in Zif268 and C-fos mRNA were

analyzed using three-way ANOVA with impulsivity and treatment as
between-subject factors and structures as within-subject factor. When
indicated, post hoc analyses were carried-out using the Student-Newman-
Keuls test.
Dimensional inter-relationships were analyzed with nonparametric

Spearman correlation coefficient ρ and Spearman rank order tests.
Assumptions for the normality of the distributions and the homogeneity
of variance were verified using the Shapiro–Wilk and Levene test,
respectively. Significant violations of homogeneity of variances and
normality were corrected using square root transformations. Significance
for p values was set at α= 0.05. Effect sizes for the ANOVAs are also
reported using partial η2 values (ηp

2) [69, 70].
In order better to delineate the neural basis of the influence of PPX on

impulsivity, we employed mediation analysis [71, 72] that helped decipher
the direct effect of treatment and the indirect effect mediated by C-fos and
Zif268 expression on impulsivity. For this, we applied:

a. dependent regression (direct effect)

Impulsivity ¼
X7

i¼1

βifosFosðiÞ þ
X7

i¼1

βizif Zif ið Þ þ βT T þ βLL

b. mediator regression

Fos ið Þ ¼ αifos � T

Zif ið Þ ¼ αizif � T

c. effect decomposition (indirect effect)

γifos ¼ βifos � αifos

γizif ¼ βizif � αizif

where Fos ið Þ andZif ið Þ represent the mRNA levels of the immediate early
genes (IEG) C-fos and Zif268, respectively, from each brain region.
i represents the arbitrary index of the seven brain regions we stained (IL,
PrL, Cg, DLS, DMS, NAc Core, NAc Shell). T is a binary variable (1 for PPX, 0
for Veh). L is impulsivity measured under LITI prior to pharmacological
treatment. β represents the direct effect from each variable. α represents
the mediation effect from treatment (T) to cellular activity/plasticity. γ
represents the indirect effect of treatment on impulsivity mediated by the
two IEGs. To strengthen the analysis and prevent any bias by analyzing
only a subpopulation of this study, we included LI, MI and HI -Veh and PPX-
treated animals to this analysis which was carried out using the JASP
statistical software with bootstrap method, 1000 replications and bias-
corrected percentile [71, 72].

RESULTS
5-CSRTT screening for low impulsive and high impulsive rats
As previously described [37, 45] when Sprague Dawley rats well-
trained in a 5-CSRTT are challenged with longer ITIs, thereby
requiring individuals to refrain from expressing prepotent
responses for a slightly longer period of time than they usually
do (Fig. 1A), marked individual differences in waiting impulsivity
are revealed that allow identification of HI and LI rats in the upper
and lower quartiles of the population, respectively, and MI in the
two middle quartiles. In accordance, HI rats displayed a greater
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increase in premature responses than LI rats during the LITI
sessions (Fig. 1B) [impulsivity x session interaction: F22,451= 11.74,
p < 0.001, ηp

2= 0.36].

PPX influences impulse control differentially in LI and HI rats
LI, MI and HI rats were then split into three treatment groups that
did not differ in their baseline impulsivity level [no impulsivity ×
pretreatment × session interaction: F22,418 < 1, p= 0.914, ηp

2=
0.03]. Treatment groups received daily IP injections of either PPX
(LI, MI or HI PPX-treated rats) or vehicle (LI, MI or HI Veh-treated
rats) for 12 sessions.
PPX treatment was revealed to influence differentially baseline

impulsivity and its exacerbation by LITI mostly in HI rats (Fig. 2A)
[sessions x impulsivity x treatment interaction: F22,418= 2.72,
p < 0.001, ηp

2= 0.125]. While HI-Veh rats did not differ from LI-
Veh rats during baseline sessions, PPX treatment resulted in a
progressive increase in baseline premature responses only in HI
rats (Fig. 2A, B, BL white panels). In marked contrast, PPX
treatment prevented the exacerbation of premature responses
otherwise shown by HI-Veh and MI-Veh rats upon introduction of
LITI (Fig. 2A, B, LITI gray panels) [impulsivity x treatment
interaction: F2,44= 3.75, p= 0.03, ηp

2= 0.16].
This effect was not due to a difference in baseline levels of

impulsivity as it persisted when the premature responses
expressed during the baseline session that preceded the LITI
(BL11) was used as a covariate in an ANCOVA [impulsivity x
treatment interaction: F2,44= 6.4, p= 0.004, ηp

2= 0.257]. Within-
subject analyses across LITIs confirmed that PPX decreased the
level of premature responding under LITI as compared to pre-
treatment performance in HI and to a lesser extent in MI rats
(Fig. 2C) [period × impulsivity × treatment interaction: F2,38= 4.11,
p= 0.024, ηp

2= 0.178]. Thus, while PPX treatment moderately
increased impulsivity in HI rats in baseline conditions, it abolished
its exacerbation during LITI sessions, when inhibitory control is
most challenged.

The effects of PPX were specific to impulsivity
PPX treated rats showed a progressive decline in accuracy over
the course of treatment (Fig. 2D) [treatment: F1,38= 10.27,
p= 0.003, ηp

2= 0.21], which may reflect an impairment in
attention [34]. However, this effect was not dependent on
impulsive trait [no sessions x impulsivity interaction F22,418 < 1,
p= 0.57, ηp

2= 0.05; no sessions x impulsivity x treatment
interaction F22,418= 1.02, p= 0.44, ηp

2= 0.05]. This result was
however not supported by the analysis of performance during the
LITI session (Fig. 2E) [treatment: F2,44= 1.9, p= 0.17, ηp

2= 0.05; no
treatment x impulsivity interaction: F2,44= 0.27, p= 0.76, ηp

2=
0.014]. Together these results demonstrate that under the present
experimental conditions, a moderate daily dose of PPX, had a
restricted effect on attention, that was not dependent on
impulsive phenotype.
In addition, we assessed response omissions and collection

latencies, which jointly not only provide an insight into task
engagement [34] but could also potentially influence the rate of
premature responses. PPX increased the percentage of omitted
trials (Fig. 2F) [sessions × treatment interaction F11,418= 2.5,
p= 0.005, ηp

2= 0.06; no sessions × impulsivity × treatment inter-
action F22,418= 0.67, p= 0.86, ηp

2= 0.03]. Because this effect was
exacerbated in MI and HI rats irrespective of ITI duration
[impulsivity x treatment interaction F2,38= 3.26, p= 0.049, ηp

2=
0.147], even though only an effect of the treatment was observed
during the LITI session (Fig. 2G) [treatment: F1,44= 10, p= 0.003,
ηp

2= 0.20; no impulsivity × treatment interaction F2,44 < 1,
p= 0.43, ηp

2= 0.043] an ANCOVA was carried out to determine
a potential influence of this PPX-induced increase in omissions on
impulsivity using omissions expressed during the LITI session as a
covariate. This analysis revealed that the effect of PPX on
omissions during the LITI session cannot account for its profound

effect on premature responses [impulsivity × treatment interac-
tion: F2,44= 4.15, p= 0.024, ηp

2= 0.187]. Whereas PPX also
increased the latencies to correct responses irrespective of the
impulsive phenotype, (Fig. 2H) [treatment F1,38= 45.5, p < 0.001,
ηp

2= 0.54; no sessions × impulsivity × treatment interaction:
F22,418= 1,37, p= 0.18, ηp

2= 0.06; no impulsivity x treatment
interaction F2,38= 2.14, p= 0.13, ηp

2= 0.10] and (Fig. 2I) [no
impulsivity x treatment interaction: F2,44= 1.78, p= 0.18, ηp

2=
0.08; treatment F1,44= 15.42, p < 0.001, ηp

2= 0.28], it did not
influence reward collection latencies (Fig. 2J) [no sessions ×
impulsivity × treatment interaction, F22,418 < 1, p= 0.85, ηp

2=
0.035; treatment F1,38 < 1, p= 0.42, ηp

2= 0.017] and (Fig. 2K)
[treatment: F1,44= 1.7, p= 0.19, ηp

2= 0.04; no impulsivity x
treatment interaction: F2,44 < 1, p= 0.79, ηp

2= 0.01].
Thus, the slight decrease in response readiness caused by PPX

especially in HI rats, is unlikely to account for the effect of this
dopaminergic drug on impulsivity. This was further supported by
the absence of correlation between premature responses
performed during the final LITI session, under differential
treatment, and the response rate before treatment during either
baseline (Supplementary Fig. 2A) [ρ=−0.133, p= 0.391] (see also
Supplementary Fig. 2B–D for LI, MI and HI rats, respectively) or LITI
sessions (Supplementary Fig. 2E) [ρ= 0.184, p= 0.233] (see also
Supplementary Fig. 2F–H for LI, MI and HI rats, respectively), thus
confirming that the effect of PPX on response readiness did not
influence premature responses.
Finally, PPX did not influence perseverative responses (Supple-

mentary Fig. 3A) [no sessions x impulsivity x treatment interaction,
F22,418 < 1, p= 0.92, ηp

2= 0.03; no impulsivity x treatment interac-
tion F3,38 < 1, p= 0.63, ηp

2= 0.02], but reduced magazine entries
reminiscent of reduced response readiness noticed in PPX treated
rats (Supplementary Fig. 3B) [session × treatment interaction:
F11,418= 2.9, p < 0.001, ηp

2= 0.07; no sessions × impulsivity × treat-
ment interaction, F22,418 < 1, p= 0.82, ηp

2= 0.03; no impulsivity ×
treatment interaction: F2,38= 1.3, p= 0.26, ηp

2= 0.06]. Therefore,
PPX treatment did not induce repetitive or stereotyped behaviors
that may influence performance in the 5-CSRTT.

The dampening effect of PPX on the exacerbated impulsivity
during LITI sessions in HI rats was associated with a functional
disengagement of corticostriatal circuits
In order to identify the neural basis of the effect of PPX on
impulsivity trait, we carried out a hot-spot analysis in structures of
the corticostriatal circuitry using in situ hybridization for the
markers of cellular activity and plasticity C-fos and Zif268,
respectively.
A first quality control analysis of the pattern of expression of the

two IEGs, based on a covariance analysis for each marker, revealed
a convergence of RNA levels in line with the functional
organization of the corticostriatal circuitry, with similar trends in
expression in structures inter-connected to each other (Supple-
mentary Fig. 4). However, as anticipated, the two IEGs were shown
here not to reflect the same functional process as their mRNA
levels did not covary (Supplementary Fig. 4).
An impulsive trait dependent reduction of Zif268 was observed in

the dorsal structures of the mPFC, namely the prelimbic and
cingulate cortexes of PPX treated rats (Fig. 3A) [structure × impulsiv-
ity × treatment interaction: F4,54= 3.18, p= 0.02, ηp

2= 0.19].
This decreased recruitment of a marker of cellular plasticity in the

prefrontal cortical areas was accompanied by a decrease in the level
of expression of Zif268 across the ventral and dorsal domains of the
striatum in PPX-treated rats (Fig. 3B) [structure × treatment interac-
tion: F3,84= 11.12, p < 0.001, ηp

2= 0.28; no structure × impulsivity ×
treatment interaction: F6,84= 0.53, p= 0.78, ηp

2= 0.037]. While the
decrease in Zif268 mRNA levels in the DLS was quantitatively similar
to that observed in the DMS, differences were observed between
the NAc Core and NAc Shell in that Zif268 mRNA levels were much
more reduced by PPX in the Core than the Shell.
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The effect of PPX on the levels of C-fos mRNA in the prefrontal
regions of LI, MI and HI rats followed the same trend as that
observed for Zif268, albeit of a lesser magnitude (Fig. 3C)
[structure × impulsivity × treatment interaction: F4,54= 2.77,
p= 0.036, ηp

2= 0.17]. However, structure level analysis failed to

isolate significant differences between the different treatment or
impulsivity conditions.
In the striatum, PPX treatment resulted in a global decrease in C-fos

mRNA levels in the DLS, DMS, NAc Core, but no difference was
observed in the NAc Shell (Fig. 3D) [structure x treatment interaction:
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F3,90= 4.24, p= 0.007, ηp
2= 0.12]. This effect of the treatment was

found to be independent of the impulsive phenotype of these rats
[no structure x impulsivity x treatment interaction: F6,90 < 1, p= 0.71,

ηp
2= 0.04]. Together these results suggest that a high impulsivity trait

dampens the inhibition exerted by PPX on NAc Shell and DMS
activity, as assessed by C-fos mRNA levels.
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PPX-induced alterations of Zif268 mRNA levels in a network
involving the PrL, the NAc Core and the DLS predicted the
anti-impulsive effect of the drug
We then carried-out a mediation analysis in order to identify
which of the functional changes in the prefrontal corticostriatal
circuitry described above predicted best the anti-impulsive effect
of PPX. Mediation analysis tests the validity of a hypothetical
causal chain in which one variable, here PPX treatment, affects a
second variable, here Zif268 and C-fos expression, which, in turn,
affects a third variable, impulsivity, in a so-called indirect effect.
Thus, in our statistical model, mRNA levels of Zif268 or C-fos in the
different corticostriatal structures would “mediate” the relation-
ship between the predictor, treatment (PPX), and the behavioral
outcome, impulsivity (premature responses during the last LITI
under treatment) (Fig. 4A, B). The first outcome of the analysis was
a negative estimate c between treatment and impulsivity (Fig. 4C
upper panel) which confirmed the reduction of LITI-exacerbated
impulsivity by PPX, thereby representing a first validation of the
model. The indirect effect analysis also confirmed that PPX
decreased both C-fos and Zif268 mRNA expression in the seven
structures investigated (i.e negative estimate a; Fig. 4C lower
panel). While no significant relationship with C-fos expression was
identified, the mediation analysis revealed that a reduction of
Zif268 mRNA level in the NAc Core, PrL and DLS was correlated
with PPX-induced changes in premature responding. More

specifically, at the cohort level, a reduction of Zif268 expression
in the NAc Core was positively correlated to a reduction in
impulsivity (i.e positive estimate b) whereas in the PrL and the DLS
it was associated with increased impulsivity (i.e negative estimate
b). Overall, these results enabled the identification of a network
involving the PrL, NAc Core and DLS as the neural substrate of the
anti-impulsive effects of PPX.

DISCUSSION
This study provides a detailed behavioral characterization of the
effect of PPX on the expression of a high impulsivity trait either at
baseline or when challenged under long inter-trial interval
conditions. Repeated PPX administration was shown to exacerbate
baseline impulsivity, assessed across several 5 s ITI sessions, only in
HI rats. In marked contrast, PPX prevented the exacerbation of
premature responding characteristic of HI and MI rats, to a lesser
extent, upon introduction of a longer 7 s ITI. In addition, the gene
expression hotspot analyses carried out on the entire population
revealed that the trait-dependent effect of PPX on impulse control
is mediated by functional alterations of a corticostriatal network
involving the PrL, the NAc Core and the DLS.
These results together challenge an established wisdom about

the pro-impulsivity effects of D2-like agonists since they are
demonstrated here to be dependent on pre-existing differences in
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Fig. 4 The PPX-induced alterations of Zif268 mRNA levels in a network involving the PrL, the NAc Core and the DLS predicted the anti-
impulsive effect of the drug. A, B Simplified diagrams of the mediation analysis. C Statistical results of the mediation analysis. Upper panel:
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impulsivity. Impulsivity trait-dependent effects have already been
described for the noradrenaline reuptake inhibitor, atomoxetine,
and the psychostimulant drugs, amphetamine and methylpheni-
date, which all decrease premature responding under LITI in HI
rats but potentiate that of LI rats [42, 73–75] (but see [76]). NAc
Core deep brain stimulation (DBS) has been shown to exert the
same impulsivity trait-dependent effect on impulse control in the
5-CSRTT by reducing premature responses in HI rats and tending
to increase them in LI rats. Together these data highlight profound
neurobiological differences between HI and LI individuals [77],
which are in part associated with a reduced expression of D2/3R in
the ventral striatum of HI individuals, as shown by two PET scan
and ISH studies [45, 74, 78]. HI rats have also been shown to have
lower D2 mRNA levels than LI rats both in the nucleus accumbens
and the ventral tegmental area [45], which suggests that their
lower accumbal D2 dopamine receptor level, as assessed with PET,
is attributable to both pre and post-synaptic decreases. It is
therefore unclear whether and how, depending on the receptors
dynamic and PPX doses, these pre- and post-synaptic striatal D2/3

dopamine receptors may account for the impulsivity trait-
dependent effect of PPX.
The effect of PPX on baseline impulsivity in HI rats observed in

the present study is in agreement with the previous demonstra-
tion that PPX exacerbates waiting impulsivity in non-parkinsonian
animals in a DRL task [38]. In another study that used a 5-CSRTT
similar to the one used here, PPX was shown to promote
premature responses only in animals with a virus-mediated α-
synuclein-induced nigrostriatal lesion. This effect that was
exacerbated during LITI, but it was not restricted to HI rats, and
was instead accompanied with attentional and motivational
deficits which precluded any interpretation with regards to the
specific effects of PPX on impulsivity [39]. In contrast, the only side
effect of the PPX treatment observed in the present study was a
reduction in general activity (see [61]) or motor readiness [79]
since deficits in attention or disengagement from the task were
not observed in PPX-treated animals.
In marked contrast to its effect on baseline impulsivity, PPX

completely blocked the exacerbation of impulsivity by an acute
increase in waiting time, as operationalized under LITI, in HI rats.
This observation suggests that the engagement of negative
urgency in highly impulsive individuals may be a contributing
factor in the transition from a pro-impulsive to an anti-impulsive
effect of these drugs. Indeed, the increase in waiting time during
LITI profoundly challenges the inhibitory control of highly
impulsive individuals [80, 81] which experience more often the
negative consequences of their premature responses, a loss in
reinforcement that has been suggested to generate heightened
negative urgency [82]. In a recent study, such negative urgency,
the trait of making a harsh decision under stress, has been shown
to mediate compulsive goal-directed relapse in individuals having
developed with a DLS dopamine-dependent incentive habit for
cocaine that had lost the opportunity to express it [66]. In line with
this interpretation, the effects of PPX on impulsive control in HI
rats may be linked to the differential impact of dopaminergic
drugs on corticostriatal networks involved in the control of
habitual and goal-directed behavior. Under baseline conditions, as
rats become overtrained, daily stimulation of D2/3 receptors by
PPX may strengthen habitual behavior by a time-stamped DLS-
dependent stimulus-response strategy [83–85], in line with
previous causal evidence based on photostimulation of the DLS
indirect pathway [86]. The PPX-induced disruption of the under-
lying corticostriatal circuitry may result in an alteration of time-
based response initiation, thereby resulting in a facilitation of
responding before the end of the inter-trial interval. In contrast,
under LITI conditions, the perturbation of the time-based stimulus-
response strategy alongside with a potential heightened negative
urgency produced by the introduction of significantly longer inter-
trial intervals may result in the recruitment of a goal-directed

strategy in order to perform in the task at a time the less
cognitively demanding habits are no longer adaptive. The
functional engagement of the underlying PrL/Cg to DMS circuitry,
which is also important for inhibitory control [87, 88], may be
facilitated in HI rats by a PPX-induced decrease in the functional
engagement of striatal components of the habit system. This
strongly suggests that PPX may facilitate the transition from a
time-stamped habitual strategy to one that depends on the goal-
directed system [25, 87] when the duration of the ITI is increased,
thereby enhancing inhibitory control under LITI in HI rats.
In the present study, we conducted a thorough hotspot analysis

to investigate the expression patterns of C-fos and Zif268. These
IEGs exhibited contrasting expression profiles due to their unique
roles and regulatory mechanisms in neuronal activity and
plasticity. C-fos, stands as a reliable indicator of neuronal
activation, its heightened expression consistently links to various
facets of neural activity, such as learning and memory retrieval,
underscoring its significance as an activity marker [89, 90]. It codes
for the fos protein which dimerizes to form the AP-1 complex,
involved in the regulation of the transcription of a broad range of
target genes [48, 91]. Zif268 is involved in related yet distinctive
neural processes. While studies support its involvement in learning
and memory formation, its specific contribution to plasticity
involves a wide array of genes associated with vesicular transport,
neurotransmitter release, clathrin-dependent pathways, and actin
regulation [92, 93]. This complex network of target genes
highlights Zif268’s role in synaptic plasticity, thereby contributing
to learning and memory. The close but yet different role in cellular
processes may therefore underlie the differences in expression
profile of C-fos and Zif268 observed in the present study and
others [94], with potential complementary roles and information.
At a structure level, prior research has underscored the distinct

contribution of the sub-regions of the mPFC in regulating
inhibitory control and attention, with its ventral part (IL/PrL)
being involved in preparatory attention and cue processing, while
the dorsal mPFC (PrL/Cg) is necessary for suppressing irrelevant
behavior [87, 95–99] (but see [100]). At the cellular level, the
activation of D2/D3 dopamine receptors by PPX results in an
inhibition of the activity of the PKA and its downstream
transduction signaling [101] which leads to a reduction in synaptic
strength and eventually promotes long term synaptic depression
[102, 103]. In the present study, PPX treatment resulted in a
decrease in the expression of Zif268, a marker critical for synaptic
plasticity, particularly the maintenance of long-term potentiation
(LTP) [55, 104]. The reduced Zif268 expression detected in the
prefrontal (PrL and Cg cortex) and striatal regions of HI-PPX rats
may indicate a shift towards a more balanced functioning of the
goal-directed system in HI rats. In addition, considering the
functional antagonism in the control over waiting impulsivity
between the NAc Shell and the NAc Core, the latter promoting
impulsive action and the former inhibiting it [105–109], the PPX-
induced decrease in the mRNA levels of both C-fos and Zif268 in
the NAc Core associated with sustained C-fos expression in the
Shell of HI rats suggests a PPX-induced ventral striatum-mediated
normalization of impulse control at a time HI rats have re-engaged
their goal-directed system. While the present results highlight the
role of the NAc Core in the modulatory effects pf PPX on
impulsivity, other studies have also previously demonstrated using
a similar 5-CSRTT paradigm that the NAc Shell [107, 108], and its
innervation by the VTA [110, 111] also contribute to the control of
impulsivity.
The decreased NAc Core Zif268 mRNA levels associated with

optimal impulse control observed here in HI-PPX rats is similar to
the profile of LI rats previously established by Besson and
colleagues [45]. Together these observations suggest that a
decrease in synaptic plasticity in the NAc Core may be a key
determinant of behavioral inhibition. In contrast with the Besson
study however, no differences were observed here between HI-
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Veh and LI-Veh rats in the mRNA levels of Zif268 and C-fos in the
NAc Core. This apparent discrepancy may be attributable to the
difference in the rat strain used in the two studies, namely
Sprague Dawley in the present one and Lister-Hooded in the
earlier, a difference in housing conditions (standard versus
reversed cycle respectively), a difference in cue-light duration
(0.5 vs. 1 s in the Besson and the present study, respectively),
which may result in a lower cognitive load in the present study
[59, 112], as well as differences in training history. Indeed, as
compared to the Besson study, rats in the present one were also
trained under differential treatment for an additional 12 sessions,
an extension of their training history that may have resulted in a
lesser recruitment of cellular plasticity processes overall [113].
Taken together, the results of the present study demonstrate a

selective anti-impulsive effect of PPX in HI rats under conditions of
heightened negative urgency, which is correlated with a specific
diminution of the expression of the plasticity marker Zif268 in the
NAc Core. These results also identified a specific expression
pattern of the cell activity marker, C-fos, maintained by PPX in HI
rats in pro-inhibition structures, namely the NAc Shell and DMS
and reduced in the pro-impulsive structure, the NAc Core,
suggestive of an increased functional recruitment of the mPFC-
DMS goal directed system at the expense of the DLS-dependent
habit system. These results thereby shed new light on the hitherto
accepted pro-impulsive effect of D2-like agonists on waiting
impulsivity, by revealing a state dependent effect modulated by
different corticostriatal circuits. Although further studies are
needed to determine whether similar effects are observed in
females, these results suggest that targeting D2-like receptors may
represent a valuable strategy to improve, or normalize, waiting
impulsivity in psychiatric disorders in which this dimension of
impulsivity is aberrantly exacerbated, such as ADHD or addictions.
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Data are available upon request.
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