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Autism spectrum disorder (ASD) and Attention-deficit/hyperactivity disorder (ADHD) are two typical neurodevelopmental disorders
that have a long-term impact on physical and mental health. ASD is usually comorbid with ADHD and thus shares highly
overlapping clinical symptoms. Delineating the shared and distinct neurophysiological profiles is important to uncover the
neurobiological mechanisms to guide better therapy. In this study, we aimed to establish the behaviors, functional connectome,
and network properties differences between ASD, ADHD-Combined, and ADHD-Inattentive using resting-state functional magnetic
resonance imaging. We used the non-negative matrix fraction method to define personalized large-scale functional networks for
each participant. The individual large-scale functional network connectivity (FNC) and graph-theory-based complex network
analyses were executed and identified shared and disorder-specific differences in FNCs and network attributes. In addition, edge-
wise functional connectivity analysis revealed abnormal edge co-fluctuation amplitude and number of transitions among different
groups. Taken together, our study revealed disorder-specific and -shared regional and edge-wise functional connectivity and
network differences for ASD and ADHD using an individual-level functional network mapping approach, which provides new
evidence for the brain functional abnormalities in ASD and ADHD and facilitates understanding the neurobiological basis for both
disorders.
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INTRODUCTION
Autism spectrum disorder (ASD) and Attention-deficit/hyperactiv-
ity disorder (ADHD) are two common neurodevelopmental
disorders. The typical characteristics of ASD are impairments in
social communication, repetitive behaviors, and highly restricted
interests while ADHD primarily exhibits inattention, hyperactivity-
impulsivity, or both [1]. Although it’s noted in the Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) [2]
that the core symptoms of ASD and ADHD do not overlap, a lot of
existing research found common behavioral or neurophysiological
properties in ASD and ADHD, and 30–75% ASD subjects have
symptoms of ADHD while 20–60% ADHD subjects have symptoms
of ASD [3]. Symptoms in a global (domain level) and detailed (item
level) manner using the ADOS and ADI-R scores suggest that ASD
and ADHD subjects shared many same symptoms [3]. ASD with all
three domains i.e., social impairments, communication impair-
ments, and restricted repetitive behaviors often showed co-
occurring impulsivity, or co-occurring impulsivity and inattention
while never showed hyperactivity alone [4]. In addition, ASD and
ADHD also share many similar cognitive function deficits, such as
dysfunctions in attention, working memory, and planning [5].
Therefore, a recent study suggested that ADHD and ASD are on
the same continuum of neurodevelopmental disorders, while

ADHD is less severe compared with ASD [6]. Although the brain
functional abnormalities for ASD or ADHD alone have been widely
reported, the disorder-specific or shared differences in individual
regional and edge-wise functional connectivity or network
attributes between ASD and ADHD remain unclear.
Brain connectome can be quantified by functional connectivity

(FC), and both ASD and ADHD are characterized by abnormal
overall connectivity patterns within or between brain networks.
Individuals with ASD show impaired structures, functions, and
connectivities in or between emotion, language, attention, and
social cognition-related brain circuits [7–9]. In ADHD subjects,
deficits in structure, function, and connectivity were primarily
observed in fronto-parieto-cingulate-basal ganglia-cerebellum
circuit for abnormal motor inhibition, cognitive switching, and
emotion processing [10]. These results indicated that ASD and
ADHD may have not only similar clinical symptoms but also
abnormal brain structures and functions in common circuits. Thus,
from the perspective of brain networks, delineating specific and
shared brain circuits for ASD and ADHD could better uncover the
underlying neurophysiological basis for both disorders.
Currently, a majority of functional connectivity or network

research primarily adopted a group-level analysis
strategy to maintain across-subject correspondence but ignore
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subject-specific variation. Recently, individual functional con-
nectivity and network mapping approaches were developed
and applied to characterize individual functional organization
patterns, which have been demonstrated to better predict
cognitive and clinical performances [11–14]. Moreover, almost
all the existing literature investigated functional couplings by
calculating Pearson’s correlation between time courses of
different brain areas, i.e. node-wise functional connectivity
while not considering the relationship between edges. A recent
study proposed edge time series and demonstrated that co-
fluctuations of different edges, i.e. edge-wise functional
connectivity could better inspect functional dynamics at fine
timescales [15]. In the current study, with resting-state
functional magnetic resonance imaging (fMRI) data, we aimed
to figure out underlying brain mechanisms for ASD and ADHD
by combining individual functional network mapping, node-
and edge-wise functional connectivity, and graph-theory-
based network analyses to identify specific and shared neural
characteristics between ASD and ADHD. We first acquired 17
individual functional brain networks for each subject using a
non-negative matrix factorization (NMF) method [16]. Then,
node- and edge-wise functional network and connectivity
analyses were performed to reveal topological and connectiv-
ity differences between ASD and ADHD. Finally, correlation
analyses were applied to determine the associations between
neural indices and clinical performances.

MATERIALS AND METHODS
Subjects
A total of 177 participants including 60 typical development (TD) subjects
(50 males/10 females, mean age= 11.8 years, standard deviation= 2.8), 29
ASD subjects (24 males/5 females, mean age= 11.5 years, standard
deviation= 2.6), 54 ADHD-Combined subjects (45 males/9 females, mean
age= 11.2 years, standard deviation= 2.5) and 34 ADHD-Inattentive (28
males/6 females, mean age= 11.7, standard deviation= 2.5) matched in
age and gender were enrolled in this study. The differences in gender and
age were tested using the Chi-square test and analysis of variance
(ANOVA) across groups. All the data was accessed from NYU Langone
Medical Center’s dataset in which participants were recruited in New York
City and surrounding areas and scanned using the same MRI and
parameters (https://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html).
The study for ASD and ADHD was approved by the local Ethics Committee,
and the written informed consent/assent in accordance with the NYU-SOM
IRB was provided and obtained. Although ABIDE has a lot of ASD data, we
only kept ASD and ADHD data which was acquired from the same site to
exclude the effects of different MRI scanners and scan parameters for
further analyses. Although there have been some harmonization
approaches to eliminate the influences of different scanner and scanner
parameters, we believe that data from the same center using the same
scanning protocol is more controllable and convincing. Given that the NYU
dataset has the largest ASD data in a single site, we chose data from NYU
for analyses. Since most of the ASD subjects from NYU are co-morbid with
ADHD, 29 ASD subjects were finally selected in our study by excluding the
ASD subjects comorbid with ADHD.

Clinical assessments
For all the participants, the full intelligence quotient (FIQ), verbal IQ (VIQ),
and performance IQ (PIQ) were assessed using the subtests of the Wechsler
Abbreviated Scale of Intelligence (WASI), and the handedness was
assessed by 22 items Edinburgh Handedness Inventory. Body Mass Index
(BMI) was determined by measuring body weight and height at the initial
visit only for TD and ASD. For ASD subjects, the clinical performances
including Autism Diagnostic Interview–Revised (ADI), Autism Diagnostic
Observation Schedule (ADOS), and Vineland Adaptive Behavior Scales-
Second Edition (VABS) were evaluated [17]. ADI consists of social
(reciprocal social interaction subscore), verbal (abnormalities in commu-
nication subscore), restricted, repetitive, and stereotyped patterns of
behavior subscore (RRB), and onset (abnormalities of behavior evident at
or before 36 months subscore) scores. ADOS consists of total (classic total
score), social affect (social affect subscore), and RRB (restricted and

repetitive behavior subscore) scores. VABS consists of communication,
daily living, and social scores. For ADHD subjects, the clinical performances
including ADHD index, Inattentive, and Hyper/Impulsive scores were
acquired.

Resting-state fMRI data acquisition
The resting-state fMRI was scanned using a SIEMENS 3.0 T (MAGNETOM
Allegra syngo) MRI machine. Most subjects were instructed to relax and to
keep their eyes open while a few of them closed their eyes in a few cases.
The fMRI images were scanned with the following parameters: repetition
time= 2000ms, echo time (TE)= 15ms, flip angle= 90 degrees, voxel
size= 3 × 3 × 4mm3, slices= 33, SNR= 1, 180 measurements. The details
for the scanning information could be found in a previous study [6].

Resting-state fMRI data preprocessing
Resting-state fMRI data were preprocessed as follows: (1) removing the first
10 volumes to avoid magnetization effects; (2) remaining volumes were
realigned to the first volume to correct head motion; (3) registration to the
EPI template and resampled to 3 × 3 × 3mm3; (4) smoothing the images
with 6mm full-width at half maximum (FWHM) Gaussian kernel; (5)
detrending and regressing nuisance covariates including Friston-24 head
motion parameters, global mean, white matter, and cerebrospinal fluid
signals; (6) filtering with band path of 0.01–0.1 Hz; (7) scrubbing with cubic
spline interpolation for frame-wise motion correction with mean frame
displacement (FD) > 0.5 mm. To eliminate head motion effects, the subjects
with head motion exceeding one voxel and the mean frame-wise
displacement >0.5 were excluded. FD differences were tested using
ANOVA with p < 0.05 and post-hoc between-groups differences were
tested using two-sample t-tests with p < 0.05 with a false discovery rate
(FDR) corrected. If FD showed significant differences between groups, it
was taken as covariates during the following statistical analyses.

Define subject-specific 17 functional networks
In this study, we used a spatially regularized NMF to delineate subject-
specific functional networks [16]. Mounting evidence has demonstrated
that the human brain could be stably and reproducible parcellated into 7
or fine-grained 17 functional networks for visual, somatomotor, limbic,
dorsal and ventral attention, frontoparietal, and default mode networks
[18]. In this study, a regularized NMF method was employed to define 17
large-scale brain functional networks in each individual for further analysis.
Before decomposition, a linear shift for each voxel’s time series was
performed to make the values of all the time points nonnegative. Then, the
time series were normalized with its maximum value to change the values
of all time points within the range of 0–1. After that, the individual
functional network mapping was performed as follows (details see Fig. S1
in Supplementary Materials): (1) group network initialization: we first
constructed a matrix with 8500-time points (170-time points for each
subject) and 67,541 voxels (whole brain) based on 50 randomly selected
subjects and decomposed this matrix with an alternative optimization
method and random nonnegative initialization to generate network time
series matrix and network probability matrix [19]. The network probability
matrix had 17 rows (17 networks) and 67,541 columns (67,541 whole
voxels), indicating the probability of each voxel belonging to each
network. We repeated this step 50 times to enhance the robustness and
obtained 50 network probability matrices; (2) group network atlas creation:
we used the spectrum clustering method to make 50 network probability
matrices into one consensus probability matrix [20]. The size of the
consensus probability matrix is the same as the network probability matrix,
and served as the group network atlas; (3) personalized network definition:
each subject’s whole functional time series matrix was decomposed using
regularized NMF and generated the individual’s 17 functional networks
with the group atlas generated in step 2 as a prior. The details for
individual functional network mapping can be found in previous studies
[11, 14], and the codes to define individual networks can be found in this
link (https://github.com/hmlicas/Collaborative_Brain_Decomposition).
To test whether the reconstructed signal can restore the original signal, a

Pearson’s correlation coefficient was calculated between original and
reconstructed signals for each voxel of the whole brain in each subject.
Each voxel was assigned to one of the 17 networks in which this voxel has
the maximum load. The mean correlation coefficient was calculated across all
voxels and subjects for each network characterizing reconstruction accuracy.
To further quantify individual differences of the 17 functional networks

in the brain, the median absolute deviation was taken as an indicator to

J. Zhang et al.

2

Translational Psychiatry           (2024) 14:92 

https://github.com/hmlicas/Collaborative_Brain_Decomposition


evaluate the variability of the brain functional networks across subjects as
in previous studies [11, 14]. First, a load matrix (67,541 × 17) representing
the loadings of each voxel in 17 networks was acquired using the NMF
method as stated above, and the median loading of each voxel in each
network was computed across all the subjects. Then, the absolute
deviation between the load of this voxel in each subject and the median
loading was computed. Finally, the average value of the median absolute
deviation across all 17 networks was used to evaluate the variability of the
brain functional networks.

Node-wise and edge-wise FNC analyses of the 17 networks
The large-scale functional network connectivity (FNC) was measured by
calculating the Pearson correlation coefficient between time courses. In
our study, both node-wise and edge-wise FNC were analyzed in TD, ASD,
and ADHD. For node-wise network topological analysis, a 17 × 17 FNC
matrix was calculated for each subject. For edge-wise functional network
analysis, we first obtained all edges, i.e. functional connectivities of any pair
of the 17 networks. Then, the time courses of all 136 (17 × (17-1)/2) edges
were acquired to calculate the edge-wise functional network. Suppose that
xi ¼ ½xi 1ð Þ; xi 2ð Þ; ¼ ; xi Tð Þ� and xj ¼ ½xj 1ð Þ; xj 2ð Þ; ¼ ; xj Tð Þ� are time series
of network i and j respectively, the node-wise functional connectivity is
defined as Pearson’s correlation coefficient between xi and xj. For edge-
wise functional connectivities, edge time series ei ¼ ½ei 1ð Þ; ei 2ð Þ; ¼ ; eiðTÞ�
are calculated as ei tð Þ ¼ xiðtÞ�xjðtÞ, and repeating this procedure for every
pair of networks to obtain all the 136 edges’ time series. Then, the
functional connectivities between any pair of edges were computed and a
136 × 136 matrix representing edge-wise functional network was obtained.

Node-wise and edge-wise large-scale functional connectivity
differences
After obtaining node-wise and edge-wise functional connectivity matrix,
the node-wise and edge-wise functional connectivity differences between
any groups of TD, ASD, ADHD-Combined, and ADHD-Inattentive were
analyzed. ANCOVA with FD as a covariate was first used to identify the
difference in each functional connectivity across all the groups with
p < 0.05. If significant differences were found, post-hoc two-sample t-tests
were used to determine between-group differences in connectivity
strength with a significant level of p < 0.05, FDR corrected.

Graph theory-based network attribute analyses
Graph theory was used to analyze global and nodal network parameters to
determine differences in brain topological organization. Both node-wise and
edge-wise network topological properties were investigated. Before analyses,
both node-wise and edge-wise functional connectivity matric were threshold
with p < 0.05 to reserve significant connectivities. In this study, we did not use
different sparsity values to threshold for network analyses since the node-
wise connectivity matrix only contains 17 nodes. The small-world property
including normalized clustering coefficient (γ) » 1, normalized characteristic
path length (λ) ≈ 1, and smallworldness (δ) > 1 was first evaluated before the
calculation of global parameters (Watts and Strogatz 1998). When meeting
the small-world criterion, the global and nodal topological parameters
including shortest path length (Lp), global efficiency (Eglob), local efficiency
(Eloc), clustering coefficient (Cp), assortativity (r), modularity (Q), betweenness
centrality (Be), and degree centrality (Deg) were computed. The formula for
these attributes calculation is shown in Supplementary Materials (section of
Network attributes calculation). The significant differences in network
attributes were determined using ANOVA with p < 0.05 among all the
groups, and post-hoc two-sample t-tests were applied to determine
between-group differences with the significant level of p< 0.05, false
discovery rate (FDR) corrected.

Edge-wise community detection and functional connectivity
analysis
To explore whether the 136 edges could be further grouped into specific
communities, a modified k-means algorithm was applied to clustering the
connectivity matrix of the 136 edges [21]. The details for edges’
community detection were as follows: (1) modularity analysis using a
spectral optimization algorithm of the connectivity matrix derived from the
136 edges was adopted to identify the number of optimal modules; (2) a
modified k-means algorithm was used to group the 136 edges into
different communities; (3) to link different edges’ communities with
cortical networks, the total numbers of each functional network belonging
to a specific community was calculated (for each edge of the 136 edges, it

connects two of the 17 functional networks, when it belongs to a specific
community, the connected two functional networks were considered to
belong this community).
To determine whether functional connectivities between different

communities could differentiate TD, ASD, ADHD-Combined, and ADHD-
Inattentive, functional connectivity defined using Pearson’s correlation
coefficient was computed between any two communities. ANCOVA with
FD as a covariate was used to identify the difference in each functional
connectivity across all the groups with p < 0.05, and post-hoc two-sample
t-tests were used to determine between-group differences in connectivity
strength with the significant level of p < 0.05, FDR corrected.

Top and bottom amplitude co-fluctuation analysis
A recent study demonstrated that only a small fraction of frames exhibiting
the strongest co-fluctuation amplitude could explain the overall pattern of
connection and act as the primary driver of resting-state functional
connectivity [15]. Thus, we examined the top 5% and bottom 5%
amplitude co-fluctuation frames of each subject’s time series to explore
whether they can effectively discriminate different disorders. We
computed the root sum square (RSS) of the top and bottom 5% volumes’
time series. ANCOVA with FD as a covariate was executed to identify the
difference in top and bottom 5% amplitude co-fluctuation across all the
groups with p < 0.05. Post-hoc two-sample t-tests were used to determine
between-group differences in top and bottom 5% amplitude co-
fluctuation with the significant level of p < 0.05, FDR corrected.

The transition analysis of high-normal-low amplitude frames
To determine whether different groups have different numbers of
transitions among high, normal, and low amplitude frames, we divided
the whole time series of the 136 edges into three levels of frames
according to the magnitude of amplitude: bottom 5% frames (the lowest
5% amplitude frames), normal frames (amplitude from 5% to 95%), and
top 5% frames (the highest 95% amplitude frames). We calculated the
number of transitions of the whole time series from bottom to bottom
stage, bottom to normal stage, bottom to top stage, normal to bottom
stage, normal to normal stage, normal to top stage, top to bottom stage,
top to normal stage, and top to top stage. ANCOVA with FD as a covariate
was performed to identify the difference in the number of transitions
across all the groups with p < 0.05. Post-hoc two-sample t-tests were used
to determine between-group differences in the number of transitions with
the significant level of p < 0.05, FDR corrected.

Correlation analyses
To identify the associations between changed neuroimaging measure-
ments and clinical performances, correlation analyses using Pearson’s
correlation coefficients were performed. The significance level was set at
p < 0.05 corrected with the FDR method.

RESULTS
Demographic and clinical characteristic
Participants in TD, ASD, ADHD-Combined, and ADHD-Inattentive
were well matched in age (p= 0.65) and gender (p ≈ 1). ANOVA
analyses revealed significant group differences in FIQ (F= 3.8,
p= 0.011), VIQ (F= 5.67, p= 0.001), FD (F= 7.91, p < 0.001) while
no significant difference in PIQ (F= 1.68, p= 0.17). Post-hoc two-
sample T-test analyses revealed that FIQ and VIQ were higher in
TD compared to ASD and ADHD-Combined, and VIQ was higher in
ASD compared to ADHD-Inattentive and PIQ was higher in TD
compared to ADHD-Combined. All individuals with ASD, ADHD-
Combined, and ADHD-Inattentive had higher FD compared to TD
while there were no significant differences in FD among ASD,
ADHD-Combined, and ADHD-Inattentive (Table 1 for details).

Individual brain functional networks
By using the spatially regularized NMF method, 17 individual
functional networks were acquired. To evaluate the decomposition
accuracy of the functional networks, the similarity of the original and
reconstructed signals was calculated, and a high similarity (minimum
similarity above 0.69) was observed for each functional network
indicating high decomposition accuracy (Fig. S2 in Supplementary
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Materials). We compared our results with Yeo’s 7 network atlas and
classified each individual brain network into fronto-parietal network
(FPN: FPN-1, FPN-2, and FPN-3), dorsal attention network (DAT: DAT-1
and DAT-2), default mode network (DMN: DMN-1 and DMN-2), motor
network (MOT: MOT-1, MOT-2, and MOT-3), visual network (VIS: VIS-1,
VIS-2, and VIS-3), limbic network (LMB: LMB-1 and LMB-2), ventral
attention network (VAT) and cerebellum network (CR). The group-
level and two randomly selected individual functional networks are
shown in Fig. 1. Significant individual differences in network topology
between subjects and compared to group-level results were
observed (Fig. S3 in Supplementary Materials).

Differences in large-scale FNC
Differences in large-scale FNCs across different groups were found
(Fig. 2). Compared to TD, ASD and ADHD-Inattentive showed
increased FNCs between DMN-1 and DMN-2, and between VIS-2
and VAT, respectively. ASD and ADHD-Inattentive showed decreased

FNCs between FPN-2 and MOT-3 compared to TD. ADHD-Inattentive
exhibited higher FNC between DMN-1 and MOT-3 compared to
both TD and ADHD-Combined. Both ASD and ADHD-Combined
showed decreased functional connectivities between MOT-2 and
VIS-1 compared to TD. Compared to TD, all the subjects with ASD,
ADHD-Combined, and ADHD-Inattentive exhibited lower negative
FNC between FPN-3 and MOT-1. In addition, ASD showed lower
negative FNC while ADHD-Combined exhibited larger negative FNC
between DMN-2 and MOT-1 compared to TD. Both ADHD-
Combined and ADHD-Inattentive had larger negative FNC between
DMN-2 and MOT-1 compared to ASD while ADHD-Combined
showed larger negative FNC between DMN-2 and MOT-1 compared
to TD. There were no other significant differences between TD, ASD,
ADHD-Combined, and ADHD-Inattentive.
For edge-wise FNC, there was no significant difference among

TD, ASD, ADHD-Combined, and ADHD-Inattentive after multiple
comparison corrections.

Fig. 1 Spatially regularized non-negative matrix factorization (NMF) for individualized functional network parcellation. The group level
and two randomly selected individual levels of the 17 large-scale functional networks were shown.

Fig. 2 Differences in large-scale functional network connectivity (FNC) in ASD, ADHD-combined and ADHD-inattentive. Abnormal large-
scale FNCs between MOT-3 and FPN-2, DMN-1, between MOT-1 and FPN-3, DMN-2, between DMN-1 and DMN-2, between MOT-2 and VIS-1,
and between VIS-2 and VAT were found.
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Differences in node- and edge-wise network topology
To determine the node-wise and edge-wise network topology
differences, graph-theory-based complex brain network analysis
was performed for TD, ASD, ADHD-Combined, and ADHD-
Inattentive. For edge-wise network topological properties, all
ASD, ADHD-Combined, and ADHD-Inattentive showed increased
Gamma, Lambda, clustering coefficient, and shortest path length
compared to TD, while there were no significant differences
among ASD, ADHD-Combined, and ADHD-Inattentive. Both
ADHD-Combined and ADHD-Inattentive showed higher Sigma
than TD while no significant differences between ASD and TD, and
among ASD, ADHD-Combined, and ADHD-Inattentive were found
(Fig. 3).
In addition to network global topological differences, edge-wise

local topological differences were also found. There were
significant differences in edges’ local efficiency among TD, ASD,
and ADHD (Fig. 4). All subjects with ASD, ADHD-Combined, and
ADHD-Inattentive have increased local efficiency of edges
between DAT-1 and LMB-1, MOT-3, CR, between DMN-1 and
VAT compared to TD. Both subjects with ADHD-Combined and
ADHD-Inattentive have increased local efficiency of edges
between DMN-1 and DAT-1, VIS-2, between DAT-2 and VAT,
between MOT-1 and DMN-2, between MOT-3 and VIS-2, and

between CR and VIS-2, VIS-3 compared to TD. Individuals with ASD
showed increased local efficiency of edge between LMB-1 and
PFN-3 compared to TD. Both subjects with ADHD-Combined and
ADHD-Inattentive had increased local efficiency of edge between
MOT-1 and DMN-2 compared to ASD. Subjects with ADHD-
Combined showed increased local efficiency of edge between CR
and VIS-2 while subjects with ADHD-Inattentive showed increased
local efficiency of edge between CR and VIS-3 compared to ASD.
No other significant differences were found between TD, ASD,
ADHD-Combined, and ADHD-Inattentive.
We also analyzed the node-wise network topological character-

istics between TD, ASD, ADHD-Combined, and ADHD-Inattentive.
ADHD-Combined has a larger Gamma value compared to TD while
no significant differences in Gamma were found between other
groups. Both ADHD-Combined and ADHD-Inattentive have larger
Lambda compared to TD while no significant differences in
Lambda were found between other groups. For Sigma, only
ADHD-Combined showed larger Sigma compared to TD. In
addition to small worldness, all ASD, ADHD-Combined, and
ADHD-Inattentive showed reduced network global efficiency
compared to TD whereas no significant differences were found
among ASD, ADHD-Combined, and ADHD-Inattentive (Fig. S4 in
Supplementary Materials).

Fig. 3 Differences in edge-wise global network topology in ASD, ADHD-combined, and ADHD-inattentive. Edge-wise (136 edges’
connectome) complex network topology analysis identified significant differences in small-world properties of Gamma, Lambda, Sigma,
clustering coefficient, and shortest path length among TD, ASD, ADHD-Combined and ADHD-Inattentive.

Fig. 4 Differences in edge-wise functional network local topological properties in ASD, ADHD-combined and ADHD-inattentive. Only
changed local efficiency (Eloc) of edge-wise edge networks were identified in ASD, ADHD-Combined, and ADHD-Inattentive.
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For node-wise local network properties, subjects with ASD,
ADHD-Combined, and ADHD-Inattentive have significantly
increased local efficiency and clustering coefficient of networks
of DMN-1, VIS-1, and VIS-2 compared to TD. ADHD-Inattentive also
showed increased local efficiency of the network of VIS-2
compared to ADHD-Combined. Individuals with ADHD-
Combined showed increased local efficiency of networks of
LMB-1 and CR compared to TD. Subjects with ASD and ADHD-
Combined exhibited higher clustering coefficients of networks of
LMB-1 compared to TD. There were no other differences in nodal
local topological properties (Fig. S5 in Supplementary Materials).

Community detection and functional connectivity differences
Using network module analysis, the 17 functional networks were
assigned to eight communities (Fig. S6 in Supplementary
Materials). The community #1 corresponded to fronto-parietal
network while community #2 and community #5 corresponded to
motor network. The community #3 corresponded to limbic
network and community #4 corresponded to default mode
network. The community #6 corresponded to cerebellar network.
The community #7 and community #8 corresponded to ventral
and dorsal attention networks, respectively.
After obtaining different communities, functional connectivity

differences between different communities were analyzed between
groups (Fig. S7 in Supplementary Materials). Compared to TD, all
individuals with ASD, ADHD-Combined and ADHD-Inattentive have
increased functional connectivities between community #2 and
community #6 and between community #5 and community #7.
Both individuals with ADHD-Combined and ADHD-Inattentive
showed decreased functional connectivities between community
#1 and community #2 while increased functional connectivities
between community #1 and community #6, community #7,
between community #7 and community #2, community #6 relative
to TD. Both subjects with ASD and ADHD-Inattentive showed
increased functional connectivities between community #4 and
community #6 compared to TD. Individuals with ADHD-Combined
showed decreased functional connectivities between community #1
and community #3, community #4 while increased functional
connectivities between community #7 and community #8 compared
to TD. In addition, Individuals with ADHD-Combined also had higher
functional connectivity between community #1 and community #6
compared to ASD. Subjects with ADHD-Inattentive showed
increased functional connectivity between community #5 and
community #1, community #6 compared to TD. There were no
other significant differences between different groups.

Differences in amplitude co-fluctuation
By calculating the RSS of top 5% frames and bottom 5% frames,
we found that in top 5% frames, all the subjects with ASD, ADHD-

Combined, and ADHD-Inattentive had a higher amplitude of co-
fluctuation compared to TD but there were no significant
differences among ASD, ADHD-Combined, and ADHD-Inattentive
(Fig. 5). For the bottom 5% frames, ASD showed decreased while
ADHD-Combined and ADHD-Inattentive showed increased ampli-
tude of co-fluctuation compared to TD (Fig. 5). In addition, ADHD-
Combined and ADHD-Inattentive also showed a higher amplitude
of co-fluctuation compared to ASD while ADHD-Combined and
ADHD-Inattentive had no significant differences (Fig. 5).

Differences in the number of transitions
To explore whether the transition frequency could discriminate
different disorders, the number of transitions between different
co-fluctuation levels was calculated. We found that ADHD-
Combined showed an increased number of transitions from top
to top while a decreased number of transitions from top to normal
levels of co-fluctuation compared to TD (Fig. 6). In addition, ADHD-
Combined showed a decreased number of transitions from
normal to top while an increased number of transitions from
normal to normal levels of co-fluctuation compared to TD (Fig. 6).
We also found that ADHD-Inattentive exhibited an increased
number of transitions from normal to normal levels of co-
fluctuation compared to TD (Fig. 6). No other significant
differences in transition frequency were found between different
groups.

Correlation results
Correlation analyses were performed to determine the relation-
ships between changed neuroimaging measurements and clinical
performances. We found a significantly negative correlation
between the small-world index of Sigma and ADOS-social scores
(r=−0.55, p= 0.0019) and a significantly positive correlation
between the small-world index of Lambda and VIQ scores
(r= 0.54, p= 0.0023) in ASD patients after correction (Fig. 7).
Other correlation results before correction are shown in Fig. S8.

DISCUSSION
Combining NMF brain decomposition, edge time series analysis,
network topological properties, and edge community analyses, we
revealed that individual functional network topological properties,
individual large-scale functional network connectivities, commu-
nity connectivities, and amplitude co-fluctuation of edge time
series could effectively discriminate TD, ASD, ADHD-Combined,
and ADHD-Inattentive. Our findings provide new evidence for the
shared and different neurophysiological basis for neurodevelop-
mental disorders of ASD and ADHD and demonstrate that
individual functional mapping is a promising approach to
identifying personalized neuromarkers for ASD and ADHD.

Fig. 5 Differences in amplitude co-fluctuation frames. All the ASD, ADHD-Combined, and ADHD-Inattentive showed higher amplitude co-
fluctuation of the top 5% frames than TD. Both ADHD-Combined and ADHD-Inattentive showed higher amplitude co-fluctuation of the
bottom 5% frames compared to both ASD and TD. ASD showed lower amplitude co-fluctuation of the bottom 5% frames compared to TD.
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The changes in network topological properties in ASD
and ADHD
Consistent with previous findings, we also found that all the ASD,
ADHD, and TD groups exhibited economically small-world proper-
ties [22, 23]. However, the current findings of differences in small-
world properties among ADHD, ASD, and TD are heterogeneous.
Sidlauskaite et al. [24] reported no significant difference in small-
world properties whereas Wang and colleagues found that small-
world properties of γ and λ in ADHD were significantly lower than
TD [25]. For ASD, Li et al. [26] revealed that ASD had smaller
characteristic path length, global efficiency, and clustering
coefficient compared with TD. Qin et al. [27] also identified lower
shortest path length while higher global efficiency in ASD
compared to TD. Nevertheless, a recent study demonstrated that
there were no significant differences in global network measures
between ASD and TD [22]. Among ASD, ADHD, and TD groups,
Qian and colleagues also revealed no significant differences in
global network properties [28]. In this study, we found higher
small-worldness in ADHD-Combined and ADHD-Inattentive than
TD with no significant difference between ASD and TD at the
node-wise complex network analysis. Using edge-wise network
topological analysis, we found that both ASD and ADHD showed
higher small-worldness as well as network clustering coefficient
and shortest path length than TD. The increased small-world
properties suggest decreased brain functional segregation and
integration ability in subjects with ASD and ADHD. Moreover, the
small-world parameter of sigma is negatively correlated with

ADOS-social scores while lambda is positively correlated with
verbal IQ scores in ASD. Given that ASD showed higher sigma than
TD, abnormal small-world parameters of sigma may be a neural
basis of impaired social function in ASD. Specifically, ASD subjects
showed lower shortest path length compared to TD which
suggests the disrupted segregation and integration organization
in brain networks [29]. This disrupted organization may lead to
ASD subjects from small-world network to random network
[30, 31]. For the positive correlation between lambda and verbal
IQ, higher verbal IQ represents milder clinical symptoms of ASD
impairment [32–34]. Given lambda is positively related to the
shortest path length, the positive correlation between lambda and
verbal IQ may also suggest disrupted functional segregation and
long-range integration. We also identified increased clustering
coefficient and shortest path length indicating high energy cost
and imbalanced structural architecture in ASD and ADHD. In
addition, the inconsistency between our findings and previous
studies may be related to the difference in the definition of
network nodes. The network node definition in previous studies
used brain regions derived from a template while our study used
large-scale networks and networks-derived edges as
network nodes.
We found that both ASD and ADHD have lower network global

efficiency while having higher local efficiency than TD. Our finding
is supported by previous studies. Wang et al. [35] reported
decreased global efficiency in ADHD compared to TD. Harvy et al.
[36] revealed an enhanced clustering coefficient while decreased

Fig. 6 Differences in number of transitions. ADHD-Combined showed an increased number of transitions from top 5% to top 5% high
amplitude co-fluctuation frames and normal 90% to normal 90% middle amplitude co-fluctuation frames while a decreased number of
transitions from top 5% high amplitude co-fluctuation frames to normal 90% middle amplitude co-fluctuation frames and from normal 90%
middle amplitude co-fluctuation frames to top 5% high amplitude co-fluctuation frames. In addition, ADHD-Inattentive showed an increased
number of transitions from normal 90% to normal 90% middle amplitude co-fluctuation frames.
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global efficiency in high-functioning ASD relative to TD. All these
studies collectively indicated that disrupted global efficiency may
be the main characteristic of ADHD and ASD. The long-range
connection is fundamental to network global efficiency [37].
Abnormal volume and myelination of long-range corpus callosum
and anterior limb of the internal capsule were found in ADHD
[38, 39]. The subjects with ASD also exhibited weak long-range
connections between the right prefrontal cortex and other cortical
areas [40]. Thus, impaired long-range connection and global
efficiency suggest protracted development patterns in ADHD and
ASD. Moreover, ASD and ADHD have lower global efficiency while
higher local efficiency than TD indicating reduced brain informa-
tion transition efficiency and global information integration in
individuals with ASD and ADHD, which may be the neural basis of
clinical symptoms of both disorders.

The changes in large-scale functional networks in ASD
and ADHD
In this study, we used the large-scale functional networks as nodes
for graph theory-based complex network analysis for the first time
and to reveal distinct functional networks contributing to
differentiating ASD, ADHD, and TD. In general, the networks of
DMN, VAT, LMB, FPN, and CR showed significant differences in
local efficiency or clustering coefficient in ASD and ADHD
compared to TD with no significant difference between ASD
and ADHD. The DMN network is an important brain functional
network during rest and is involved in self-reference processing,
memory, and social cognition [41–44]. Both over- and under-
connectivity of DMN in ASD while increased connectivity of DMN
in ADHD was found [45]. The FPN network is involved in the
cognitive control process during externally oriented tasks,
sustained attention, and working memory [46, 47]. In ASD,
reduced parietal activation and interactions between FPN network
with other regions were identified [48]. ADHD subjects showed
weak FPN activation during cognitive control [49]. The VAT
network is associated with the orientation of stimulus-driven
attention and coordinates behavior in a rapid, accurate, and
flexible goal-driven manner [46, 50]. ASD subjects from childhood
to adulthood show a developmental shift from hyper-connectivity
to hypo-connectivity in VAT network [51]. In addition, ASD
subjects with ADHD symptoms have weak functional connectivity
in VAT [52]. The LMB network modulates and controls emotion
and behavioral impulse regulation [53]. ASD showed increased
activity in LMB [54] and ADHD showed reduced gray matter
volume in LMB [55]. CR network takes part in motor, cognition,
and executive control [56, 57], and decreased gray matter volume
of cerebellum in ASD and ADHD has been reported [58]. All these

findings indicated that disrupted functional topology in these
networks in ASD and ADHD. In addition to the changed topology
of these networks, we also found functional connectivity
differences between MOT and FPN, DMN, VIS, between VIS and
VAT, and within DMN in ASD or ADHD compared to TD.
Specifically, we found that the functional connectivity between
DMN and MOT could differentiate ASD, ADHD, and TD, which
highlights the important role of DMN, MOT, and their connectivity
in the neuropathology of ASD and ADHD.

Edge-centric time series analysis
Recently, edge-centric time series analysis has been proposed to
characterize the relationship between connectivities. Based on the
edge time series, edge-wise functional connectivity (eFC) was
developed for functional network analysis, and eFC was demon-
strated to be consistent across datasets and reproducible within
the same individual [21]. Edge-centric method reveals overlapping
community structure in functional brain networks and the
overlapping community structure is stable within an individual
across repeated scans [59]. Moreover, Zamani Esfahlani et al., [15]
found that brain FC is driven only by a few high-amplitude co-
fluctuation frames. By unwrapping FC signal correlations into co-
fluctuation time series, edge-centric analysis allows tracking the
network dynamics at fine timescales [60]. These studies demon-
strated that edges of brain networks and their topology elevate
brain static maps into distributed and dynamic systems capable of
supporting behavior and cognition [61]. In our study, by analysis
of edge time series, we identified significant differences in the
amplitude of co-fluctuations which could effectively distinguish
ASD, ADHD, and TD. All the evidence suggests that edge-centric
co-fluctuation analysis could provide new insight into connectivity
disruptions in brain disorders.

Individual-specific functional connectivity mapping
In our study, we used a spatially regularized form of non-negative
matrix factorization to delineate individual-specific functional
networks. Currently, a majority of studies still use a group-level
approach for functional connectivity analysis. However, emerging
evidence has demonstrated inter-individual variability in brain
functional organization [12, 62]. Cui and colleagues found that
variability of brain functional topography is highly correlated to
evolutionary expansion, cortical myelination, and cerebral blood
flow [14]. Recently, we found that individual functional connectiv-
ity could effectively predict personalized childhood maltreatment
and subtype levels [11]. These studies indicated that individual-
specific functional connectivity mapping outperforms group-level
methods to better capture cognitions and behaviors.

Fig. 7 Relationships between changed neuroimaging measurements and clinical performances. A significantly negative correlation
between ADOS social scores and the small-world property of Sigma and a significantly positive correlation between VIQ scores and the small-
world property of Lambda was found in ASD.
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Several limitations should be noted in this study. First, in the
original paper using NMF to define individual networks, the 17
functional networks are cortical networks not including subcortex
and cerebellum. But in our study, we defined 17 functional
networks including cortical, subcortical, and cerebellar areas. The
reliability of individual functional network mapping for subcortex
and cerebellum needs to be further validated in future research.
Second, graph theory was applied to analyze network topological
characteristics at both node-wise and edge-wise. Given that the
node-wise network only includes 17 nodes while the edge-wise
network has not been investigated, thus, future studies could use
similar node-wise and edge-wise topology analyses to investigate
other brain disorders to verify the effectiveness of the method.
Finally, the sample size of each group is not large, a larger sample
for ASD, ADHD-Combined, and ADHD-Inattentive is demanded to
obtain stable findings.

CONCLUSIONS
This study reveals disorder-specific and -shared regional and
edge-wise functional connectivity and network topology differ-
ences for ASD and ADHD using an individual-level functional
network mapping approach. Our findings shed new light on brain
functional and topological abnormalities in ASD and ADHD and
provide neuromarkers for diagnoses of ASD and ADHD.

DATA AVAILABILITY
This study used the public dataset which can be accessed from the following linkage:
https://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html.
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