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Heavy cannabis use (HCU) exerts adverse effects on the brain. Structural covariance networks (SCNs) that illustrate coordinated
regional maturation patterns are extensively employed to examine abnormalities in brain structure. Nevertheless, the unexplored
aspect remains the developmental alterations of SCNs in young adults with HCU for three years, from the baseline (BL) to the 3-year
follow-up (FU). These changes demonstrate dynamic development and hold potential as biomarkers. A total of 20 young adults
with HCU and 22 matched controls were recruited. All participants underwent magnetic resonance imaging (MRI) scans at both the
BL and FU and were evaluated using clinical measures. Both groups used cortical thickness (CT) and cortical surface area (CSA) to
construct structural covariance matrices. Subsequently, global and nodal network measures of SCNs were computed based on
these matrices. Regarding global network measures, the BL assessment revealed significant deviations in small-worldness and local
efficiency of CT and CSA in young adults with HCU compared to controls. However, no significant differences between the two
groups were observed at the FU evaluation. Young adults with HCU displayed changes in nodal network measures across various
brain regions during the transition from BL to FU. These alterations included abnormal nodal degree, nodal efficiency, and nodal
betweenness in widespread areas such as the entorhinal cortex, superior frontal gyrus, and parahippocampal cortex. These findings
suggest that the topography of CT and CSA plays a role in the typical structural covariance topology of the brain. Furthermore,
these results indicate the effect of HCU on the developmental changes of SCNs in young adults.
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INTRODUCTION
An increasing number of countries have legalized cannabis for
medical or recreational purposes [1]. Recent reports indicate that
approximately 209 million individuals worldwide are cannabis users,
with the highest prevalence observed among young adults aged 18
to 25. Notably, during this developmental period, the brain
undergoes reorganization of functional connections and experiences
neurochemical changes that contribute to the promotion of adaptive
behavioral regulation [2]. Heavy cannabis use (HCU) refers to the
frequent and prolonged consumption of cannabis, leading to daily
dysfunctional behavior [3]. Previous studies have provided evidence
that long-term, high-level cannabis use can potentially increase
susceptibility to neurotoxicity [4]. That may lead to structural and
functional alterations in the brain, contributing to mental health and
memory abnormalities. Conditions such as anxiety, depression, and
memory impairment have been reported to be associated with HCU
[4, 5]. HCU affects brain development in regions rich in cannabinoid-1
receptors (CB1), like the hippocampus, amygdala, cerebellum,
cingulate cortex, and prefrontal cortex. These changes contribute
to abnormalities in mental health and memory [6].
A previous longitudinal study revealed that young adults with

HCU demonstrated a reduced growth rate of the right hippo-
campus. This structural alteration in the brain could potentially

impact the local and global organization of brain structural
networks [7]. Research findings indicate that individuals with HCU
exhibit impaired working memory networks. Consequently, they
require increased effort to perform working-memory tasks
effectively [8]. Long-term cannabis use has been shown to
significantly impact the adjustment and coordination of networks
involved in self-awareness, such as the default mode network [9].
Furthermore, individuals with HCU exhibited an increased

centrality in brain regions associated with sensory, motor, and
attention networks. These alterations in network connectivity may
serve as reliable neuroimaging markers for identifying HCU [10]. It
is important to note that most existing studies have primarily
focused on brain functional networks. At the same time, there
remains a dearth of research investigating the developmental
changes in brain structure using structural brain networks in
young adults with HCU. Previous research has discovered that
anatomical covariance structures enable network analysis similar
to functional network analysis. Graph theoretical measures
derived from anatomical covariance networks can exhibit altera-
tions during development, aging, or disease, providing insights
into the effects of environmental factors on the brain [11]. A
fundamental hypothesis underlying this approach is that mor-
phological correlations reflect the presence of axonal connections
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between different brain regions and are influenced by shared
factors such as nutrition, genetics, and neurodevelopment [12].
Structure covariance networks (SCNs) specifically examine the
covariant and coordinated patterns of gray matter morphology
throughout the entire brain rather than focusing solely on
individual regions or structures. This approach allows for a
comprehensive exploration of how different brain regions interact
and influence each other regarding their structural morphology
[13]. Furthermore, SCNs have gained popularity in constructing
group-level networks due to their lower computational intensity
and reduced susceptibility to noise compared to functional
networks. SCNs are advantageous for analyzing structural
connectivity patterns in a group setting [14]. Multiple studies
have identified specific abnormalities in the brain’s structural
network linked to cannabis use [7, 15, 16]. Furthermore, previous
studies have indicated that cannabis users exhibit distinct
structural brain changes across different age cohorts [5].
Alterations in cortical thickness (CT) among cannabis users are

associated with the severity of cannabis use and age of initiation.
These associations can potentially be attributed to two factors: (i)
deviations in neurodevelopmental trajectories and (ii) tissue loss
or damage resulting from the neurotoxic effects of cannabis [17].
To comprehend neurodevelopmental changes in young adults
with HCU, longitudinal studies must examine pre-existing
differences and changes after cannabis initiation. However, few
longitudinal studies have investigated the developmental changes
in the integration and segregation of SCNs in young adults with
HCU using cannabis for over three years. Further, based on graph
theory, segregation refers to the degree to which a network’s
elements form separate cliques or clusters, and integration refers
to the capacity of the network as a whole to become
interconnected and exchange information [18]. These two
indicators can express the structural characteristics of networks
from different perspectives [19]. In addition, previous research has
found that both CT and cortical surface area (CSA) have distinct
developmental trajectories and uncorrelated genetic backgrounds
[20] and should be considered separate morphometric features in
neurodevelopment [21, 22]. Hence, based on both CT and CSA,
segregation and integration network graph theory indicators can
help gain a deep understanding of the topography of CT and CSA
in HCU.
This study employed CT and CSA to overcome these research

gaps to construct SCNs. Subsequently, segregation and integra-
tion network graph theory indicators were calculated to explore
the abnormal development of SCNs in young adults with HCU
over three years, from baseline (BL) to the follow-up (FU)
assessment. The primary goals of this study were twofold: (i) to
discern developmental changes in global network measures of
SCNs in young adults with HCU from BL to FU and (ii) to identify
abnormal nodal network measures of SCNs in young adults with
HCU. We hypothesized that (1) young adults with HCU showed
significant deviations in small-worldness and local efficiency of CT
and CSA compared to controls at baseline, while fewer differences
were observed at the FU evaluation between groups. (2) Young
adults with HCU displayed abnormal changes in nodal network
measures across various brain regions, which were mainly
distributed in addiction-related brain regions during the transition
from BL to FU.

MATERIALS AND METHODS
Participants
For this study, we utilized data obtained from the OpenNEURO database
(https://openneuro.org/datasets/ds000174/versions/1.0.1). Our analysis
included 20 young adults with HCU and 22 carefully matched non-
cannabis use controls. All participants underwent magnetic resonance
imaging (MRI) scanning and clinical assessments at the study’s BL and FU
stages, with an average interval duration of 39 ± 2.4 months. At the BL,

HCU was defined as the consumption of cannabis for more than ten days
per month consistently for a minimum of two years without seeking
treatment or having a history of cannabis treatment [23]. The matched
controls in this study were individuals who had used cannabis fewer than
30 times in their lifetime and had not used it within the past year [23]. For
detailed information regarding the informed consent process with all
participants, I recommend referring to the previous research conducted in
this area [23].

Clinical assessments
The severity of cannabis use was assessed using the Cannabis Use Disorder
Identification Test (CUDIT) [24]. In addition, the severity of alcohol use was
assessed using the Alcohol Use Disorder Identification Test (AUDIT) [25].
Additionally, the Mini International Neuropsychiatric Interview [26] was
conducted by two experienced psychologists blinded to the study to
assess the prevalence of mental disorders. For detailed information
regarding participant characteristics and clinical evaluations, I recommend
referring to the previous research where these details are outlined [23].

MRI data acquisition
MRI scanning was conducted using a Philips Healthcare 3.0 T MRI scanner.
Participants’ heads were secured in position using a custom-built head holder
during the scanning process to ensure stability and accuracy. High-resolution
structural images were acquired with the following parameters: echo
time= 4.16 s, repetition time= 9.6 s, flip angle= 8°, slice thickness= 1.2mm,
field of view= 256mm× 256mm, matrix size= 256 × 256, voxel
size= 1 × 1 × 1.2mm3 and 182 slices.

MRI data preprocessing and measurement of CSA and CT
Each participant’s structural T1-weighted MRI data were preprocessed
using FreeSurfer v7.2.0 software package (http://
surfer.nmr.mgh.harvard.edu). For detailed information regarding the
surface-based morphology analysis, I recommend referring to the previous
studies where the specifics of this analysis were documented [27–29]. The
FreeSurfer pipeline processing involved several steps, including motion
correction, removal of non-brain tissue, Talairach transformation, intensity
normalization, gray/white matter boundary tessellation, topology correc-
tion, surface deformation, registration to a common spherical atlas, and
cortical surface reconstruction. To obtain measurements of CT and CSA, the
cortical morphologies were smoothed using a 10mm full-width-at-half-
maximum Gaussian kernel, following methodologies described in previous
research [30–32]. CT was calculated at each vertex in the cortex by
measuring the distance between the pial surface and the gray-white
matter surface. This approach provides a local assessment of CT across the
entire cortical surface. CSA was estimated by averaging the area of all faces
connected to a specific vertex on the white matter surface. All outputs
underwent meticulous inspection throughout the preprocessing phase,
and manual corrections were applied as necessary. Subsequently, the
average values of CT and CSA within 34 cortical parcellations were
determined in each hemisphere and defined by the Desikan atlas [33],
which has been used by recent research investigating brain SCNs [34, 35].
Each cortical region’s cortical surface indices, such as CT and CSA, were
exported for subsequent analysis. In the following analyses, the potential
confounding factors (including age, gender, CUDIT scores, AUDIT scores,
and age at the onset of first cannabis use) were included as covariates.

Construction of SCNs
We aimed to characterize the brain networks of young adults with HCU
and controls by constructing structural covariance matrices. The statistical
similarity between two brain regions was quantified using Pearson’s
correlation coefficient, resulting in the construction of interregional
correlation matrices (68 × 68) for each group at BL and FU. Group-level
SCNs of CT and CSA were constructed separately for the two groups at the
BL and FU stages. The values were transformed into z-scores using the
Fisher transformation to enhance the normality of the correlation
coefficients. The correlation matrix was then binarized using various
sparsity thresholds, resulting in different percentages of connections. This
process yielded a series of unweighted and undirected graphs for
subsequent network analysis. To address the potential impact of threshold
selection on small-world network parameters, we applied a wide range of
sparsity thresholds (6–40%) to threshold the correlation matrices. This
approach aimed to minimize uncertainty arising from threshold choice and
ensure accurate estimation of small-world network architectures. It also
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helps to reduce the inclusion of spurious edges in each network, which is
consistent with previous studies in the field [36, 37]. The lowest threshold
was determined as the minimum network sparsity at which the resulting
networks were fully connected, allowing for the estimation of small-
worldness.

Graph-based network analysis
Global and nodal network measures of the SCNs were calculated using the
Brain Connectivity Toolbox [38] (Fig. 1). Standards of network integration,
such as normalized characteristic path length and global efficiency, were
computed. Measures of network segregation, including normalized
clustering coefficient and local efficiency, were also determined. The
small-worldness index was also computed, which indicates the balance
between network integration and segregation. Nodal degree, nodal
efficiency, and nodal betweenness centrality were examined to identify
group differences in nodal network measures. For more details on these
metrics, see Table S1 in the Supplementary materials section.

Statistical analysis
A nonparametric permutation test was employed to investigate the
statistical differences in network metrics between the HCU and control
groups at BL and FU. Initially, network measures such as clustering, path
length, efficiency, nodal efficiency, betweenness, and degree were
computed separately for the HCU and control groups. Next, each subject’s
CT or CSA values were randomly reassigned into two groups, maintaining
the same sample size as the original groups. SCNs were recalculated for
each of the two groups, and new values for the network metrics were
obtained. This permutation process was repeated 1000 times, and
statistical significance was determined if less than 5% of the between-
group differences in the permutation distribution exceeded the observed
between-group difference. To account for various densities, the area under
the curve (AUC) was compared between the two groups at BL and FU,
considering a density range of 0.06:0.01:0.4. P-value < 0.05 was statistically
significant with false discovery rate (FDR) corrections after multiple
comparisons. All figures for results were performed using R (Version
4.1.3; R Core Team, 2022) and RStudio (“Ghost Orchid” Release; RStudio
Team, 2021), with the ggplot2 package (Version 3.4.4) and ggseg package
(Version 1.6.5). Additionally, we also completed supplementary analyses to
examine whether the topography of CT and CSA is altered in HCU at both
BL and FU related to controls. Hence, an independent two-sample t-test
was conducted to investigate group differences in CT and CSA of all brain
regions.

RESULTS
Participants and characteristics
No significant differences were found in age at BL (t (40)=−1.465,
P= 0.151) and sex (χ2 (1)= 0.213, P= 0.645) between young adults
with HCU and controls. Young adults with HCU demonstrated a
significantly earlier age at the onset of first cannabis use compared to
controls (t (40)=−4.367, P< 0.001), and the mean age at onset of
frequent cannabis use for young adults with HCU was 16.20 ± 2.38
years old. However, there was no significant “group” × “time point”
interaction effect on the score of CUDIT (F(1, 80)= 0.033, P= 0.855)
and score of AUDIT (F(1, 80)= 0.082, P= 0.776). In the present
study, none of the participants exhibited a prevalence of mental
disorders. The demographic information of all participants is depicted
in Table S2.

Group differences of global network integration and
segregation measures based on CSA
Young adults with HCU exhibited significantly altered small-
worldness measures compared to controls at BL. However, there
were no significant differences between young adults with HCU
and controls at FU. Moreover, no significant group differences
were found in global network integration measures at both BL and
FU (Fig. 2).
Additionally, at BL, young adults with HCU demonstrated

abnormal local efficiency compared to controls. However, at FU,
the two groups had no significant difference in local efficiency
(Fig. 3). No significant group differences were found in other
global network segregation measures at both BL and FU. The
P-values for these metrics are listed in Table 1. Further,
independent two-sample t-tests found that no significant group
differences in both CT and CSA of all brain regions were observed
(Table S3).

Group differences of global network integration and
segregation measures based on CT
While young adults with HCU exhibited significant alterations in
small-worldness measures compared to controls at BL, no
significant difference was observed between young adults with

Fig. 1 Schematic workflow of structural covariance network analyses in this study. CSA cortical surface area, CT cortical thickness.
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HCU and controls at FU. However, no significant group differences
were found in global network integration measures at both BL and
FU (Fig. 4).
Furthermore, at BL, young adults with HCU displayed abnormal

local efficiency compared to controls. However, at FU, the two
groups had no significant difference in local efficiency (Fig. 5).
Other global network segregation measures at BL and FU showed
no significant group differences. The P-values for these metrics are
provided in Table 1.

Group differences of nodal network measures of CSA and CT
According to permutation tests, significant group differences were
observed in nodal network measures, including nodal degree,
nodal efficiency, and nodal betweenness centrality at both BL and
FU. The corresponding statistical results are presented in Fig. 6
and Table S4.
Regarding CSA, at BL, young adults with HCU exhibited

significant alterations in nodal degree within the left entorhinal
cortex and superior temporal gyrus compared to controls.
Additionally, abnormal nodal efficiency was observed in the left
entorhinal cortex, while altered nodal betweenness centrality was
found in the left lateral orbitofrontal cortex (OFC). These findings
suggest specific disruptions in brain network properties associated
with CSA in young adults with HCU. Compared to controls, young
adults with HCU continued to show abnormal nodal degrees in
the left entorhinal cortex (EC) at FU. Additionally, altered nodal
efficiency was observed in widespread regions, including the left

EC, parahippocampal cortex (PHC), superior frontal gyrus (SFG),
frontal pole, and temporal pole. These findings indicate persistent
disruptions in nodal network measures in multiple brain regions
associated with HCU in young adults.
Regarding CT, at BL, young adults with HCU showed altered

nodal degree in the right parahippocampal gyrus and abnormal
nodal efficiency in the right isthmus cingulate. They changed
nodal betweenness centrality in the left banks of the superior
temporal sulcus and the right lingual gyrus. At FU, compared to
controls, young adults with HCU exhibited abnormal nodal
efficiency in the left SFG and altered nodal betweenness centrality
in bilateral SFG and right medial OFC. These findings indicate
specific disruptions in nodal network measures associated with CT
in young adults with HCU.

DISCUSSION
This study is the first to investigate the abnormal development of
SCNs in young adults with HCU, considering both CT and CSA. The
findings revealed that at BL, young adults with HCU exhibited
significant alterations in small-worldness and abnormal local
efficiency in CT and CSA compared to controls. However, no
significant differences were observed between groups at FU.
Additionally, nodal network measures showed abnormal devel-
opment in widespread brain regions, including the entorhinal
cortex (EC), parahippocampal cortex (PHC), superior frontal gyrus
(SFG), and orbitofrontal cortex (OFC). These findings shed light on

Fig. 2 Group differences of integration and small-worldness of CSA. Group differences in “integration” and “small-worldness” metrics of
structural covariance networks based on the cortical surface area at baseline and 3-year follow-up at the range of 6–40% network sparsity,
including A, D normalized path length, B, E global efficiency, and C, F “small-worldness”. The upper and lower blue lines represented a 95%
confidence interval, whereas the black dot line in the middle denoted the mean difference after 1000 permutations. The red line represents
the true group differences, which fall outside the confidence interval, indicating significant group differences (P < 0.05) under the current
threshold. The positive values indicate young adults with HCU > HCs, and the negative values indicate young adults with HCU < HCs. The
subpanels showed group differences in the area under the curve (AUC) value in each metric of SCNs. Compared with HCs, the young adults
with HCU showed significantly higher AUC value of small worldness at baseline. *P < 0.05.
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the impact of HCU on the brain’s structural organization in young
adults and the involvement of key brain regions in various
functional networks.
Previous research has demonstrated that small-worldness

reflects a balanced network state, combining network integration
and segregation. It is characterized by a high clustering coefficient
and short average path length, enabling efficient information
processing with minimal connectivity costs [38]. Local efficiency
measures network segregation, representing the average of the
inverse shortest path lengths between neighboring nodes. It
quantifies the efficiency of information transfer within the local

neighborhoods of a node [38]. This study observed altered small-
worldness and local efficiency in CT and CSA of young adults with
HCU at BL, consistent with previous DTI-based graph theory
findings [39]. These findings suggest that in individuals with HCU,
white matter fiber tracts undergo changes [33] and alterations in
structural brain regions. These changes ultimately contribute to
abnormal global network metrics of the structural brain. However,
it is essential to note that at FU, no significant group differences
were observed. This implies that at BL, the architecture of SCNs
exhibits abnormalities, resulting in disrupted information transfer
among neighboring nodes. Aberrant alterations in SCNs may

Fig. 3 Group differences of segregration of CSA. Group differences in “segregation” metrics of structural covariance networks based on the
cortical surface area at baseline and 3-year follow-up at the range of 6–40% network sparsity, including A, C normalized clustering coefficient,
and B, D local efficiency. The upper and lower blue lines represented a 95% confidence interval, whereas the black dot line in the middle
denoted the mean difference after 1000 permutations. The red line represents the true group differences, which fall outside the confidence
interval and indicate significant group differences (P < 0.05) under the current threshold. The positive values indicate young adults with
HCU > HCs, and the negative values indicate young adults with HCU < HCs. The subpanels showed group differences in the area under the
curve (AUC) value in each metric of SCNs. Compared with HCs, the young adults with HCU showed significantly higher AUC value of local
efficiency at baseline. **P < 0.01.
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gradually be compensated through continuous reconfiguration of
the networks; this may be independent and unaffected by
cannabis use. In addition, we found different network anomalies
at BL and FU, and we think that it may be the transformation of
the abnormal regions that completes the network function
compensation; it was a dynamic development that will comple-
ment the findings of the previous cross-sectional study [39, 40].
While no significant modifications in characteristic path length,
clustering coefficient, and global efficiency were observed at both
BL and FU, altered small-worldness in young adults with HCU

suggests impaired network efficiency and information processing
in this population [36].
In terms of nodal network measures, young adults with HCU at

BL displayed abnormal nodal degrees in the EC and PHC, both of
which are implicated in the memory network [41] and default
mode network (DMN) [42]. The EC is a hub region in the memory
network, acting as the gateway for memory-related information. It
selectively regulates connections with the hippocampus and
prefrontal cortex, facilitating efficient memory processing and
retrieval [41]. In a previous study, CT alterations in the EC were

Table 1. Results of permutation tests for differences in the integration and segregation measures of SCNs between groups at BL and FU (P-value
after FDR correction).

Timepoint Integration measures Small-worldness Segregation measures

Normalized path
length

Global
efficiency

Normalized clustering
coefficient

Local efficiency

CSA BL 0.736 0.194 0.05 0.146 0.002

FU 0.768 0.157 0.648 0.778 0.053

CT BL 0.077 0.192 0.006 0.092 0.004

FU 0.854 0.852 0.627 0.759 0.659

SCNs structural covariance networks, CSA cortical surface area, CT cortical thickness, BL baseline, FU 3-year follow-up, FDR false discovery rate.

Fig. 4 Group differences of integration and small-worldness of CT. Group differences in “integration” and “small-worldness” metrics of
structural covariance networks based on cortical thickness at baseline and 3-year follow-up at the range of 6–40% network sparsity, including
A, D normalized path length, B, E global efficiency, and C, F “small-worldness”. The upper and lower blue lines represented a 95% confidence
interval, whereas the black dot line in the middle denoted the mean difference after 1000 permutations. The red line represents the true
group differences, which fall outside the confidence interval and indicate significant group differences (P < 0.05) under the current threshold.
The positive values indicate young adults with HCU > HCs, and the negative values indicate young adults with HCU < HCs. The subpanels
showed group differences in the area under the curve (AUC) value in each metric of SCNs. Compared with HCs, the young adults with HCU
showed significantly lower AUC value of small worldness at baseline. **P < 0.01.
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linked to genetic abnormalities in cannabis addiction. Additionally,
these CT changes were associated with the abundance of CB1 in
the EC, suggesting a relationship between structural alterations,
genetics, and cannabis addiction [43, 44]. Long-term cannabis use
is linked to impaired memory function, which predicts the severity
of cannabis addiction, indicating a relationship between memory
impairment and addictive behaviors [45, 46]. The PHC assists the
EC in transmitting information to the hippocampus [41]; abnormal
connectivity of the PHC can influence memory function by
disrupting the connection between the DMN and the memory
network [47]. Previous research has shown that chronic cannabis

use in young adults is associated with weakened functional
connectivity (FC) within the DMN and enhanced FC between the
DMN and other networks [48]. In addition, changes in gray matter
volume within the DMN are associated with alterations in the
cerebellar network, which are associated with early cannabis use
and cannabis-induced psychiatric disorders [49]. As a result,
cannabis may affect the structure or functionality of the DMN,
which in turn affects other networks and produces memory and
psychiatric disorders [49]. Furthermore, the abnormalities
observed in nodal network measures of brain regions involved
in the memory network and DMN persisted at FU, with an even

Fig. 5 Group differences of segregration of CT. Group differences in “segregation” metrics of structural covariance networks based on
cortical thickness at baseline and 3-year follow-up at the range of 6%-40% network sparsity, including A, C normalized clustering coefficient,
and B, D local efficiency. The upper and lower blue lines represented a 95% confidence interval, whereas the black dot line in the middle
denoted the mean difference after 1000 permutations. The red line represents the true group differences, which fall outside the confidence
interval and indicate significant group differences (P < 0.05) under the current threshold. The positive values indicate young adults with
HCU > HCs, and the negative values indicate young adults with HCU < HCs. The subpanels showed group differences in the area under the
curve (AUC) value in each metric of SCNs. Compared with HCs, the young adults with HCU showed significantly lower AUC value of local
efficiency at baseline. **P < 0.01.
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broader range of anomalies. These findings suggest that altera-
tions in the memory network may be prolonged and fixed, while
DMN abnormalities may play a significant role in affecting the
structure of the memory network.
Interestingly, at both BL and FU, abnormalities in nodal

indicators were observed in the SFG, temporal pole, and OFC of
young adults with HCU. These regions are associated with the
frontoparietal, salience, and reward networks, respectively
[42, 50–52]. The frontoparietal network performs executive
functions, such as IQ, verbal learning, and memory [53]. The SFG
is responsible for motor tasks and working memory in the
frontoparietal network, as well as being a region where the DMN
and frontoparietal network overlap [42]. Studies on the function of
SFG subregions have shown that three major subregions of the
SFG have anatomically and functional connections with motor and
cognition-related regions, the anteromedial SFG has close
connections with the anterior cingulate cortices (ACC), and the
posterior SFG has connections with amygdala and thalamus,
which are also critical regions for addictive behaviors [54].
Cannabis addiction reduces metabolic levels in the frontal lobe,
which causes dysfunction in the frontal cortex and decreased
functional connectivity with the ACC [55]. Cannabis also affects
the structure and function of the amygdala, resulting in
abnormalities in the reward process, including amygdala, ACC,
and frontal lobe [56]. Our study found that abnormalities in the
nodal indicators of the SFG persisted at BL and FU, suggesting that

the SFG is abnormally long-lasting in its association with other
addiction-related regions during cannabis addiction and may
undergo similar or opposite structural changes with them;
previous research found increased CT in the frontoparietal region
of HCU, associated with impaired intelligence [43]. From the
network’s perspective, SFG is a vital connection between the
frontoparietal network and the DMN, facilitating their interactions
during attention and self-referential processing [54]. Our findings
indicated that frontoparietal network abnormalities were more
extensive and prominent at FU than at BL, which suggested that
the effects of cannabis on the frontoparietal network were
dynamically changing and might be mediated through abnorm-
alities in the DMN.
Additionally, the salience network, which plays a crucial role in

modulating attention, emotion, and behavioral responses, is a
critical mediator in the interaction between perception and
emotion [57]. The temporal pole consists of three subregions
that serve as intermediary nodes connecting the salience network
to the social-emotional network, frontoparietal network, and DMN
[50, 58, 59]. Among them, the temporal pole is linked to some
addiction-related regions, such as orbitofrontal cortex, amygdala,
and ACC [50]. Studies have shown that cannabis significantly
reduces the volume and thickness of the temporal pole, ACC, and
amygdala, and this change has been associated with addiction-
induced depressive states [60]. In addition, cannabis also increases
functional connectivity between the temporal lobe and the ACC;

Fig. 6 Group differences in nodal network metrics (nodal degree, nodal efficiency, and nodal betweenness centrality) of structural
covariance networks based on cortical surface area and cortical thickness at baseline and 3-year follow-up. Regions that showed
significant differences in AUC in the range from 6% to 40% network sparsity in nodal degree, nodal efficiency, and nodal betweenness
centrality between groups were colored (P < 0.05, false discovery rate corrected). The green color represented regions that have altered nodal
degrees in young adults with HCU. The blue color denoted regions that have altered nodal efficiency in young adults with HCU. The red color
represented regions that have altered nodal betweenness centrality in young adults with HCU. This graph was plotted using the R and
RStudio with both ggplot2 and ggseg packages.
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such abnormal connectivity is associated with anxiety state [61].
The observed anomalies in nodal indicators of the temporal pole
suggest that abnormalities in the salience network can impact the
development of other cognitive-related networks, subsequently
influencing various cognitive functions. Additionally, understand-
ing the abnormal growth of the salience network is crucial in the
context of neuropsychiatric disorders, including addiction and
other related conditions [62]. While studies on the salience
network in individuals with HCU are limited, our findings highlight
the potential of salience network abnormalities in further under-
standing addiction symptoms and abnormal mental states in HCU.
The reward network is essential for reward processing,

motivation, and addiction. It is vital in perceiving, evaluating,
and predicting rewarding stimuli, shaping behavior, and con-
tributing to addictive processes [51, 63]. The OFC is involved in
goal-driven reward tasks and has a dual impact on addictive
behavior through inhibitory and excitatory regulation mechanisms
[51]. The OFC responds more significantly to the BOLD in cannabis
reward, and its abnormally increased activity is also associated
with cannabis-related negative mood [61]. Furthermore, the
abnormal connectivity of the OFC to the striatum and amygdala
persisted after cannabis withdrawal [64]; adolescent cannabis use
is associated with reduced thickness in the OFC. However, these
changes in the OFC are not found to be associated with the dose
and duration of cannabis use [65]. Our study showed the nodal
indicators of the OFC at BL and FU were consistently abnormal,
suggesting that abnormalities in the OFC were associated with
cannabis addiction formation and negative mood [64]. Moreover,
OFC also acts as a bridge between the DMN and limbic areas,
facilitating the integration of cognitive and emotional processes
and regulating self-referential processing and emotional
responses [66]. Thus, cannabis addiction-induced anomalies in
the reward network may be long-term and permanent and may
also impact the DMN via OFC.
The results suggest that structural alterations in the memory

network of individuals with HCU persist over time. Additionally,
the abnormalities in the DMN may progressively increase with
prolonged cannabis use, potentially impacting other networks
involved in executive, emotional, and reward processes. The study
demonstrated that the structural covariance network approach
could capture abnormal developmental patterns in regions such
as the frontal lobe, providing valuable insights into addiction
mechanisms and potential risks associated with HCU.
The present study has some limitations that should be

acknowledged. Firstly, the small sample sizes of both groups
may limit the generalizability of the findings. Future studies with
larger sample sizes are needed to validate the results. Secondly,
the follow-up period of 3 years may not capture long-term
changes in SCNs. Future studies with longer follow-up durations
are necessary to understand the trajectory of SCNs over time in
individuals with HCU. Thirdly, due to graph-based network
analysis, this study can’t correlate global and nodal network
measures of the SCNs with clinical assessments, including CUDIT
and AUDIT scores. Future research should take the relationships
between alterations of SCNs and addiction behavior assessments
into account. Further, our findings might reflect the abnormal
development of structural covariance networks associated with
HCU in young adults, and a conclusion about causality can’t be
made in this study. Future research should be conducted to
investigate whether HCUs can influence SCNs or vice versa.
In summary, young adults with HCU displayed significant

alterations in small-worldness and local efficiency of both CT and
CSA at BL. Further, HCU individuals exhibited abnormal nodal
measures such as degree, efficiency, and betweenness in various
brain regions across the FU. These findings highlight the impact of
HCU on the developmental changes of SCNs in young adults and
suggest that CT and CSA play a role in the brain’s structural
topology.

DATA AVAILABILITY
The data that support the findings of this study are available on request from the
corresponding authors.
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