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Genetic evidence for the causal relations between metabolic
syndrome and psychiatric disorders: a Mendelian
randomization study
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Emerging evidence reveals associations between metabolic syndrome (MetS) and psychiatric disorders (PDs), although causality
remains uncertain. Consequently, we conducted Mendelian randomization (MR) to systematically evaluate the causality between
MetS and PDs. Linkage disequilibrium score regression estimated the heritability of PDs and their genetic correlations with MetS. In
primary analyses, the main model employed inverse variance weighting method, with sensitivity analyses using various MR models
to ensure robustness. Replication MR analyses, involving cohorts distinct from those in the primary analyses, were performed to
validate the generalizability of the findings. Multivariable MR analyses were carried out to account for genetically predicted body
mass index (BMI). As a result, genetic correlations of MetS with attention-deficit/hyperactivity disorder(ADHD), anorexia
nervosa(ANO), major depressive disorder(MDD), and schizophrenia were identified. Causal effects of MetS on ADHD (OR: 1.59 [95%
CI:1.45–1.74]), ANO (OR: 1.42 [95% CI:1.25–1.61]), MDD(OR: 1.23 [95% CI: 1.13–1.33]), and the effects of ADHD (OR: 1.03 [95% CI:
1.02–1.04]) and ANO (OR: 1.01 [95% CI: 1.01–1.02]) on MetS were observed in primary analyses. Results from sensitivity analyses and
replication analyses were generally consistent with the primary analyses, confirming the robustness and generalizability of the
findings. Associations between MetS and ADHD, as well as ANO persisted after adjusting for BMI, whereas the statistical significance
of the association between MetS and MDD was no longer observable. These results contribute to a deeper understanding of the
mechanisms underlying PDs, suggesting potential modifiable targets for public prevention and clinical intervention in specific PDs
related to metabolic pathways.
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INTRODUCTION
Metabolic syndrome (MetS) is a persistent global public health
challenge characterized by a combination of phenotypic traits,
including elevated diastolic or systolic blood pressure, increased
fasting glucose and triglycerides (TG), augmented waist circum-
ference, and reduced high-density lipoprotein cholesterol (HDL-C).
This cluster of traits triggers more severe risks for adverse clinical
outcomes compared to any single risk component [1, 2]. MetS
significantly elevates the likelihood of various physical disorders
and complications. For example, individuals with MetS face a
fivefold increase in the risk of developing type 2 diabetes and are
twice as likely to develop cardiovascular disease compared to their
healthy counterparts [3–5].
Furthermore, substantial evidence underscores the association

between MetS and an increased prevalence of psychiatric
disorders (PDs). On average, the prevalence of MetS is 58%
higher in individuals with PDs compared to the general
population, and those with severe mental disorders also face an
elevated risk of developing MetS in comparison to the general
population [6]. Multiple studies have provided evidence of the

interconnections and shared pathways between depression and
MetS [7]. Moreover, a systematic review has identified a
bidirectional relationship between MetS and the occurrence as
well as severity of bipolar disorder (BIP) [8].
The increased prevalence and substantial comorbidity of MetS

and PDs have instigated a systematic investigation into the causal
mechanisms, which aims to prioritize or refine disease progression
and therapeutic strategies. However, the understanding of
pathogenic mechanisms remains incomplete, primarily due to
the challenges associated with the gold standard for assessing
causality, randomized clinical trials (RCTs), which can be arduous
to conduct from both ethical and practical perspectives. In
addition, the presence of confounding factors, such as external
life environment, the use of antidepressant medications, social
discrimination related to obesity, and unhealthy lifestyles, poses
difficulties in accurately estimating the true causal effects of MetS
on PDs in observational studies [9].
As an alternative to RCTs, Mendelian randomization (MR) has

emerged as a predominant method for gaining insights into the
causes of diseases. MR employs genetic variants as instrumental

Received: 6 August 2023 Revised: 5 January 2024 Accepted: 10 January 2024

1Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 Xinjiannanlu Street, Taiyuan, Shanxi 030001, China. 2MOE Key Laboratory of Coal
Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China. 3School of Public Health and Emergency Management, Southern University of Science
and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China. 4MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
✉email: tongwang@sxmu.edu.cn

www.nature.com/tpTranslational Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02759-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02759-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02759-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02759-5&domain=pdf
http://orcid.org/0000-0002-4857-245X
http://orcid.org/0000-0002-4857-245X
http://orcid.org/0000-0002-4857-245X
http://orcid.org/0000-0002-4857-245X
http://orcid.org/0000-0002-4857-245X
http://orcid.org/0000-0002-9403-7167
http://orcid.org/0000-0002-9403-7167
http://orcid.org/0000-0002-9403-7167
http://orcid.org/0000-0002-9403-7167
http://orcid.org/0000-0002-9403-7167
https://doi.org/10.1038/s41398-024-02759-5
mailto:tongwang@sxmu.edu.cn
www.nature.com/tp


variables (IVs) to evaluate the causal effect of exposure on the
outcome, leveraging the fact that genetic variants are determined
before exposure and outcome and that parental alleles are
randomly assigned to offspring, therefore mitigates potential
interference from confounding factors and reverse causality [10].
The burgeoning treasure trove of genotype-phenotype associa-
tions derived from genome-wide association studies (GWASs)
facilitates the MR causal inference across a broad range of
phenotypes and related outcomes.
In this study, we utilized the MR framework to assess the causal

relationship between MetS and 10 PDs, namely attention-deficit/
hyperactivity disorder (ADHD), alcohol dependence (ALC), anor-
exia nervosa (ANO), anxiety (ANX), autism spectrum disorder
(ASD), BIP, major depressive disorder (MDD), schizophrenia (SCZ),
post-traumatic stress disorder (PTSD), and Tourette’s
syndrome (TS).

SUBJECTS AND METHODS
Exposure data
A schematic framework of this study is depicted in Fig. 1. The MetS GWAS
was conducted using the genetic single MetS factor, which is derived from
the genomic structural equation modeling [11]. The MetS factor captured
and summarized genetic correlations and shared genetic variance among
five metabolic components. Details on the GWAS cohorts for these
components are outlined in Supplementary Table 1.
The MetS factor GWAS exhibited an effective sample size of 461,920 and

an observed scale single nucleotide polymorphism (SNP)-based heritability
(h2SNP) of 0.14, surpassing the largest MetS GWAS to date (with a sample
size and h2SNP of 291,107 and 0.09, respectively) [12]. Consequently, the
MetS factor GWAS was utilized to IVs in the primary analysis.

Outcome data
Our principles for selecting outcome data aimed to maximize sample size
while avoiding sample overlap. Since the MetS GWAS included participants
from the UK Biobank (UKB), we excluded the UKB cohort from outcome
datasets whenever possible. To mitigate potential bias from population
stratification, we confined the individuals in the outcome GWAS to
European ancestry, aligning with the MetS sample. Following these criteria,
GWAS summary statistics of 10 PDs were collected from the largest
publicly available datasets (Table 1).
Among them, six PDs (ALC, BIP, MDD, SCZ, PTSD, and TS) had GWAS

derived from the Psychiatric Genomics Consortium (PGC) cohort, while the
GWAS of ANX was sourced from the Danish Lundbeck Foundation Initiative
for Integrative Psychiatric Research (iPSYCH) cohort [13–19]. Summary
statistics for ASD were obtained from a meta-analysis of PGC and iPSYCH,
and summary statistics for ADHD were extracted from PGC, iPSYCH, and
the Icelandic deCODE cohort [20, 21]. For ANO, we utilized the largest
GWAS meta-analysis involving four cohorts: the Eating Disorders Working
Group of the PGC (PGC-ED) Freeze, the Anorexia Nervosa Genetics Initiative
(ANGI), the Wellcome Trust Case Control Consortium-3 (WTCCC3), and the
UKB. The total sample size of these cohorts was 72,517, including 3840
(5.2%) participants from the UKB [22].
All mentioned cohorts, except for PTSD, comprised individuals of of

European ancestry, while PTSD participants were European-Americans
defined as having ≥90% European ancestry. Disease diagnoses for each PD
are detailed in Supplementary Note 1. As all analyses were based on
publicly available summary data, ethical approval from an institutional
review board and informed consent from the subjects were obtained in
the original studies.

Calculation of heritability and genetic correlation
Linkage disequilibrium score regression (LDSC) is a powerful tool for
evaluating h2SNP of traits and genetic correlations (rg) between different
traits based on the full GWAS summary data [23]. Here LDSC was applied to
estimate the observed scale h2SNP of each PD trait, and to quantify the
pairwise genetic correlations of the 10 PD traits and their correlation with
MetS. Population-matched LD scores were calculated using with the
European-ancestry samples in the 1000 Genomes Project as the reference
panel [24]. To address multiple hypothesis testing, a Bonferroni adjusted P-
value of 0.0009 (0.05/55, where 55= 11 × 10/2) was applied as the
significance threshold for LDSC analyses.

Selection of IVs
The validity of IVs for MR causal inference relies on three core assumptions
(Supplementary Note 2). To ensure the authenticity and accuracy of the
conclusions regarding the causal link between MetS and PD risk, the
following steps were taken to select optimal IVs. SNPs with a minor allele
frequency < 1% and INFO score < 0.9 (where available) in the MetS
summary datasets were removed for variant quality control. Subsequently,
SNPs from MetS GWAS under the genome-wide significant level
(P < 5 × 10−8) were selected and clumped with an LD r2 of 0.01 and a
window size of 1MB, ensuring strength and independence among the IVs
[25]. The summary statistics of the selected SNPs were then extracted from
the PD GWASs. Unavailable SNPs in the outcome GWAS were substituted
by genetic variants with a minimum LD r2= 0.6 and base pair window of
500 000 in European populations, or excluded if no suitable proxies were
identified. In addition, a harmonization process was carried out to align
alleles to the human genome reference sequence (build 38) and ensure
that the effect of SNPs on exposure and outcome corresponds to the same
allele, while palindromic SNPs that could not be inferred were excluded.
To minimize the risk of horizontal pleiotropy, where a variant influences

PD outcomes through traits other than MetS, the MR pleiotropy residual
sum and outlier (PRESSO) test and the MR-Radial outlier test were
performed to detect evidence of heterogeneity, which might be caused by
pleiotropy to a large extent [26, 27]. The remaining SNPs constituted the
final set for each MR analysis, as detailed in Supplementary Tables 2–11.

Evaluation of IVs
The validity of IVs was assessed through various dimensions. F statistics
were computed to gauge the strength of the IVs, with an F statistic greater
than 10 generally considered sufficiently strong to mitigate weak
instrument bias [28]. The PRESSO global test and Cochran’s Q test were
employed to examine overall heterogeneity across the IVs [26, 27]. MR-
Egger regression intercept was estimated to detect directional pleiotropy
among the IVs [29]. A statistically significant non-zero intercept indicated
unbalanced pleiotropy, suggesting that the pleiotropic effects of the
invalid instruments could not counteract each other, potentially biasing
the causal estimators. In addition, the proportion of phenotypic variance
(PVE) explained by the IVs and post-hoc statistical power were estimated to
ascertain whether the MR models possessed adequate capability to detect
the causal effects of exposures on outcomes. Detailed estimation
methodologies for assessing indicators, including F statistics, PVE, and
statistical power, are available in Supplementary Note 3.

Univariable MR (UVMR) analyses
The main MR method utilized was the inverse variance weighting (IVW)
model with modified second-order weights, complemented by sensitivity
analyses employing maximum likelihood estimator (MLE), weighted
median estimator (WME), and robust adjusted profile score (RAPS)
[27, 30–32]. The profile of each MR analytical model is provided in
Supplementary Note 4. In addition, using the PhenoScanner GWAS
database, instrument SNPs previously associated with potential known
confounding factors were identified, and causality was reassessed after
excluding these potential pleiotropic IVs [33].
Furthermore, the effects of PDs on MetS were explored when the causal

effects of MetS on PDs were significant. The same process for selecting
instruments for MetS was followed, with a less stringent significance level
(P < 5 × 10−5) chosen as no SNPs were associated with multiple PDs at the
genome-wide significance level. The final IV sets are detailed in
Supplementary Tables 12–14.
In addition, a replication study was conducted using the same analytical

strategy as described for the primary MR analysis. The MetS GWAS data
were obtained from van Walree ES’s study, and PDs GWASs data were
sourced from the FinnGen R9 database, to investigate the association
between MetS and PDs [11, 34]. Detailed information, including the exact
number of cases and controls, the online depository of the PD GWASs
summary statistics can be found in Supplementary Table 15. We
established a multiple testing significance threshold defined as P < 0.05/
10 PDs for the above UVMR analyses.

Multivariable MR (MVMR) analyses
For the observed causality between MetS and specific PDs, we conducted
additional MVMR analyses to assess the impact of MetS on these PDs while
controlling for body mass index (BMI), which is acknowledged as a
confounding factor in the MetS-PD relationship [35]. Summary statistics for
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BMI were derived from a meta-analysis of UKB and the Genetic
Investigation of ANthropometric Traits (GIANT) consortium, with an
average sample size of 681,275 [36]. We identified the union set of SNPs
significantly associated with either risk factor (MetS or BMI) using a
threshold of P < 5 × 10−8. Independent SNPs with LD r2 < 0.01 were then
extracted as candidate IVs. The first-stage conditional F statistics
were calculated to evaluate the instrument strength of MetS, conditional
on BMI. Estimators were obtained using the IVW, Median, Egger, and Lasso
models.

Online tools
LDSC was employed to calculate h2SNP and rg (https://github.com/bulik/
ldsc), the LDlink platform (https://analysistools.cancer.gov/LDlink/?
tab=ldproxy) and the power calculation tool (https://sb452.shinyapps.io/
power/) were utilized to identify SNP proxies and estimate statistical power
respectively. Various analyses, including LD clumping of SNPs, data
harmonization, outlier detection, and MR causal inference, were conducted
using R version 4.2.2 (R Foundation for Statistical Computing, Vienna,
Austria) packages including MendelianRandomization, MR-PRESSO,
RadialMR, TwoSampleMR, and MR-RAPS.

RESULTS
Heritability and genetic correlation
All the PDs had h2SNP higher than 0.05, except for ANX, the highest
h2SNP at 0.40 (standard error [SE] = 0.05) for TS and the lowest at
0.010 (SE= 0.02) for ANX. Significant genetic correlations were
observed between MetS and four PDs, including ADHD (rg= 0.33,
SE= 0.02, P= 5.60 × 10−5), ANO (rg= 0.35, SE= 0.03;
P= 4.38 × 10−39), MDD (rg= 0.15, SE= 0.03; P= 1.16 × 10−7), and
SCZ (rg=−0.10, SE= 0.02; P= 9.72 × 10−8), indicating a shared
genetic architecture between MetS and these PDs (Table 2).
Furthermore, the PDs showed low to moderate genetic correla-
tions, and the pairwise correlation across 10 PD factors are
displayed in Supplementary Table 16 and Supplementary Fig. 1.

Evaluation of IVs
Following genetic quality control, a total of 46–235 SNPs were
selected for the primary MR analyses, and 14–236 SNPs for the
replication MR analyses. All screened instruments exhibited F
statistic exceeding 10, indicating a reduced susceptibility to weak

Select independent and significant SNPs
P < 5E-8

LD r² < 0.01

Extract corresponding SNPs from outcome GWASs.

Find proxies for SNPs that are unavailable in the outcome GWASs.

Exposure
MetS GWAS by Eva S. van

Walree et al.

461 920 participants.

Harmonization
Removing SNPs palindromic with intermediate allele frequencies.

Identify and exclude outliers
By PRESSO outlier test and Radial outlier test.

Evaluate the validity of IVs
By F statistic,  PRESSO global test, Q test,  MR-Egger intercept.

UVMR analyses
Main analyses: IVW with modified second-order weights;

Sensitivity analyses: MLE, WME, RAPS;

PhenoScanner search: to rule out possible pleiotropic IVs;

Reverse analyses: to identify the effects of specific PDs on MetS;

Replication analyses: employing Finngen R9 PD cohorts.

Outcome
10 PDs GWASs mainly with

PGC and iPSYCH cohorts.

Up to 225 534 participants.

Calculation of heritability of each PD and

Pairwise Genetic correlations across 10 PDs and MetS (LD score regression).

MVMR analyses
Aim: to adjust for genetic liability to body mass index;

Method: MV-IVW, MV-Median, MV-Egger, and MV-Lasso.

Fig. 1 Flowchart illustrating data collection, processing, and analysis procedures. Abbreviations: PDs psychiatric disorders, LD linkage
disequilibrium, MetS metabolic syndrome, GWAS genome-wide association study, IVs instrumental variables, SNPs single nucleotide
polymorphisms, PRESSO pleiotropy residual sum and outlier, UVMR univariable Mendelian randomization analyses, IVW inverse variance
weighting, MLE maximum likelihood estimator, WME weighted median estimator, RAPS robust adjusted profile score, MVMR multivariable MR
analyses.
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instrument bias. The P values obtained from the PRESSO global
test, Cochran’s Q statistic test, and MR-Egger intercept test of
deviation from the null were consistently greater than 0.05,
suggesting limited evidence of heterogeneity or directional
pleiotropy among the SNP effects. Moreover, the majority of MR
models demonstrated sufficient statistical power (>80%) to detect
a significant causal effect (Supplementary Table 17).

MR analyses
Primary analyses with the IVW model revealed that genetically
predicted MetS exhibited causal effects on increased risks of three

PDs: ADHD (OR= 1.59, 95% CI: 1.45–1.74, P= 7.09 × 10−23), ANO
(OR= 1.42, 95% CI: 1.25–1.61, P= 1.90 × 10−7), and MDD (OR=
1.23, 95% CI: 1.13–1.33, P= 8.06 × 10−7), respectively. Notably,
significant genetic correlations were also identified in these three
pairs of relationships. The estimated causal effect sizes via MLE,
WME, and RAPS models were broadly consistent with the IVW
model (Supplementary Table 18).
In the PhenoScanner database, 12 unique IVs for MetS

significantly associated with PD-relevant traits, and five unique
IVs for PDs significantly associated with MetS-relevant traits were
identified (Supplementary Tables 2–14). However, removing these
SNPs did not alter the pattern of results (Supplementary Table 18).
Subsequent exploration of the causal effects of ADHD, ANO, and
MDD on MetS indicated significant causality from ADHD (OR=
1.03, 95% CI: 1.02–1.04, P= 1.71 × 10−10) and ANO (OR= 1.01,
95% CI: 1.01–1.02, P= 8.72 × 10−4) to MetS. Conversely, there was
no evidence supporting a causal effect of MDD on MetS (Fig. 2).
Causal associations were observed between MetS and ANO and

MDD in the replication analyses, with consistent results across all
sensitivity analyses. However, the causal effect of MetS on ADHD,
as well as the causal effects of ANO and MDD on MetS showed
compatibility with the null. This might be attributed to the smaller
case numbers in the replication analyses for ADHD and ANO
GWAS cohorts (with 2340 and 1897, respectively), compared to
larger case numbers in the primary analyses (with 38,691 and
16,992, respectively)(Supplementary Table 18).
In the MVMR analyses, utilizing an average of approximately

1000 instruments for both exposures, the mean first-stage
conditional F statistics all exceeds 10, indicating minimal evidence
of potential bias due to weak instruments. The associations
between MetS and ADHD, as well as ANO, remained statistically
significant even after adjusting for genetic liability to BMI.
However, the previously observed association between MetS
and MDD was no longer statistically evident (Supplementary
Table 18).

Table 1. Selected GWAS summary statistics of PDs included in this study.

N cases/N controls N variants Study cohort(s) PubMed ID First Author (Year)

ADHD 38,691 6,774,224 iPSYCH+deCODE+PGC data 36702997 Ditte Demontis (2023)

186,843

ALC 8485 9,142,831 PGC 30482948 Raymond K Walters (2018)

20,272

ANO 16,992 8,219,102 ANGI+ PGC-ED+WTCCC-3+UKB 31308545 Hunna J Watson (2019)

55,525

ANX 4584 8,029,716 iPSYCH 31116379 Sandra M Meier (2019)

19,225

ASD 18,382 9,112,386 iPSYCH+PGC 30804558 Jakob Grove (2019)

27,969

BIP 20,352 13,413,244 PGC 31043756 Eli A Stahl (2019)

31,358

MDD 45,396 9,874,289 PGC 29700475 Naomi R Wray (2018)

97,250

SCZ 53,386 7,659,767 PGC 35396580 Vassily Trubetskoy (2022)

77,258

PTSD 2424 13,207,411 PGC 28439101 L E Duncan (2018)

7113

TS 4819 8,265,318 PGC 30818990 Dongmei Yu (2019)

9488

PDs psychiatric disorders, ADHD attention-deficit/hyperactivity disorder, ALC alcohol dependence; ANO anorexia nervosa, ANX anxiety, ASD autism spectrum
disorder, BIP bipolar disorder, MDD major depressive disorder, SCZ schizophrenia, PTSD post-traumatic stress disorder, TS Tourette’s syndrome.

Table 2. Heritability estimates for PD traits and genetic correlation
with MetS.

h2SNP SEðh2SNPÞ rg SE(rg) P

ADHD 0.10 0.00 0.33 0.02 5.60 × 10−50

ALC 0.07 0.02 0.18 0.06 0.004

ANO 0.18 0.01 0.35 0.03 4.38 × 10−39

ANX 0.01 0.02 0.77 2.38 0.745

ASD 0.20 0.02 0.05 0.03 0.086

BIP 0.36 0.02 −0.04 0.02 0.068

MDD 0.07 0.00 0.15 0.03 1.16 × 10−7

SCZ 0.37 0.01 −0.10 0.02 9.72 × 10−8

PTSD 0.14 0.06 0.27 0.09 0.001

TS 0.40 0.05 0.00 0.04 0.900

h2SNP heritability, SE standard error, rg genetic correlation, PD psychiatric
disorder, MetS metabolic syndrome, ADHD attention-deficit/hyperactivity
disorder, ALC alcohol dependence, ANO anorexia nervosa, ANX anxiety, ASD
autism spectrum disorder, BIP bipolar disorder, MDD major depressive
disorder, SCZ schizophrenia, PTSD post-traumatic stress disorder, TS
Tourette’s syndrome.
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DISCUSSION
Despite the absence of definitive conclusions, prior studies have
uncovered extensive insights into the connections between MetS
and PDs. Untangling whether these associations are causal
remains challenging due to confounding factors and the potential
for reverse causality. To address this, we utilized a two-sample MR
framework to investigate the role of MetS in 10 major PDs, the
results substantiate an adverse effect of MetS on three specific PD
outcomes. Notably, within the MR framework, we assessed the
impact of a specific cluster of genetic variants associated with
MetS on PDs. It is conceivable that additional genetic components
or non-genetic factors, including postnatal environmental and
social influences, operating through alternative biological
mechanisms, contribute to variations in MetS. Consequently,
these factors may give rise to diverse causal effects on PDs, a
complexity not captured by the MR analysis [37].
In this study, we identified a significant genetic correlation and

bidirectional causal relationship between MetS and ADHD,
aligning with some previous studies. A diagnostic instrument-
based investigation revealed that overweight children with higher
BMI exhibited an elevated risk of developing ADHD symptoms
[38]. Meanwhile, ADHD emerged as a risk factor for MetS
components [39, 40]. The study by Zohar Landau and Orit
Pinhas-Hamiel not only confirmed the link between ADHD and
obesity, diabetes, and hypertension, but also proposed various
underlying mechanisms [41]. Previous research suggested a
connection between ADHD, obesity and the dopamine system
[42], positing that dopaminergic alterations in the prefrontal
cortex of ADHD patients with the attention deficit disorder
subtype might heighten their obesity risk [43]. Further studies
indicated that changes in the hypocretin/orexin system contribute
to impaired alertness and abnormal feeding behaviors in ADHD
patients, and this mechanism corroborated in animal models [44].
The observed significant genetic correlation and bidirectional

causality between MetS and ANO in this study also align with
several prior investigations. A meta-analysis revealed elevated

levels of total cholesterol, HDL, LDL, TG, and apolipoprotein B in
acute ANO patients compared to controls, possibly due to
increased exogenous lipid absorption resulting from intestinal
ecology imbalance [45]. Research on adolescents suggested ANO
induced damage to liver function as a potential cause for
hypercholesterolemia and reduced clearance rates of many
steroid hormones [46]. Moreover, hyperactivity of the
hypothalamic-pituitary-adrenal (HPA) axis during fasting in ANO
patients can lead to increaseD plasma cortisol levels [47]. Changes
in these factors may alter metabolic levels and heighten the risk of
MetS. Various potential biological mechanisms linking MetS to
ANO include alterations in the gut microbiome, central and
peripheral immune dysregulation, and endocrine disorders [9].
Our findings also supported a significant genetic correlation

and causal relationship between MetS on MDD, consistent with
certain observational studies and MR analyses. However, our
results provide more robust evidence of causality due to a larger
sample size [48–50]. One possible biological mechanism explain-
ing the impact of MetS on MDD involves the HPA axis. HPA axis
activation can elevate cortisol levels, and metabolic abnormalities
may induce HPA axis overactivity and peripheral changes in
cortisol metabolism, a common neuroendocrine abnormality in
MDD [51–53]. Another possible pathway connecting the MetS and
depression is inflammation. High-fat diets and obesity triggering
an inflammatory response that may lead to depressive symptoms
(such as insufficient sleep, lack of pleasure, and anorexia) [54]. Key
inflammatory cytokines such as C-reactive protein, tumor necrosis
factor-α, interferon-γ, and interleukin (IL)-6 and IL-8 also corre-
spond with symptoms of major depressive symptoms [55].
Controlling for BMI diminishes the significance of the association
between Metabolic Syndrome (MetS) and Major Depressive
Disorder (MDD). This suggests a stronger biological and genetic
link between BMI-related components of MetS (such as WC) and
MDD when compared to the other components within MetS.
These findings contribute novel perspectives to the formulation

of public health intervention policies. In conjunction with the

Exposure-Outcome

Mets-ADHD

No. IVs

Mets-ALC

Mets-ANO

OR (95%CI)

Mets-ANX

P-value

Mets-ASD

Mets-BIP

Mets-MDD

Mets-SCZ

Mets-PTSD

Mets-TS

ADHD-Mets

ANO-Mets

MDD-Mets

191

235

195

230

226

202

211

161

235

224

127

68

46

1.590 (1.450, 1.744)

1.008 (0.850, 1.196)

1.416 (1.248, 1.607)

1.184 (0.992, 1.413)

1.004 (0.901, 1.118)

1.066 (0.953, 1.193)

1.225 (1.130, 1.328)

0.983 (0.899, 1.074)

1.272 (0.958, 1.689)

1.013 (0.818, 1.255)

1.030 (1.021, 1.039)

1.014 (1.006, 1.022)

0.997 (0.981, 1.012)

7.09E-23

0.926

1.90E-07

0.061

0.069

0.261

8.06E-07

0.701

0.097

0.903

1.71E-10

8.72E-04

0.670

0.8 1 1.2 1.4 1.6 1.8
OR (95%CI)

Fig. 2 Causal relationships between MetS and PDs using UVMR. Abbreviations: MetS metabolic syndrome, PDs psychiatric disorders, UVMR
univariable MR, ADHD attention-deficit/hyperactivity disorder, ALC alcohol dependence, ANO anorexia nervosa, ANX anxiety, ASD autism
spectrum disorder, BIP bipolar disorder, MDD major depressive disorder, SCZ schizophrenia, PTSD post-traumatic stress disorder, TS Tourette’s
syndrome, No. IVs number of instrumental variables, OR odds ratio, CI confidence interval.
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results, employing relatively achievable and cost-effective prac-
tices such as modifying dietary habits, promoting physical
activities, and monitoring blood pressure and related indicators
in a timely manner emerges as a practical approach. This approach
aims to enhance metabolic levels and consequently diminish the
risk of PDs, including ADHD, ANO, and MDD. Such strategies are
worth exploring in the context of public health interventions.
The implications of these findings extend to clinical practices,

offering insights for developing innovative treatment strategies
for PDs. The bidirectional causal relationships between MetS and
ADHD or ANO provide tangible evidence for considering
metabolic factors in the diagnostic criteria for PDs. In addition,
the results prompt an exploration of the effectiveness and safety
of anti-metabolic disruption therapies and pharmacological
interventions for the treatment and management of these PDs.
Furthermore, these findings open new avenues for the drug target
MR studies, aiming at identifying the effects of MetS-related
protein targets on specific PDs and subsequently evaluating the
clinical validity of pharmaceutical ingredients corresponding to
potential causal proteins to alleviate PD symptoms.
Our analyses possess several strengths. Firstly, we comprehen-

sively covered a wide array of PDs and utilized a substantial
sample size in the majority of our analyses. Secondly, the
application of two-sample MR analyses was pivotal in mitigating
issues related to reverse causality and confounding factors,
typically challenging to address in conventional observational
studies. In addition, by employing GWAS summary data with the
maximum available sample size and ensuring the independence
of PD cohorts from MetS data, we bolstered statistical power and
minimized potential biases arising from sample overlap. Thirdly,
our study employed a rigorous analytical framework, incorporat-
ing F statistics to assess instrument strength, extensive diagnostics
to filter out the pleiotropic instruments, and sensitivity analyses to
verify result robustness in estimating causal relationships between
MetS and PDs.
It is noteworthy that MR models based on the summary data

often assume a linear relationship between exposures and
outcomes. However, the causal nature between MetS and PDs
may be more intricate than we estimated in this study.
Consequently, the evidence for causality merits nuanced con-
sideration and confidence, emphasizing the need for further
exploration of non-linear relationships when individual-level
genetic data is accessible [56]. Furthermore, in the primary
analyses, certain PDs, including ANX, PTSD, and TS, along with
ADHD in the replication analyses, did not yield significant results,
possibly due to insufficient statistical power in these MR analyses
[57]. Lastly, the varying risk of some PDs in MetS across different
populations (such as age and gender) remains an area of interest.
However, the absence of stratified GWAS results based on age or
gender hindered the exploration of causality in different sub-
populations, underscoring the necessity for further investigation
when relevant data become available.
In conclusion, to delve into the intricate relationships of MetS

with psychiatric-related traits, we utilized the MR framework that
leverages genetic variants as proxy instruments of MetS to
delineate its genetic causal associations with various kinds of
PDs. The results reveal significant effects of MetS on ADHD, ANO,
and MDD. While the precise mechanism by which MetS influences
PDs remains undetermined despite the recognized inferential
causality in this study, our findings serve as initial insights for
subsequent functional experiments and pathophysiological
exploration, and also lay the fundamental basis for implications
in potential interventions and therapeutic targets of PDs.
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