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Postoperative delirium (POD) is a common and severe complication in elderly patients with hip fractures. Identifying high-risk
patients with POD can help improve the outcome of patients with hip fractures. We conducted a retrospective study on elderly
patients (≥65 years of age) who underwent orthopedic surgery with hip fracture between January 2014 and August 2019.
Conventional logistic regression and five machine-learning algorithms were used to construct prediction models of POD. A
nomogram for POD prediction was built with the logistic regression method. The area under the receiver operating characteristic
curve (AUC-ROC), accuracy, sensitivity, and precision were calculated to evaluate different models. Feature importance of
individuals was interpreted using Shapley Additive Explanations (SHAP). About 797 patients were enrolled in the study, with the
incidence of POD at 9.28% (74/797). The age, renal insufficiency, chronic obstructive pulmonary disease (COPD), use of
antipsychotics, lactate dehydrogenase (LDH), and C-reactive protein are used to build a nomogram for POD with an AUC of 0.71.
The AUCs of five machine-learning models are 0.81 (Random Forest), 0.80 (GBM), 0.68 (AdaBoost), 0.77 (XGBoost), and 0.70 (SVM).
The sensitivities of the six models range from 68.8% (logistic regression and SVM) to 91.9% (Random Forest). The precisions of the
six machine-learning models range from 18.3% (logistic regression) to 67.8% (SVM). Six prediction models of POD in patients with
hip fractures were constructed using logistic regression and five machine-learning algorithms. The application of machine-learning
algorithms could provide convenient POD risk stratification to benefit elderly hip fracture patients.
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INTRODUCTION
Hip fracture is a common type of fracture in elderly patients. By
2050, it is estimated that more than 50% of osteoporotic fractures
will be hip fractures in Asia [1]. As life expectancy increases, more
elderly patients choose surgery to treat hip fractures for a better
prognosis. Postoperative delirium (POD) is a common and severe
complication in patients with hip fractures [2–4]. It is common for
POD to occur 2–7 days after surgery. POD is associated with loss of
independence, increased morbidity and mortality, institutionaliza-
tion, and a prolonged hospital stay with higher healthcare costs
[3, 5]. Researchers have found that multifactor prevention and
treatment can benefit one-third of delirium cases [6]. By
identifying high-risk patients, clinicians can improve the outcomes
of patients with hip fractures through timely intervention.
In various clinical domains, machine-learning methods have

proven helpful in predicting events of interest [7–10]. Some studies
have developed POD prediction models in hip fracture patients
with conventional logistic regression methods [11–15], but few
have proposed prediction models with machine learning. Further-
more, the results of these studies were not entirely satisfied for the
areas under the receiver operating curve (AUCs) of 0.779-0.79

[16, 17]. More attempts should be presented for better predicting
POD in hip fracture patients using machine-learning methods.
Thus, we try to develop a prediction model of POD with

conventional logistic regression and machine-learning algorithms
to support clinical decision-making.

MATERIALS AND METHODS
Study design and patients
Our study was retrospective. From January 2014 to April 2019, a cohort of
Chinese PLA General Hospital patients who underwent hip fracture surgery
was analyzed in this study. The inclusion criteria were: (1) age ≥65 years; (2)
undergoing surgery for hip fracture with anesthesia. The exclusion criteria
were: (1) undergoing secondary surgery for hip fracture；(2) hip fractures
caused by tumors.

Ethics statements
According to the Declaration of Helsinki, the study was approved by the
Ethics Committee Board of the First Medical Center of the Chinese PLA
General Hospital (Number: S2019-311-03). All data were anonymized
before analysis, and patient consent was waived due to the retrospective
study design.

Received: 13 July 2023 Revised: 4 January 2024 Accepted: 10 January 2024

1Department of Anesthesiology, The First Medical Center of PLA General Hospital, Beijing, China. 2Institute of Computing Technology, Chinese Academy of Sciences, Beijing,
China. 3National Clinical Research Center for Geriatric Diseases, People’s Liberation Army General Hospital, 100853 Beijing, China. 4These authors contributed equally: Yuxiang
Song, Di Zhang, Qian Wang. ✉email: wwdd1962@aliyun.com; caojiangbei@301hospital.com.cn

www.nature.com/tpTranslational Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02762-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02762-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02762-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02762-w&domain=pdf
http://orcid.org/0000-0003-1218-4639
http://orcid.org/0000-0003-1218-4639
http://orcid.org/0000-0003-1218-4639
http://orcid.org/0000-0003-1218-4639
http://orcid.org/0000-0003-1218-4639
https://doi.org/10.1038/s41398-024-02762-w
mailto:wwdd1962@aliyun.com
mailto:caojiangbei@301hospital.com.cn
www.nature.com/tp


Data collection
The dataset of hip fractures was established from the medical record
system. We collected preoperative and intraoperative parameters. The
basic characteristics of patients included age, sex, body mass index (BMI),
smoking, alcohol, history of hypertension, diabetes, cardiovascular diseases
(CHD), chronic obstructive pulmonary disease (COPD), renal insufficiency,
cerebrovascular disease, depression, and anxiety. Before surgery, the
prescribed medication included anticholinergic drugs, non-steroidal anti-
inflammatory drugs (NSAIDs), benzodiazepines, opioids, and antipsychotic
drugs were recorded. The laboratory test results of the last time before
surgery were collected: the complete blood cell count (CBC), Arterial Blood
Gas (ABG), Clotting factors, and Comprehensive Metabolic Panel (CMP).
Some intraoperative data were recorded: American Society of Anesthesiol-
ogists (ASA) physical status classification, the type of hip fracture, the type
of surgery and anesthesia, duration of surgery and anesthesia, urine, blood
loss, use of dexmedetomidine and droperidol, fluid management (crystal-
loid and colloid), blood transfusion, use of glucocorticoids (dexamethasone
and methylprednisolone), dexmedetomidine, droperidol, vasoactive drugs,
preoperative hospital stay, duration of systolic blood pressure (SBP)
>=140mmHg, and mean arterial pressure (MAP) <=60mmHg.

Definitions of POD
The incidence of POD within consecutive 7 days postoperatively was
recorded. First, the patients with characteristic words of delirium
documented in the postoperative medical records were captured by the
computer. All the characteristic words of delirium were chosen according
to the Confusion Assessment Method (CAM) scale [18, 19]. Second, the
patients using drugs for delirium postoperatively were also added. Third,
the patients with preoperative medical records containing the words of
delirium and the drug for delirium were excluded. At last, all the patients
preliminarily diagnosed by a computer were rechecked by neurologists
using the Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-IV) criteria [20].

Model building strategy
A predictive model using logistic regression was developed. The training and
validation datasets were randomly divided by 3:1. The variables in the model
were selected using forward and backward stepwise methods. The
nomogram of the prediction model was then established. Patients from the
validation dataset were used to evaluate the prediction model. The area under
the receiver operating characteristic curve (AUC) was calculated to assess the
prediction model’s discrimination ability. Hosmer–Lemeshow goodness-of-fit
testing was used to assess the model’s calibration. For each threshold
probability, a decision curve analysis (DCA) revealed the net benefits [21].
We developed five different machine-learning models with different

algorithms: random forest (RF), Support Vector Machines (SVM), adaptive
boosting with classification trees (AdaBoost), extreme gradient boosting
with classification trees (XGBoost), and gradient boosting machine (GBM).
The k-fold cross-validation (k= 5) was used for training since it is simple to
understand and generally results in a less biased or optimistic estimate of
the model skill than other methods [22]. An over-sampling method was
used for the nonequilibrium dataset (many negative and very few positive
patients) to improve machine-learning models’ performances. We used an
improved over-sampling algorithm named borderline SMOTE in construct-
ing our machine-learning models. The algorithm uses only minority class
samples on the border to synthesize new samples, thereby improving the
class distribution of the samples. After using borderline SMOTE, the model
performance reached its best.
The interpretability of the model was used SHapley Additive exPlana-

tions (SHAP). Feature importance of different individuals was shown in
SHAP figures.

Statistical analysis
In this study, Student’s t-tests were used to compare normally distributed
continuous variables, expressed as mean (standard deviation). A
Mann–Whitney’s test compared continuous variables under non-normal
distribution expressed as median and interquartile range. The χ2 test or
Fisher’s exact test compares the categorical variables expressed as
frequency or percentage. The significance level was set at 0.05, and all
tests were two-tailed. The logistic regression model was developed with R
4.0.1 (R Foundation for Statistical Computing, Vienna, Austria). Machine-
learning models were constructed with PyCharm 11.0.14.1 (JetBrains s.r.o.,
Prague, Czech Republic).

RESULTS
Baseline characteristics of patients
From January 2014 to August 2019, 812 elderly patients (>=65
years old) underwent surgery for hip fractures at the First Medical
Center of Chinese PLA General Hospital. We excluded 14 patients
whose hip fractures were caused by tumors and one patient who
underwent surgery for a hip fracture for the second time. At last,
797 patients were enrolled in the final analysis. The incidence of
delirium was 9.28% (74/797). Males comprised 23.7% of the
enrolled patients (189/797). The POD patients were older than
non-POD patients (83 vs. 79, P < 0.001).
Tables 1 and 2 show the characteristics and perioperative

variables of the 797 patients. The median age of POD patients was
significantly older than non-PODs [83(76.25,87) vs. 79(73,84)]. The
incidence of depression/anxiety, renal insufficiency, and COPD in
POD patients was higher than in non-POD patients. The use of
benzodiazepines and antipsychotics in POD patients was more
common than in non-POD patients (32.4% vs. 20.1%, 17.6% vs.
2.1%). The median duration of surgery was 100 (80,120) min.
Compared to non-POD patients, the POD patients had higher
Troponin T, Myoglobin, Brain Natriuretic Peptide (BNP), and
Creatine Kinase-MB(CK-MB) (P ≤ 0.001).

Development of a nomogram with logistic regression
557 patients in the training dataset were used to develop the
logistic regression model. In the Supplementary File, Table S1
shows the univariate logistic regression analysis results. Variables
statistically significant in the univariate analysis were included in
the multivariate logistic regression analysis. Among elderly
patients with hip fractures, age, renal insufficiency, antipsychotics,
COPD, LDH, and CRP were independent risk factors for POD
(shown in Table 3). The collinearity diagnostics were performed to
multicollinearity among the risk factors. The variance inflation
factors of the independent risk factors were all <2. In the
univariate model, neutrophils, lymphocytes, inorganic phos-
phorus, myoglobin, lipase, direct bilirubin, AST, SPO2, PT, PTA,
INR and use of intraoperative vasoactive drugs were statistically
significant, but not in the multivariate model.
The prediction model was evaluated on 240 patients in the

validation dataset. The AUCs of the training dataset and the
validation dataset were 0.77 (0.696–0.845) and 0.71 (0.593–0.827)
(Fig. 1A). The accuracy, recall, and precision were 68.8%, 65.2%,
and 18.3% in logistic regression (Table 4). The nomogram of the
prediction model was developed with the six variables and their
points (Fig. 1B). The calibration plot revealed good predictive
accuracy between the actual and predicted probability by
Hosmer–Lemeshow test (P= 0.749) (Fig. 1C). According to the
DCA of the training dataset, except for a small range of low
preferences, intervening based on the prediction model produced
excellent outcomes (Fig. 1D).

Development of prediction models with machine-learning
algorithms
All variables were preprocessed before the machine-learning
models were constructed. The top variables in the normalized
importance are BNP, troponin T, CRP, and CK-MB. Table S2 and Fig.
S1 of the Supplementary File show the variables’ quantified
importance. Moreover, the variables’ correlation was also calcu-
lated and displayed in Fig. S2 (Supplementary File).
The AUCs of models with different machine-learning algorithms

are shown in Fig. 2. The model of RF performed best of 5 models
with an AUC of 0.81. Models’ accuracy, sensitivity, precision, and
F1 were calculated with a confusion matrix (Table 4). The accuracy
ranged from 68.8%–91.9% in 5 models. RF performed the best
sensitivity up to 95.9%. The precision of SVM was the highest
(67.8%).
Model interpretation at the individual level was performed

using the SHAP algorithms. We inputted the information of four
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different patients into the model, and the RF model provided a
ranking of the importance of variables for each patient (Fig.
3A–D). Contributions of different predictors differed among
individuals with different SHAP values. BNP level was the top
variable in 3 patients of all 4 patients. The result was similar to

the importance plots of all the models. Although causality could
not be established based on the current study design, it is
conceivable that individualized modification of these factors
(lowering BNP and lowering amylase) may help to reduce the
risk of POD.

Table 1. Patient characteristics and baseline variables. Data are mean (standard deviation), n (%), or median (interquartile range).

Characteristics Non-POD
(n= 723)

POD
(n= 74)

P-value

Sex (male), n (%) 167 (23.1) 22 (29.7) 0.257

Age, years, median (IQR) 79 (73,84) 83 (76.25,87) <0.001

BMI, kg·m2, median (IQR) 22.8 (20.03,25.635) 22.53 (19.613,24.755) 0.313

Smoking, n (%) 55 (7.6) 8 (10.8) 0.455

Drinking, n (%) 39 (5.4) 4 (5.4) >0.999

Hypertension, n (%) 418 (57.8) 41 (55.4) 0.783

Diabetes, n (%) 231 (32) 30 (40.5) 0.171

Coronary heart disease, n (%) 116 (16) 11 (14.9) 0.923

Cerebrovascular disease, n (%) 109 (15.1) 16 (21.6) 0.191

Depression/anxiety, n (%) 0.002

Depression 11 (1.5) 3 (4.1)

Anxiety 0 1 (1.4)

Renal insufficiency, n (%) 18 (2.5) 8 (10.8) <0.001

COPD, n (%) 40 (5.5) 10 (13.5) 0.014

Type of hip fracture, n (%) 0.522

Femoral neck fracture 364 (50.3) 35 (47.3)

Intertrochanteric fracture 350 (48.4) 39 (52.7)

Others 9 (1.2) 0

Type of surgery, n (%) 0.547

Closed reduction and internal fixation 355 (49.1) 35 (47.3)

Open reduction and internal fixation 358 (49.5) 39 (52.7)

Joint replacement surgery 10 (1.4) 0

Duration of operation (min), median (IQR) 100 (80,120) 95 (75,118.75) 0.229

Duration of anesthesia(min), median (IQR) 160 (137,185) 160 (135,183.75) 0.504

ASA classification, n (%) 0.001

I 1 (0.1) 0

II 360 (49.8) 25 (33.8)

III 346 (47.9) 44 (59.5)

IV 16 (2.2) 4 (5.4)

V 0 1 (1.4)

Type of anesthesia, n (%) 0.162

Spinal anesthesia 75 (10.4) 3 (4.1)

Nerve block 136 (18.8) 15 (20.3)

General anesthesia 146 (20.2) 11 (14.9)

General anesthesia combined with other modalities 366 (50.6) 45 (60.8)

Urine (mL), median (IQR) 200 (100,400) 200 (100,300) 0.107

Blood loss (mL), median (IQR) 150 (100,200) 150 (100,200) 0.998

Colloid (mL), median (IQR) 0 (0,500) 0 (0,500) 0.883

Crystal (mL), median (IQR) 1100 (700,1200) 1050 (700,1100) 0.557

Blood transfusion, n (%) 243 (33.6) 36 (48.6) 0.014

Intraoperative blood pressure

Duration of SBP >= 140mmHg(min), median (IQR) 20 (0,45) 15 (0,50) 0.995

Duration of MAP < 60mmHg(min), median (IQR) 5 (0,10) 5 (0,10) 0.905

Preoperative hospital stay (days), median (IQR) 6 (4,8) 6 (4,8) 0.317

BMI body mass index, COPD chronic obstructive pulmonary disease, ASA American Society of Anesthesiologists physical status classification system, SBP
systolic blood pressure, MAP mean arterial pressure.
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Table 2. The preoperative laboratory testing and perioperative medication. Data are mean (standard deviation), n (%), or median (interquartile
range).

Characteristics Non-POD (n= 723) POD (n= 74) P-value

Troponin T (ug/L), median (IQR) 0.011(0.007,0.015) 0.016 (0.01,0.026) <0.001

Hemoglobin (g/L), median (IQR) 115 (102,126) 110 (100.25,120.75) 0.161

RBC (*1012/L), mean (SD) 3.76 (0.55) 3.72 (0.65) 0.606

WBC (*109/L), median (IQR) 6.93 (5.52,8.515) 7.2 (5.457,9.068) 0.407

Neutrophils, median (IQR) 0.71 (0.65,0.77) 0.755 (0.68,0.81) 0.003

Lymphocytes, median (IQR) 0.19 (0.14,0.25) 0.16 (0.11,0.21) 0.001

Monocytes, median (IQR) 0.07 (0.05,0.08) 0.07 (0.05,0.08) 0.437

Platelet (*109/L), median (IQR) 213 (168,265) 209.5 (155,251.75) 0.523

Glucose (mmol/L), median (IQR) 5.82 (5.2,7.03) 6.225 (5.295,7.213) 0.251

Serum albumin (g/L), median (IQR) 34.6 (32.1,37.2) 33.25 (31.425,36.35) 0.057

Myoglobin quantification (ug/L), median (IQR) 43.2 (30.15,61.25) 56.665 (38.275,100.213) <0.001

BUN (mmol/L), median (IQR) 5.54 (4.375,7.215) 6.225 (4.63,8.237) 0.026

Scr (umol/L), median (IQR) 63.8 (53.8,75.55) 64.85 (54.775,83.55) 0.135

Serum uric acid (umol/L), median (IQR) 228.1 (174.7,287.65) 214.1 (165.775,283.825) 0.471

K (mmol/L), median (IQR) 4 (3.76,4.28) 3.99 (3.8,4.272) 0.731

Na (mmol/L), median (IQR) 139.6 (137.1,141.6) 139.05 (137.425,141.95) 0.974

BNP (pg/mL), median (IQR) 259 (115.75,667.4) 602.2 (290.025,1103.5) <0.001

Ca (mmol/L), median (IQR) 2.18 (2.1,2.25) 2.155 (2.085,2.297) 0.892

P (mmol/L), median (IQR) 1.01 (0.87,1.14) 0.95 (0.82,1.118) 0.088

Mg (mmol/L), median (IQR) 0.86 (0.81,0.91) 0.865 (0.81,0.91) 0.883

Total bilirubin (μmol/L), median (IQR) 11.5 (8.55,16.4) 12.65 (8.7,17.075) 0.31

Direct bilirubin (μmol/L), median (IQR) 3.4 (2.3,5) 4.1 (2.725,5.65) 0.03

ALT (U/L), median (IQR) 14.8 (10.75,23.1) 14.4 (11,21.375) 0.657

AST (U/L), median (IQR) 18.4 (14.6,25.3) 18.75 (14.85,27.45) 0.634

LDH (U/L), median (IQR) 189.9 (164.85,218.5) 204 (173.45,236.725) 0.015

CK-MB (U/L), median (IQR) 1.48 (1.125,2.025) 1.625 (1.405,2.348) 0.001

GGT (U/L), median (IQR) 19.1 (13.35,31.55) 20.45 (12.1,32.875) 0.722

ALP (U/L), median (IQR) 70 (57.85,85.1) 65.3 (54.35,89) 0.515

Amylase (U/L), median (IQR) 51 (38.3,66.5) 48.05 (35.4,59.175) 0.091

Lipase (U/L), median (IQR) 92.6 (65.55,129.35) 90.8 (64.725,121.275) 0.586

CRP (mg/L), median (IQR) 2.26 (0.91,4.46) 2.31 (1.182,6.09) 0.186

PaO2(mmHg), median (IQR) 78 (70.9,89) 74 (66,83.5) 0.008

PaCO2 (mmHg), median (IQR) 40.8 (37.1,44.7) 40.15 (37.1,43.775) 0.505

SPO2 (%), median (IQR) 95.8 (94.2,97) 94.75 (93.425,96.8) 0.015

BE (mmol/L), median (IQR) −0.8 (−2,0.7) −0.7 (−2.15,0.6) 0.937

TT (s), median (IQR) 15.4 (14.8,16.3) 15.7 (14.725,16.275) 0.888

APTT (s), median (IQR) 39.2 (35.45,43.6) 38.85 (35.8,42.725) 0.995

PT (s), median (IQR) 13.8 (13.3,14.4) 14.15 (13.3,14.6) 0.068

PTA (%), median (IQR) 91 (83,98) 85 (80,96.75) 0.026

INR, median (IQR) 1.06 (1.01,1.12) 1.1 (1.03,1.157) 0.026

FIB (g/L), median (IQR) 4.47 (3.855,5.24) 4.665 (3.735,5.272) 0.567

D-dimer (mg/L), median (IQR) 2.24 (1.485,3.665) 2.295 (1.402,3.3) 0.555

Preoperative medication

Anticholinergics, n (%) 39 (5.4) 4 (5.4) >0.999

Benzodiazepines, n (%) 145 (20.1) 24 (32.4) 0.02

NSAIDs, n (%) 12 (1.7) 2 (2.7) 0.379

Opioids, n (%) 149 (20.6) 18 (24.3) 0.55

Antipsychotics, n (%) 15 (2.1) 13 (17.6) <0.001

Intraoperative medication

Glucocorticoids, n (%) 224 (31) 25 (33.8) 0.716

Dexmedetomidine, n (%) 145 (20.1) 21 (28.4) 0.126

Droperidol, n (%) 81 (11.2) 11 (14.9) 0.455

Vasoactive drugs, n (%) 139 (19.2) 21 (28.4) 0.085

NSAIDs non-steroidal anti-inflammatory drugs, RBC red blood cell, WBC white blood cell, BUN blood urea nitrogen, Scr serum creatinine, BNP brain natriuretic
peptide, ALT alanine aminotransferase, AST aspartate aminotransferase, LDH lactate dehydrogenase, CK creatine kinase, CK-MB creatine kinase-MB, GGT γ-
glutamyl transferase, ALP alkaline phosphatase, CRP C-reactive protein, PaO2 oxygen partial pressure, PaCO2 partial pressure of carbon dioxide, SPO2 pulse
oxygen saturation, BE base excess, TT thrombin time, APTT activated partial thromboplastin time, PT prothrombin time, PTA plasma prothrombin activity, INR
international normalized ratio, FIB plasma fibrinogen.
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DISCUSSION
Hip fractures have a devastating effect on the quality of life and
function, with a high risk of death in one year. Timely surgery is
the primary method of treatment for the elderly after a hip
fracture [1]. However, the incidence of delirium in patients after
hip arthroplasty surgeries can range from 4% to 53% [23]. It’s
crucial to screen high-risk patients with preoperative and
intraoperative factors as the first step toward effective manage-
ment. So, one logistic regression model and five machine-
learning models of POD prediction were developed in our
retrospective cohort study. The AUCs of the logistic regression
model were 0.77 in the training dataset and 0.71 in the
validation dataset. The results were almost identical to Kim, E.
M.’s risk score for POD prediction [13]. The risk score developed
by Kim, E.M. for predicting postoperative delirium in patients

Table 3. Multivariable logistic regression model of study variables vs.
POD in the training dataset.

Variables Odds ratio (95%CI) P-value

Age, years 1.079 (1.032–1.131) 0.001

Renal insufficiency, yes vs. no 4.845 (1.199–16.417) 0.016

COPD 4.518 (1.708–11.089) 0.001

Antipsychotics, yes vs. no 6.702 (2.158–19.972) 0.001

LDH (U/L) 1.009 (1.002–1.015) 0.005

CRP (%) 1.114 (1.022–1.211) 0.012

COPD chronic obstructive pulmonary disease, LDH lactate dehydrogenase,
CRP C-reactive protein.

Fig. 1 Logistic regression algorithm predicts ROC curve, nomogram, DCA curve and calibration curve of the model. A ROC curve of
logistic regression in the training dataset and validation dataset. B The nomogram of the logistic regression model. This nomogram was
developed with six perioperative predictors. Find each predictor’s point on the uppermost point scale and add them up. The total point
projected to the bottom scale indicates the % probability of POD. C The calibration curve of the logistic regression model. D The DCA of the
logistic regression model for the training dataset. DCA decision curve analysis.
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undergoing hip arthroplasty surgery includes nine variables.
However, in our logistic regression model, we only included six
parameters and achieved an AUC of 0.77 in the training dataset.
Similar studies that used logistic regression have also been
conducted, with AUC values ranging from 0.67 to 0.79
[11, 14, 24].
With the growing application of machine-learning algorithms

in medicine, some researchers have tried to develop POD
prediction models of hip fractures with machine-learning
algorithms. Oosterhoff et al. developed five POD prediction
models using different machine-learning algorithms for hip
fracture patients, with the neural network and elastic-net
penalized logistic regression models performing best, achieving
an AUC of 0.79 [17]. Zhao H. et al. also used four machine-
learning algorithms to construct POD prediction models of hip
fracture in a cohort of 245 patients, with an AUC of 0.779 [16]. In
our study, we developed five different machine-learning models
for predicting POD in hip fracture patients. Among these models,
the random forest model achieved the best performance, with
an AUC of 0.81. Interestingly, the random forest model also
performed best in our previous study on POD prediction [10].
Shen J. et al. developed a risk score for predicting POD in hip
fracture patients, using nine variables, and achieving an AUC of
0.833 [25]. Yang Y. et al. constructed a nomogram for POD
prediction using only three variables and achieved an AUC of
0.84. Notably, these studies achieved high AUCs by including

patients who had delirium before surgery. Preoperative delirium
has been identified as an independent risk factor for POD in
previous studies [26]. However, our study excluded patients with
POD preoperatively, as they had received effective delirium
management before surgery. Our prediction model aims to help
clinicians identify high-risk patients for POD who may not have
been recognized before surgery.
Our machine-learning models identified BNP, Troponin T, CRP,

CK-MB, and other laboratory markers as the most important
predictors of POD in hip fracture patients in the whole dataset.
Intervening with these biomarkers may help reduce the incidence
of POD in high-risk patients. In contrast, other machine-learning
studies have identified well-known risk factors such as a history of
stroke, preoperative delirium, preoperative dementia, preopera-
tive mobility aid, and advanced age (older than 90) as important
predictors of POD [16, 17]. These factors have been widely studied
and cannot be modified [1, 2, 23, 26]. Therefore, our conclusion
may have more practical implications for preventing POD in hip
fracture patients by focusing on modifiable biomarkers that can
be intervened upon to reduce the risk of POD. Besides, we
introduce the SHAP to increase the interpretability of the model.
The SHAP provides feature rankings for individual cases. It may
help clinicians target specific interventions for patients at high risk
of delirium, rather than employing a comprehensive approach for
all patients. This individualized approach allows for a more
efficient allocation of medical resources, as interventions can be
tailored to address the specific contributing factors for each
patient.
Despite its strengths, several limitations of our study should be

acknowledged. First, it is a retrospective study. We used the DSM-
IV criteria for POD by retrieving medical and nursing records [20].
Because the identification of POD based on the confusion
assessment method (CAM) or 3D-CAM was not available in a
retrospective study, this method may miss some hypoactive POD
patients. Nevertheless, those with mixed and hyperactive POD
patients always need urgent intervention for their poor prognosis
[27]. The incidence of POD is 9.28%, which is lower, for we only
identify the new-onset delirium after the surgery. Second, it is a
single-center study, and only internal validation was performed.
Therefore, extensive application of the model results may be
limited. Third, although the AUC of our machine-learning model is
acceptable compared with other machine-learning studies (AUC=
0.81) [16, 17], the performance of such machine-learning models
can still be improved by exploring new algorithms.
In conclusion, we constructed six POD prediction models for

patients with hip fractures using logistic regression, RF, AdaBoost,
XGBoost, GBM, and SVM. The RF, one of five machine-learning
modes, achieved the best AUC with 0.81. By providing convenient
POD risk stratification, the application of machine-learning models
can improve outcomes for elderly patients with hip fractures.

Table 4. Comparison of the parameters of models for prediction of POD.

AUC Accuracy Sensitivity (recall) Precision F1

RF 0.81 91.9% 95.9% 56.7% 59.6%

GBM 0.80 91.3% 76.1% 59.3% 62.7%

AdaBoost 0.68 90.6% 71.4% 62.0% 64.9%

XGBoost 0.77 91.3% 79.2% 56.3% 58.8%

SVM 0.70 68.8% 56.7% 67.8% 54.3%

LR 0.71 68.8% 65.2% 18.3% 28.5%

AUC area under the curve of ROC, RF random forest, GBM gradient boosting machine, AdaBoost adaptive boosting, XGBoost eXtreme gradient boosting, SVM
support vector machine, LR logistic regression;

Fig. 2 The ROCs and AUCs of POD prediction models using the
various machine-learning algorithms. ROC receiver operating
characteristic curve, AUC area under the curve of ROC, RF random
forest, GBM gradient boosting algorithm, XGB XGBoost, SVM
support vector machine, ADA AdaBoost.
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