
ARTICLE OPEN

Autophagy-related gene model as a novel risk factor for
schizophrenia
Yunfei Tan1✉, Junpeng Zhu1 and Kenji Hashimoto 2✉

© The Author(s) 2024

Autophagy, a cellular process where cells degrade and recycle their own components, has garnered attention for its potential role
in psychiatric disorders, including schizophrenia (SCZ). This study aimed to construct and validate a new autophagy-related gene
(ARG) risk model for SCZ. First, we analyzed differential expressions in the GSE38484 training set, identifying 4,754 differentially
expressed genes (DEGs) between SCZ and control groups. Using the Human Autophagy Database (HADb) database, we cataloged
232 ARGs and pinpointed 80 autophagy-related DEGs (AR-DEGs) after intersecting them with DEGs. Subsequent analyses, including
metascape gene annotation, pathway and process enrichment, and protein-protein interaction enrichment, were performed on the
80 AR-DEGs to delve deeper into their biological roles and associated molecular pathways. From this, we identified 34 candidate
risk AR-DEGs (RAR-DEGs) and honed this list to final RAR-DEGs via a constructed and optimized logistic regression model. These
genes include VAMP7, PTEN, WIPI2, PARP1, DNAJB9, SH3GLB1, ATF4, EIF4G1, EGFR, CDKN1A, CFLAR, FAS, BCL2L1 and BNIP3. Using
these findings, we crafted a nomogram to predict SCZ risk for individual samples. In summary, our study offers deeper insights into
SCZ’s molecular pathogenesis and paves the way for innovative approaches in risk prediction, gene-targeted diagnosis, and
community-based SCZ treatments.
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INTRODUCTION
Schizophrenia (SCZ) is a chronic mental disorder characterized by
abnormalities in sensory, perceptual, emotional, and behavioral
functions. Patients often struggle to differentiate between reality
and imagination, exhibit delayed reactions, and may show either
withdrawn or exaggerated behaviors. In severe cases, they face
challenges with normal social interactions [1, 2]. The onset of the
disease typically occurs in youth or early adulthood. While there’s
increasing evidence pointing to hereditary factors, abnormal brain
structures, complications during pregnancy, and environmental
influences, the precise pathogenesis and etiology remain elusive.
Although a definitive cure for schizophrenia has not yet been
discovered, appropriate treatments can effectively manage its
symptoms [3–6].
Autophagy is a cellular process in which cytoplasmic proteins or

organelles are encapsulated in vesicles. These vesicles then fuse with
lysosomes to form autolysosomes, breaking down their contents to
support the cell’s metabolic needs and to renew certain organelles
[6]. Autophagy has a pivotal role in safeguarding the body during
the progression of many diseases [7]. Yet, in the context of tumor
formation and development, autophagy exhibits a dual effect [8]. It
can trigger programmed cell death, reducing the chance of DNA
mutations, thus playing an anti-tumor role [9]. However, in less
favorable cellular environment, autophagy may offer a lifeline for
tumor cells, supporting their growth and replication [10]. Conse-
quently, whether autophagy ultimately hinders or facilitates tumor

progression could be intimately linked to the surrounding cellular
environment and the level of autophagy at its onset [11].
Autophagy-related genes (ARGs) are implicated in the patho-

physiology of SCZ [12–16]. A study of postmortem brain samples
has revealed reduced levels of beclin1 in the hippocampus of SCZ
patients [17]. Moreover, alterations in the gene expressions of
mTOR (or FOXO) pathway-related ARGs were observed in blood
samples from SCZ patients compared to healthy controls, with
further significant changes following a 4-week treatment with
olanzapine [18, 19]. Antipsychotics such as phenothiazines have
been noted to regulate autophagy, contributing to their
therapeutic effects in SCZ patients [20]. A recent meta-analysis
highlighted that phenothiazine-like antipsychotics, including
chlorpromazine, fluphenazine, methotrimeprazine, perphenazine,
prochlorperazine, promethazine, thioridazine, and trifluoperazine,
can modulate autophagy [21]. Overall, the role of autophagy in
SCZ is multifaceted, encompassing neuronal homeostasis, disease
pathophysiology, and symptom modulation, with its regulation
being mediated through specific genes and pathways, under-
scoring the complexity and significance of this process in SCZ.
Considering the evidence, we hypothesized that ARGs could be

diagnostically relevant for SCZ and may influence its onset and
progression. To explore this hypothesis, our study focused on the
molecular biological roles of ARGs in SCZ. We aimed to develop
and validate an ARG-based risk model for the disorder. For this
purpose, we utilized data from the Gene Expression Omnibus
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(GEO) database, which is curated by the National Center for
Biotechnology Information (NCBI).

MATERIALS AND METHODS
Sample data collection and sorting
The GEO database by NCBI houses a diverse array of gene expression data,
including second-generation sequencing, chip sequencing, and single-cell
sequencing data [22]. For our study, we chose and downloaded two
datasets from the GEO database based on specific criteria: they had to
include human samples with SCZ and control groups, and the complete
raw data must be available. We excluded any datasets with incomplete
metadata, post-mortem samples, or those affected by confounding
treatment effects. We analyzed two datasets: GSE38484, which includes
106 SCZ and 96 control samples, and GSE38481, containing 15 SCZ and 22
control samples. Probe IDs from these datasets were mapped to gene
symbols using the platform’s annotation file for accurate gene identifica-
tion. We transformed each gene’s expression value using log2 to stabilize
variance and enhance the interpretability of both low and high expression
values, a standard practice in bioinformatics. This transformation produced
the final gene expression matrix [23]. For all statistical analyses, we used R
software (Version 4.0.2, R Foundation for Statistical Computing, Vienna,
Austria), employing the “limma” package specifically for differential
expression analysis.

Screening of autophagy-related differentially expressed
genes (AR-DEGs) for SCZ
Firstly, we designated GSE38484 as the training set and employed the
“wilcox” function, using the R package “limma”, to calculate differences in
gene expression between the SCZ and control groups, thereby identifying
differential expression genes (DEGs) [24]. Subsequently, we retrieved the
list of autophagy-related genes (ARGs) from the Human Autophagy
Database (HADb) (http://www.autophagy.lu). We derived AR-DEGs by
intersecting DEGs with the ARGs [25]. Furthermore, we utilized the R

software package for visual representation of the results. An adjusted
P-value of less than 0.05 was deemed statistically significant.

Metascape gene list analysis for AR-DEGs
Metscape is an advanced gene function annotation analysis tool that
empowers researchers to deploy comprehensive bioinformatics analyses
on target genes or proteins, providing deeper insights into their molecular
biological functions [26]. We input the AR-DEGs list into the Metscape
database, choosing Homo sapiens as the species for gene annotation,
pathway and process enrichment analysis, as well as protein-protein
interaction (PPI) enrichment analysis [27]. We selected terms according to
predefined criteria: P-values less than 0.01, a minimum occurrence of 3,
and an enrichment factor exceeding 1.5. The enrichment factor is defined
as the ratio of observed to expected counts. These selected terms were
then categorized into clusters based on their similarity, as detailed in
Table 1. For a more detailed analysis of the interconnections among these
terms, we focused on a subset of enriched terms and represented them in
a network diagram. In this diagram, terms were connected if their
similarity exceeded 0.3. We utilized Cytoscape for visualization, where
each node represents an enrichment term and is color-coded according to
its cluster ID and P-value.

Construction of SCZ risk model based on risk AR-DEGs
(RAR-DEGs)
Initially, we accessed the list of AR-DEGs and extracted their expression
values based on the gene expression matrix of the training set, further
distinguishing sample grouping information as either the SCZ or control
group. Utilizing the R package “glmnet”, we executed the Least
Absolute Shrinkage and Selection Operator (LASSO) regression analysis,
setting the response type to binomial and identifying alpha identified as
1. By minimizing the binominal deviation criterion, the optimal λ
(representing the number of candidate RAR-DEGs of SCZ) was
determined through a 10-fold cross-validation that aimed to achieve
the smallest cross-validation errors [28, 29]. Subsequently, a logistic

Table 1. Top 20 clusters with their representative enriched terms (one per cluster).

GO Category Description Count % Log10(P) Log10(q)

hsa04140 KEGG Pathway Autophagy - animal 27 33.75 −43 −38.65

GO:0010506 GO Biological Processes Regulation of autophagy 26 32.5 −30.08 −26.34

GO:0062197 GO Biological Processes Cellular response to chemical stress 22 27.5 −25.87 −22.3

hsa05417 KEGG Pathway Lipid and atherosclerosis 18 22.5 −21.6 −18.21

hsa05131 KEGG Pathway Shigellosis 18 22.5 −20.5 −17.15

GO:0071453 GO Biological Processes Cellular response to oxygen levels 15 18.75 −18.79 −15.64

GO:0071496 GO Biological Processes Cellular response to external stimulus 18 22.5 −18.4 −15.28

GO:0010942 GO Biological Processes Positive regulation of cell death 21 26.25 −17.24 −14.31

WP1772 WikiPathways Apoptosis modulation and signaling 12 15 −16.82 −13.95

hsa04137 KEGG Pathway Mitophagy - animal 11 13.75 −16.24 −13.44

WP3611 WikiPathways Photodynamic therapy-induced AP-1
survival signaling

10 12.5 −15.96 −13.21

GO:2001233 GO Biological Processes Regulation of apoptotic signaling pathway 17 21.25 −15.7 −12.99

hsa05215 KEGG Pathway Prostate cancer 11 13.75 −14.75 −12.09

hsa04211 KEGG Pathway Longevity regulating pathway 10 12.5 −13.4 −10.83

GO:2000377 GO Biological Processes Regulation of reactive oxygen species
metabolic process

11 13.75 −12.65 −10.14

WP4925 WikiPathways Unfolded protein response 7 8.75 −12.64 −10.13

WP5087 WikiPathways Malignant pleural mesothelioma 15 18.75 −12.21 −9.73

R-HSA-449147 Reactome Gene Sets Signaling by Interleukins 15 18.75 −11.76 −9.32

hsa04068 KEGG Pathway FoxO signaling pathway 10 12.5 −11.68 −9.24

GO:0071417 GO Biological Processes Cellular response to organonitrogen
compound

16 20 −11.45 −9.03

“Count” is the number of genes in the user-provided lists with membership in the given ontology term. “%“ is the percentage of all of the user-provided genes
that are found in the given ontology term (only input genes with at least one ontology term annotation are included in the calculation). “Log10(P)” is the
p-value in log base 10. “Log10(q)” is the multi-test adjusted p-value in log base 10.
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regression model was constructed centered around the candidate RAR-
DEGs. This model was optimized to derive the final RAR-DEGs. From the
model’s risk calculation formula, we computed the SCZ risk score for
each sample [30].

Analysis and evaluation of nomogram based on risk model
for SCZ
A nomogram serves as a dependable tool for quantifying risks associated
with various diseases, enabling personalized predictions for a given
sample’s disease risk [31]. We loaded both the risk model and the clinical
information files, retaining only samples with the intersecting informa-
tion. Leveraging R packages like “rms”, “rmda”, and “Hmisc”, and using
RAR-DEGs expression values along with clinical information as indepen-
dent variables and sample grouping as the dependent variable, we
constructed a visual nomogram and accompanying calibration curve.
Lastly, referencing the R packages “glmnet”, “pROC”, and “ggsci”, we
plotted curves for each parameter variable via receiver operating
characteristic (ROC) curve analysis and decision curve analysis (DCA)
[32, 33]. this was done to validate the risk model’s and nomogram’s
precision in predicting SCZ.

Validation analysis of test set samples
To further validate the reliability of our SCZ risk model and the nomogram,
both constructed using the GSE38484, we employed the GSE38481 dataset
as a test set to visualize the expression values of the identified RAR-DEGs.
We then performed calibration curve, ROC curve, and DCA analyses on the
nomogram built from the risk model.

RESULTS
Identification of AR-DEGs between SCZ and control groups
We combined the datasets GSE38484 and GSE38481 to produce
two gene expression matrices, further detailed in supplementary
documents S1 and S2. From the differential expression analysis of
the GSE38484 training set, we identified 4,754 DEGs between the
SCZ and the control groups: 2288 were up-regulated and 2466
were down-regulated (Fig. 1a). The top 50 most significantly up-
regulated and down-regulated DEGs were visualized (Fig. 1b).
Additionally, we sourced 232 ARGs from the HADb database, with
80 AR-DEGs identified upon intersecting with DEGs (Fig. 1c).
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Fig. 1 The DEGs expression between SCZ and control groups. The volcano plot (a) and heatmap (b) display the DEGs expression between
the SCZ and control groups. The Venn diagram (c) illustrates the overlap of genes (AR-DEGs), while the heatmap (d) depicts the expression of
AR-DEGs between the SCZ and control groups. Red dots or squares represent upregulated genes, while green dots or blue squares signify
downregulated genes.
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Fig. 2 The input gene lists for SCZ. a A Bar graph illustrates enriched terms across the input gene lists, with colors indicating P-values. For the
network of enriched terms: (b) it is colored by cluster ID, with nodes of the same cluster ID typically positioned near one another; (c) it is
colored by p-value, indicating that terms with more genes usually have a more significant p-value. The protein-protein interaction (PPI)
network is shown in (d), and MCODE components derived from the AR-DEGs list are presented in (e).
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Figure 1d depicts the differential expression of these AR-DEGs
between the SCZ and control groups.

Gene annotation and enrichment analysis on AR-DEGs
We conducted comprehensive metascape gene annotation,
pathway and process enrichment analysis, and PPI enrichment
analysis on the 80 AR-DEGs. Supplementary document S3 provides
detailed annotations and enrichment information for these AR-
DEGs. Figure 2a captures the functional or pathway enrichments
of the AR-DEGs. The cluster ID and P-value were symbolized in
Fig. 2b, c, respectively. Leveraging the list of 80 AR-DEGs, we
formulated the PPI network (Fig. 2d) and MCODE component
(Fig. 2e) using the STRING and BioGrid databases. Each MCODE
component underwent pathway and process enrichment analysis,
retaining the three highest P-values items as functional descrip-
tions of the respective components (Table 2a, b).

Construction of SCZ risk model based on 14 RAR-DEGs
Utilizing lasso regression analysis combined with cross-validation,
we pinpointed 34 candidate RAR-DEGs (Fig. 3a, b). Subsequently,
we structured a logistic regression model, which, after optimiza-
tion, revealed 14 RAR-DEGs, specifically: VAMP7 (Vesicle-Associated
Membrane Protein 7), PTEN (Phosphatase And Tensin Homolog),
WIPI2 (WD Repeat Domain, Phosphoinositide Interacting 2), PARP1
(Poly(ADP-Ribose)Polymerase 1), DNAJB9 (DnaJ Heat Shock Protein
Family Member B9), SH3GLB1 (SH3 Domain Containing GRB2 Like,
Endophilin B1), ATF4 (Activating Transcription Factor 4), EIF4G1
(Eukaryotic Translation Initiation Factor 4 Gamma 1), EGFR
(Epidermal Growth Factor Receptor), CDKN1A (Cyclin Dependent
Kinase Inhibitor 1A), CFLAR (CASP8 And FADD Like Apoptosis
Regulator), FAS (Fas Cell Surface Death Receptor), BCL2L1 (BCL2
Like 1) and BNIP3 (BCL2 Interacting Protein 3) (Table 3). Figure 3c
illustrates the differential expressions of these RAR-DEGs across
various clinical phenotypes, including age, gender, and group.
Additionally, the supplementary document S4 (Risk matrix.xls)
displayed the expression levels of each RAR-DEGs in individual
sample along with the associated SCZ risk scores.

Construction of nomogram and internal validation of SCZ
risk model
Using the SCZ risk model as a foundation, we developed a
nomogram to individually estimate the risk of SCZ for a specific
sample. As depicted in Fig. 4a, for any given sample, both clinical

phenotype (age and gender) and the expression values of RAR-
DEGs corresponded to specific point scale values. These points
were then summed to determine a total point score, which
corresponds to the SCZ disease risk score value, representing the
individual’s risk for SCZ. The nomogram’s calibration curve, as
seen in Fig. 4b, exhibits a close alignment between predicted and
observed outcomes, suggesting that the nomogram’s SCZ
probability predictions are largely consistent with the actual
occurrences. Furthermore, the ROC curve indicated that both the
risk model and the nomogram, based on 14 RAR-DEGs, have AUC
values of 0.911 and 0.923, respectively (Fig. 4c). The DCA curve,
shown in Fig. 4d, highlights that the curves of the risk model and
the nomogram deviate significantly from the “ALL” curve. This
demonstrated that our constructed risk model and nomogram
offer high predictive accuracy for SCZ risk in samples, out-
performing predictions based solely on other clinical phenotypes.

External validation of SCZ risk model
We used the dataset GSE38481 as the test set to validate the
differential expression of these RAR-DEGs between the SCZ and
control groups (Fig. 5a). Moreover, using data from the test set, we
plotted calibration curves (Fig. 5b), ROC curves (Fig. 5c), and DCA
curves (Fig. 5d) for the established risk model. These visualizations
further underscored the high accuracy and reliability of our risk
model and the accompanying nomogram in predicting SCZ risk.

DISCUSSION
The etiology of SCZ remains unclear, but individual psychological
vulnerabilities combined with external social stressors may
contribute to the disease’s onset and progression. These factors
might trigger the disease through their interplay with internal
biological factors, with the pathogenesis of different patients
potentially leaning more heavily on one factor over other’s [34,
35]. A substantial body of evidence suggests that genetic
predispositions are significant risk factors for the development
of SCZ [36]. It is widely accepted that SCZ is a multifaceted
psychiatric disorder influenced by multiple genes, suggesting a
polygenic inheritance pattern [37]. Specific genes linked to SCZ
have been identified on chromosomes 6, 8, and 13. Studies using
twin pairs have shown that identical twins exhibit a notably higher
prevalence of SCZ compared to fraternal twins. We also find that
ARG is associated with symptoms of SCZ. Dysfunction in neuronal

Table 2. (a) The functional description of corresponding components of the three best-scoring terms by P-value. (b) The functional description of
each MCODE component.

GO Description Log10(P)

(a)

hsa04140 Autophagy - animal −43.2

GO:0006914 Autophagy −35

GO:0061919 Process utilizing autophagic mechanism −35

MCODE GO Description Log10(P)

(b)

MCODE_1 hsa04210 Apoptosis −15.8

MCODE_1 hsa05417 Lipid and atherosclerosis −11.9

MCODE_1 GO:0043065 Positive regulation of apoptotic process −10.9

MCODE_2 R-HSA-9612973 Autophagy −24.4

MCODE_2 R-HSA-1632852 Macroautophagy −21.8

MCODE_2 hsa04140 Autophagy - animal −21.6

MCODE_3 GO:0034599 Cellular response to oxidative stress −9.8

MCODE_3 GO:0034983 Peptidyl-lysine deacetylation −9.6

MCODE_3 GO:0062197 Cellular response to chemical stress −9.4
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autophagy, known to be involved in ARG regulation, are
increasingly associated with the positive symptoms of SCZ
[12, 17]. Furthermore, a comprehensive proteomic analysis
revealed a significant enrichment of ARG-related signaling path-
ways in SCZ cases [17, 38]. This body of evidence suggests a
notable association between ARG and the cognitive symptoms
observed in SCZ. Furthermore, studies on adopted children
revealed that when one biological parent has SCZ, children who
were adopted into unaffected families still exhibited a substan-
tially higher risk of developing SCZ compared to the general
population [39]. Nonetheless, the precise genetic blueprint of SCZ
remains to be fully deciphered.
In this study, we discovered that the primary functions of the

investigated elements revolve around the regulation of

autophagy, cellular responses to chemical stress, oxygen levels,
external stimuli and organonitrogen compounds. These elements
also play a significant role in promoting cell death, participating in
the apoptotic signaling pathway, and managing processes specific
to reactivate oxygen species. Additionally, we observed that their
pathways and associated processes are notably enriched in
several key areas. These include autophagy, shigellosis, prostate
cancer, malignant pleural mesothelioma, lipid-related athero-
sclerosis, mitophagy, the unfolded protein response, apoptosis
modulation and signaling, photodynamic therapy-induced AP-
1 survival signaling, the longevity-regulating pathway, interleukin
signaling, and the FoxO signaling pathway.
In our study, we identified 34 RAR-DEGs. Using a logistic

regression model, we narrowed this down to a critical set of 14

Gender
Age
Group

FAS

PTEN

SH3GLB1

ATF4

BNIP3
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CFLAR
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EGFR
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Fig. 3 Identification of 14 RAR-DEGs in SCZ. A deviation curve (a) and a coefficient curve (b) highlight RAR-DEGs pinpointed through LASSO
regression. c A heatmap showcases the expression of 14 RAR-DEGs across clinical phenotypes. Blue squares denote down-regulated genes,
while red squares indicate up-regulated genes.
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RAR-DEGs (Table 3). Previous studies have highlighted the
regulatory significance of certain RAR-DEGs in SCZ. For instance,
Hong et al. [40] demonstrated that mice lacking Parp1 exhibited
SCZ-like behavioral symptoms, such as anxiety, depression, social
interaction deficits, and cognitive impairment, suggesting the role
of PARP1 in SCZ-associated behavioral abnormalities in mice.
Another gene of interest, ATF4, is located on chromosome 22q13,
a region associated with SCZ. Qu et al. [41] identified 18 single
nucleotide polymorphisms (SNPs) in the ATF4 locus; notably, the
allele distribution of two SNPs was significantly associated with
male SCZ patients. This indicates a possible link between the ATF4
gene and SCZ susceptibility, potentially with sex-specific differ-
ences. Further, a study by Wang et al. [42] revealed that the
antipsychotic drug paliperidone could reverse the reduction in
PP2A and PTEN levels observed in neurons of prefrontal cortex
induced by MK-801. This suggests that paliperidone may mitigate
MK-801-induced neuronal damage through PP801A/PTEN path-
way. In addition, several studies based on animal models align

Table 3. Fourteen RAR-DEGs for SCZ.

Genes Full name of genes

VAMP7 Vesicle-Associated Membrane Protein 7

PTEN Phosphatase And Tensin Homolog

WIPI2 WD Repeat Domain, Phosphoinositide Interacting 2

PARP1 Poly(ADP-Ribose)Polymerase 1

DNAJB9 DnaJ Heat Shock Protein Family Member B9

SH3GLB1 SH3 Domain Containing GRB2 Like, Endophilin B1

ATF4 Activating Transcription Factor 4

EIF4G1 Eukaryotic Translation Initiation Factor 4 Gamma 1

EGFR Epidermal Growth Factor Receptor

CFLAR CASP8 And FADD Like Apoptosis Regulator

FAS Fas Cell Surface Death Receptor

BCL2L1 BCL2 Like 1

BNIP3 BCL2 Interacting Protein 3

Fig. 4 A nomogram, calibration curves, ROC and DCA curves. a A nomogram was developed using 14 RAR-DEGs and clinical characteristics
(age and gender). To calculate the total score for each sample, draw a vertical line from the predictor’s scale to the score scale and then sum
the resulting scores. b Calibration curves of the nomogram. The X-axis displays the nomogram’s predicted probability, whereas the Y-axis
shows the actual SCZ probability. A perfect prediction would align with a 45° diagonal line. The dotted line represents the entire cohort
(n= 202), while the solid line has been bias-corrected through bootstrapping (B= 1000 repetitions). c ROC curves for the risk model,
nomogram, clinical features, and RAR-DEGs. d DCA curves for the risk model, nomogram and clinical features.
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with our conclusions. Recent studies have illuminated the complex
roles of specific genes in regulating brain functions and their
implications in SCZ. PTEN mutations disrupt the brain’s excitatory/
inhibitory balance, influencing traits related to intelligence,
cognitive function, and SCZ. The PP2A/PTEN pathway has been
identified as crucial in mitigating neuronal damage, offering
therapeutic potential. CDKN1A’s upregulation following antipsy-
chotic exposure during pregnancy links to altered apoptotic gene
expressions, potentially affecting SCZ onset. One report showed
SCZ-like phenotypes in mice lacking PARP1 gene. Lastly, ATF4 is
pivotal in modulating neuronal excitability and receptor function-
ality, particularly in conditions like SCZ, by regulating GABA-B
receptor trafficking. These findings contribute significantly to
understanding SCZ’s genetic and molecular basis.
ARGs are essential in the biological mechanisms associated with

SCZ [12–16]. First, autophagy is a cellular process that maintains
homeostasis by eliminating damaged or unnecessary cellular
components [43]. Alterations in this system might play a role in
the pathophysiology of SCZ. Second, dysfunctions in ARGs could
disrupt autophagy’s protein quality control, potentially leading to

neuronal abnormalities seen in SCZ. Third, modifications in ARGs
can affect synaptic plasticity and neurodevelopment, which are
often linked to the onset and progression of SCZ. Additionally,
aberrations in autophagic processes due to ARGs might contribute
to the oxidative stress observed in the brains of SCZ patients
[44–46]. Fourth, since autophagy influences neurotransmitter
systems [47], alterations in ARGs could relate to the symptoms
of SCZ patients. Fifth, genetic variations in ARGs, such polymorph-
isms or mutations, may disrupt normal autophagy increase
susceptibility to SCZ [12]. Lastly, irregularities in autophagy may
intensify neuroinflammatory processes [48, 49], aggravating the
disease’s progression. Altogether, ARGs in SCZ are involved in
several key processes mentioned above. Understanding these
roles is crucial in deciphering SCZ’s complex pathology and could
open doors to new therapeutic approaches.
This study has the following limitations that warrant further

investigation in future research. Notably, the absence of a
subgroup analysis for different clinical subtypes of SCZ and the
failure to consider non-genetic factors that might affect our
findings are significant drawbacks. The current study does not

Gender
Age
Group

PARP1

BNIP3

DNAJB9

FAS

ATF4

PTEN

SH3GLB1 

WIPI2

CFLAR

EIF4G1

BCL2L1

EGFR

CDKN1A

Gender
Female
Male

Age

60

20

Group
Control
SCZ

2

1

0

1

2

a b 

c d 

Fig. 5 External validation of the SCZ risk model using the test set GSE38481. a A heatmap displaying RAR-DEGs expression across clinical
phenotypes. Blue squares indicate down-regulated genes, while red squares denote up-regulated genes. b Calibration curves of the
nomogram. The X-axis displays the nomogram’s predicted probability, and the Y-axis shows the actual SCZ probability. A perfect prediction
would align with a 45° diagonal line. The dotted line corresponds to the entire queue (n= 37), and the solid line has been adjusted for bias
using bootstrapping (B= 1000 repetitions). c ROC curves comparing the risk model, nomogram, clinical features, and RAR-DEGs. d DCA curves
for the risk model, nomogram and clinical features.
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clarify the relationship between the expression of ARGs and
various demographic and clinical characteristics of SCZ patients,
such as sex, age of onset, illness of duration, or specific symptoms
like positive and negative symptoms or cognitive impairments.
Additionally, to corroborate our findings, acquiring a larger
dataset and more comprehensive clinical information is essential,
followed by vigorous empirical validation. Lastly, future research
using rodent models featuring either knock-out or overexpression
of ARGs will be instrumental in deepening our understanding of
the role of ARGs in SCZ.
In conclusion, this study significantly enhances our under-

standing of the molecular mechanisms of ARGs in SCZ. Future
research in SCZ would focus on identifying and understanding
specific ARGs, exploring genetic factors influencing ARG pathways,
developing targeted pharmacological treatments, and identifying
biomarkers for early detection and progression monitoring of the
disease.

DATA AVAILABILITY
The dataset used and/or analyzed during this study can be made available upon
request by contacting the corresponding author, Dr. Yunfei Tan.

REFERENCES
1. Endres D, Perlov E, Feige B, Altenmüller DM, Venhoff N, Tebartz van Elst L.

Schizophrenia associated with epileptiform discharges without seizures suc-
cessfully treated with levetiracetam. Front Psychiatry. 2017;8:12.

2. Owusu-Ansah A, Berko Panyin A, Obirikorang C, Agyare C, Acheampong E, Kwofie
S, et al. Metabolic syndrome among schizophrenic patients: A comparative cross-
sectional study in the middle belt of Ghana. Schizophr Res Treat.
2018;2018:6542983

3. Chattopadhyay A, Frey S, Green G. Bifeprunox versus placebo for schizophrenia.
Cochrane Database Syst Rev. 2016;10:CD012029.

4. Dabiri M, Dehghani Firouzabadi F, Yang K, Barker PB, Lee RR, Yousem DM. Neu-
roimaging in schizophrenia: a review article. Front Neurosci. 2022;16:1042814.

5. Smesny S, Schmelzer CEH, Hinder A, Köhler A, Schneider C, Rudzok M, et al. Skin
ceramide alterations in first-episode schizophrenia indicate abnormal sphingoli-
pid metabolism. Schizophr Bull. 2013;39:933–41.

6. Yin C, Zhang H, Liu X, Zhang H, Zhang Y, Bai X, et al. Downregulated MCOLN1
attenuates the progression of non-small-cell lung cancer by inhibiting lysosome-
autophagy. Cancer Manag Res. 2019;11:8607–17.

7. Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol
Cancer. 2020;19:12.

8. Huang X, Chi H, Gou S, Guo X, Li L, Peng G, et al. An aggrephagy-related lncRNA
signature for the prognosis of pancreatic adenocarcinoma. Genes (Basel).
2023;14:124.

9. Liu YT, Ho HY, Lin CC, Chuang YC, Lo YS, Hsieh MJ, et al. Platyphyllenone induces
autophagy and apoptosis by modulating the AKT and JNK mitogen-activated
protein kinase pathways in oral cancer cells. Int J Mol Sci. 2021;22:4211.

10. Condello M, Pellegrini E, Caraglia M, Meschini S. Targeting autophagy to over-
come human diseases. Int J Mol Sci. 2019;20:725.

11. Wu YH, Wu WS, Lin LC, Liu CS, Ho SY, Wang B, et al. Bortezomib enhances
radiosensitivity in oral cancer through inducing autophagy-mediated TRAF6
oncoprotein degradation. J Exp Clin Cancer Res. 2018;37:91.

12. Schneider JL, Miller AM, Woesner ME. Autophagy and schizophrenia: A closer
look at how dysregulation of neuronal cell homeostasis influences the patho-
genesis of schizophrenia. Einstein J Biol Med. 2016;31:34–39.

13. Sragovich S, Merenlender-Wagner A, Gozes I ADNP plays a key role in autophagy:
From autism to schizophrenia and Alzheimer’s disease. Bioessays 2017;39.
https://doi.org/10.1002/bies.201700054.

14. La Barbera L, Vedele F, Nobili A, D’Amelio M, Krashia P. Neurodevelopmental
disorders: Functional role of ambra1 in autism and schizophrenia. Mol Neurobiol.
2019;56:6716–24.

15. Yang Y, Xu L. Autophagy and schizophrenia. Adv Exp Med Biol.
2020;1207:195–209.

16. Panda SP, Singh V. The dysregulated MAD in mad: A neuro-theranostic approach
through the induction of autophagic biomarkers LC3B-II and ATG. Mol Neurobiol.
2023;60:5214–36.

17. Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela M, Gibbons A, Scarr
E, et al. Autophagy has a key role in the pathophysiology of schizophrenia. Mol
Psychiatry. 2015;20:126–32.

18. Cui F, Gu S, Gu Y, Yin J, Fang C, Liu L. Alteration in the mRNA expression profile of
the autophagy-related mTOR pathway in schizophrenia patients treated with
olanzapine. BMC Psychiatry. 2021;21:388.

19. Gu S, Cui F, Yin J, Fang C, Liu L. Altered mRNA expression levels of autophagy-
and apoptosis-related genes in the FOXO pathway in schizophrenia patients
treated with olanzapine. Neurosci Lett. 2021;746:135669.

20. Vucicevic L, Misirkic-Marjanovic M, Harhaji-Trajkovic L, Maric N, Trajkovic V.
Mechanisms and therapeutic significance of autophagy modulation by anti-
psychotic drugs. Cell Stress. 2018;2:282–91.

21. Otręba M, Stojko J, Rzepecka-Stojko A. The role of phenothiazine derivatives in
autophagy regulation: a systematic review. J Appl Toxicol. 2023;43:474–89.

22. Liang XZ, Liu XC, Li S, Wen MT, Chen YR, Luo D, et al. IRF8 and its related
molecules as potential diagnostic biomarkers or therapeutic candidates and
immune cell infiltration characteristics in steroid-induced osteonecrosis of the
femoral head. J Orthop Surg Res. 2023;18:27.

23. Hu S, Li S, Ning W, Huang X, Liu X, Deng Y, et al. Identifying crosstalk genetic
biomarkers linking a neurodegenerative disease, Parkinson’s disease, and peri-
odontitis using integrated bioinformatics analyses. Front Aging Neurosci.
2022;14:1032401.

24. Cappuccio A, Jensen ST, Hartmann BM, Sealfon SC, Soumelis V, Zaslavsky E.
Deciphering the combinatorial landscape of immunity. Elife. 2020;9:e62148.

25. Min Y, Feng Y, Luo H, Hu D, Wei X, He D, et al. Identifying and validating of an
autophagy-related gene signature for the prediction of early relapse in breast
cancer. Front Endocrinol (Lausanne). 2022;13:824362.

26. Geng R, Huang X, Li L, Guo X, Wang Q, Zheng Y, et al. Gene expression analysis in
endometriosis: Immunopathology insights, transcription factors and therapeutic
targets. Front Immunol. 2022;13:1037504.

27. Li X, Ma C, Luo H, Zhang J, Wang J, Guo H. Identification of the differential
expression of genes and upstream microRNAs in small cell lung cancer compared
with normal lung based on bioinformatics analysis. Med (Baltim). 2020;99:e19086.

28. Han Y, Eipel M, Franzen J, Sakk V, Dethmers-Ausema B, Yndriago L, et al. Epi-
genetic age-predictor for mice based on three CpG sites. Elife. 2018;7:e37462.

29. Li K, Qin L, Jiang S, Li A, Zhang C, Liu G, et al. The signature of HBV-related liver
disease in peripheral blood mononuclear cell DNA methylation. Clin Epigenetics.
2020;12:81.

30. Matheny ME, Ohno-Machado L, Resnic FS. Monitoring device safety in inter-
ventional cardiology. J Am Med Inf Assoc. 2006;13:180–7.

31. Wang Y, Qiu L, Wang Y, He Z, Lan X, Cui L, et al. Genetic variation within the pri-
let-7f-2 in the X chromosome predicting stroke risk in a Chinese Han population
from Liaoning, China: From a case-control study to a new predictive nomogram.
Front Med (Lausanne). 2022;9:936249.

32. Wang KW, Wang MD, Li ZX, Hu BS, Huang JF, Wu JJ, et al. Systematic analysis of
the cuprotosis in tumor microenvironment and prognosis of gastric cancer.
Heliyon. 2023;9:e13831.

33. Yang J, Su H, Chen T, Chen X, Chen H, Li G, et al. Development and validation of
nomogram of peritoneal metastasis in gastric cancer based on simplified clin-
icopathological features and serum tumor markers. BMC Cancer. 2023;23:64.

34. Hwang M, Farasatpour M, Williams CD, Margenthaler JA, Virgo KS, Johnson FE.
Adjuvant chemotherapy for breast cancer in patients with schizophrenia. Oncol
Lett. 2012;3:845–50.

35. Ľupták M, Michaličková D, Fišar Z, Kitzlerová E, Hroudová J. Novel approaches in
schizophrenia-from risk factors and hypotheses to novel drug targets. World J
Psychiatry. 2021;11:277–96.

36. Anticevic A, Haut K, Murray JD, Repovs G, Yang GJ, Diehl C, et al. Association of
thalamic dysconnectivity and conversion to psychosis in youth and young adults
at elevated clinical risk. JAMA Psychiatry. 2015;72:882–91.

37. Liang W, Hou Y, Huang W, Wang Y, Jiang T, Huang X, et al. Loss of schizophrenia-
related miR-501-3p in mice impairs sociability and memory by enhancing
mGluR5-mediated glutamatergic transmission. Sci Adv. 2022;8:eabn7357.

38. Tomoda T, Yang K, Sawa A. Neuronal autophagy in synaptic functions and psy-
chiatric disorders. Biol Psychiatry. 2020;87:787–96.

39. Perrin M, Kleinhaus K, Messinger J, Malaspina D. Critical periods and the devel-
opmental origins of disease: an epigenetic perspective of schizophrenia. Ann N. Y
Acad Sci. 2010;1204:E8–13.

40. Hong S, Yi JH, Lee S, Park CH, Ryu JH, Shin KS, et al. Defective neurogenesis and
schizophrenia-like behavior in PARP-1-deficient mice. Cell Death Dis. 2019;10:943.

41. Qu M, Tang F, Wang L, Yan H, Han Y, Yan J, et al. Associations of ATF4 gene
polymorphisms with schizophrenia in male patients. Am J Med Genet B Neu-
ropsychiatr Genet. 2008;147B:732–6.

42. Wang J, Li M, Zhang J, Gao Q, Ding Z, Sun J. Paliperidone alleviates MK-801-
induced damage to prefrontal cortical neurons via the PP2A/PTEN pathway. J
Affect Disord. 2022;317:265–77.

43. Bar-Yosef T, Damri O, Agam G. Dual role of autophagy in diseases of the central
nervous system. Front Cell Neurosci. 2019;13:196.

Y. Tan et al.

9

Translational Psychiatry           (2024) 14:94 

https://doi.org/10.1002/bies.201700054


44. Matsuzawa D, Hashimoto K. Magnetic resonance spectroscopy study of the anti-
oxidant defense system in schizophrenia. Antioxid Redox Signal. 2011;15:2057–65.

45. Boz Z, Hu M, Yu Y, Huang XF. N-acetylcysteine prevents olanzapine-induced
oxidative stress in mHypoA-59 hypothalamic neurons. Sci Rep. 2020;10:19185.

46. Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, et al.
Caught in vicious circles: a perspective on dynamic feed-forward loops driving
oxidative stress in schizophrenia. Mol Psychiatry. 2022;27:1886–97.

47. Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht MT,
et al. Neuronal autophagy regulates presynaptic neurotransmission by control-
ling the axonal endoplasmic reticulum. Neuron. 2021;109:299–313.e9.

48. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflamamtion.
Nature. 2011;469:323–35.

49. Deretic V. Autophagy in inflammation, infection, and immunometabolism.
Immunity. 2021;54:437–53.

ACKNOWLEDGEMENTS
The authors thank the data provided by GEO database. This study was supported by the
grant Zhejiang Provincial Natural Science Foundation of China (to Y.T., LY20H090021).

AUTHOR CONTRIBUTIONS
Yunfei Tan conceptualized and designed the study, as well as wrote the original draft.
Junpeng Zhu was responsible for data collection and carried out the statistical and
bioinformatics analyses. Kenji Hashimoto supervised the study.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41398-024-02767-5.

Correspondence and requests for materials should be addressed to Yunfei Tan or
Kenji Hashimoto.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Y. Tan et al.

10

Translational Psychiatry           (2024) 14:94 

https://doi.org/10.1038/s41398-024-02767-5
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Autophagy-related gene model as a novel risk factor for schizophrenia
	Introduction
	Materials and methods
	Sample data collection and sorting
	Screening of autophagy-related differentially expressed genes (AR-DEGs) for�SCZ
	Metascape gene list analysis for AR-DEGs
	Construction of SCZ risk model based on risk AR-DEGs (RAR-DEGs)
	Analysis and evaluation of nomogram based on risk model for�SCZ
	Validation analysis of test set samples

	Results
	Identification of AR-DEGs between SCZ and control�groups
	Gene annotation and enrichment analysis on AR-DEGs
	Construction of SCZ risk model based on 14 RAR-DEGs
	Construction of nomogram and internal validation of SCZ risk�model
	External validation of SCZ risk�model

	Discussion
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




