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Global emphasis on enhancing prevention and treatment strategies necessitates an increased understanding of the biological
mechanisms of psychopathology. Plasma proteomics is a powerful tool that has been applied in the context of specific mental
disorders for biomarker identification. The p-factor, also known as the “general psychopathology factor”, is a concept in
psychopathology suggesting that there is a common underlying factor that contributes to the development of various forms of
mental disorders. It has been proposed that the p-factor can be used to understand the overall mental health status of an
individual. Here, we aimed to discover plasma proteins associated with the p-factor in 775 young adults in the FinnTwin12 cohort.
Using liquid chromatography–tandem mass spectrometry, 13 proteins with a significant connection with the p-factor were
identified, 8 of which were linked to epidermal growth factor receptor (EGFR) signaling. This exploratory study provides new insight
into biological alterations associated with mental health status in young adults.
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INTRODUCTION
Mental health issues are increasingly becoming a major concern
globally [1, 2]. In fact, the World Health Organization estimates
that about one in every eight people across the globe suffer from
a mental health disorder, making these disorders the primary
cause of a reduced quality of life [1]. The recent COVID-19
pandemic has notably exacerbated mental health issues, particu-
larly among young adults aged 18–29. During the pandemic, the
number of young adults experiencing depression symptoms more
than doubled in numerous European countries [3].
Despite the significant impact of mental health diseases on

daily life and their considerable economic cost, these conditions
often go undiagnosed and untreated [1, 3]. This highlights the
pressing need for early detection of individuals at high risk for
psychopathology, targeted preventative measures, and improve-
ments in diagnostic procedures and treatments.
Although different mental disorders may have unique

symptoms, they have been shown to share commonalities in
terms of underlying biological, psychological, and social factors
[4]. The p-factor, also known as the “general psychopathology
factor,” is a concept in psychopathology suggesting that there is
a common underlying factor that contributes to the develop-
ment of various forms of mental disorders [5, 6]. It has been
proposed that this single latent factor can encapsulate indivi-
duals’ proclivity to develop all forms of psychopathology
included within the broad internalizing, externalizing, and
thought disorder dimensions [7]. The p-factor is analogous to
the general factor in intelligence (called the g-factor), which

summarizes the observation that individuals who do well on one
type of cognitive test tend to do well on all other types of
cognitive tests [5, 8]. Other factors, such as a general factor of
personality (GFP) and a general factor of personality disorder (g-
PD), have been previously shown to have a high correlation with
the p-factor [9]. At the individual level, the p-factor reflects
meaningful differences between persons on a single dimension
that represents the tendency to experience psychiatric problems
as persistent and comorbid; that is, high p-factor individuals
experience difficulties in regulation/control when dealing with
others, the environment, and the self [4, 5, 10].
Previous studies have shown the p-factor to be connected to

brain functioning in adolescents, with higher p-factor scores
associated with diminished activation of multiple brain zones
during executive tasks [11]. Importantly, some studies have
reported that the p-factor may be a stronger predictor of mental
health outcomes than specific diagnoses of mental disorders [12].
A recent study showed that the p-factor was associated with
poorer performance on the simple reaction time task and the
inspection time task, with speed of processing being a common
correlate of psychopathology factors [13]. Likewise, Pulkkinen [14]
has shown that low emotion and behavior regulation observed as
externalizing and internalizing problems in children are negatively
associated with the executive functions of the forebrain for
inhibition and updating (containing working memory and
shifting). This suggests that the p-factor could be used to better
understand the overall mental health status of an individual,
rather than just focusing on individual diagnoses.
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Biomarker discovery has gained traction in recent years as
researchers seek to uncover the biological underpinnings of mental
health conditions [15, 16]. The development of “omics” technolo-
gies and state-of-the-art analytical methods have increased interest
in the capabilities of plasma proteomics in biomarker discovery. LC-
MS/MS-based proteomics provides a global snapshot of protein
expression patterns that reflect physiological and pathological
states [17], making comprehensive analysis of the plasma
proteome possible [18]. This has enabled the simultaneous
detection and quantification of thousands of proteins, expediting
biomarker discovery efforts and reducing the time and resources
required for this process. This holistic view of proteomics allows for
the unbiased discovery of novel biomarkers, with less need for prior
knowledge of target proteins. This feature is particularly important
in cases where the biology of the process is not yet fully
understood or when new, unforeseen biomarkers are needed for
improved diagnostic or prognostic applications [19].
Proteomics approaches have been utilized for the identification

of protein signatures associated with specific psychological
disorders [20–22]. For example, several growth factors (BDNF,
VEGF, NGF) and cytokines (IL-1β, IL-6, IFN-α) have been linked to
depression [23]. Moreover, a recent multi-omics study reported
reduced apolipoprotein levels and an increase in complement
effector proteins in the plasma of schizophrenia (SCZ) patients
[24]. However, proteomics analyses have not previously been
combined to studies of the p-factor for identification of markers
associated with overall mental health status.
The FinnTwin12 (FT12) cohort, a longitudinal study of Finnish

twins born between 1983 and 1987, has a multitude of data and
biological samples [25, 26]. As a valuable resource for exploring
biological processes involved in mental health problems, we
explored the connection between the p-factor, previously
reported in [27], and plasma proteomics among young adults
from this cohort.

METHODS
Cohort description
The FT12 cohort is a longitudinal population-based cohort of Finnish twins
born 1983–1987 collected to investigate behavioral development and
health habits [25, 26]. Initially, twins and their families were identified using
the Finnish Central Population Registry, and questionnaire collection
occurred for all participants in the cohort at ages 11/12, 14, 17, and 22. The
baseline response rate was 87% (N= 5600 twins) and has remained high
(response rate range: 85–90%). At age 14, a subset of the twins (from 1035
families) was more intensively studied, including psychiatric interviews and
additional questionnaires (ages 14 and 22), as well as blood plasma
samples (age 22). The “age 22” assessment wave of these more intensively
studied twins involved 1347 individuals (mean age= 22.4 years, SD= 0.70;
response rate 73.0%), 779 of whom attended in-person assessments and
provided venous blood plasma samples. The blood samples were collected
after overnight fasting, which involved abstaining from alcohol and
tobacco since the night before sampling. Plasma was immediately
extracted and stored at −80 °C [27].

p-factor calculation
In FT12, behavioral and emotional characteristics were measured at all data
collection waves. The modified Multidimensional Peer Nomination
Inventory (MPNI) measure aimed at observing individual differences in
emotion and behavior regulation was used. It is an extension of the
measure [28] used in the Jyväskylä Longitudinal Study of Personality and
Social Development in which the development of the same individuals has
been followed from age 8–50, with findings that low self-regulation is
associated with social and psychological dysfunction [14]. The MPNI scale
has been previously factor analyzed with three main factors termed
Behavior Problems, Emotional Problems, and Adjustment [28].
The MPNI was collected in FT12 at ages 12, 14, and 17, from different

raters (7 in total): parents (age 12), teachers (age 12 and 14), twin children
themselves (age 14 and 17), and the child’s co-twin (age 14 and 17). The
measure includes subscales of the externalizing problem dimension:

aggression (6 items [for MPNI ages 12, 14, 17]), hyperactivity-impulsivity (7
items [MPNI ages 12, 14], 6 items [MPNI ages 17]), and inattention (4 items
[MPNI ages 12, 14, 17]), as well as for the internalizing problem dimension;
depression (5 items [MPNI ages 12, 14], 2 items [MPNI ages 17]), social
anxiety (2 items [MPNI ages 12, 14], 3 items [MPNI ages 17]), and 1 item for
victimization (MPNI ages 12, 14, 17). Each MPNI item (e.g., “Is restless,
unable to sit still”) has four response choices (from “not observed in the
child” to “clearly observable in the child”, scored 0–3 respectively). The
MPNI p-factor score was created by combining all the items of the
“externalizing” and “internalizing” dimensions together into a sum score,
with at most 2 missing items allowed. Missing items were imputed based
on the mean of the remaining items, with less than 3% of twins having
missing items. A composite “combined” p-factor score was created using
the p-factor scores of all seven of the abovementioned available MPNI
ratings (Cronbach’s alpha=0.76), because we know that ratings from
different raters are not highly correlated, however, they can impart unique
information [29–31]. Each of the seven scores were standardized as z
scores, and then we took the mean of available scores. The p-factor for the
FT12 cohort was previously created and analyzed in relation to metabolites
in [27]. Eleven twins had no overall p-factor score, leaving 775 twins. Of
them, 505 (65%) had been scored by all raters at all times, while 194 (25%)
had only one rater value missing, the remaining 10% having scores from
2–4 raters. To examine the dimensionality of combining the seven
individual p-factor scores, we performed a factor analysis on the subset of
participants who had been rated on all measures. The factor analysis
indicated one major factor, with the first eigenvalue associated with the
first factor having a value well over one. A correlation analysis was
performed for the newly calculated score with the sum scale based on all
seven p-factors, showing a high correlation coefficient of 0.983. The
composite “combined” p-factor score was used for the subsequent
analyses.
The predictive power of the p-factor was tested using the data on the

psychiatric interviews of the twins at age 22. Using a logistic regression
model for MDD, p-factor score, adjusted for sex, predicts MDD reasonably
well with an area under the receiver operating characteristic curve (ROC
AUC) of 0.67.

High-abundance protein depletion
Albumin accounts for 50%, and the top 22 proteins account for 99% of
plasma proteins by weight in human plasma samples [19]. Therefore, the
depletion of high-abundant proteins is essential to the identification and
analysis of low-abundant proteins. A commercial kit (High Select™ Top14
Abundant Protein Depletion Mini Spin Columns, cat. Number: A36370,
ThermoScientific) was used to deplete the 14 most abundant proteins from
plasma before the proteomic analyses. The depleted proteins were human
serum albumin (HSA), albumin, IgG, IgA, IgM, IgD, IgE, kappa and lambda
light chains, alpha-1-acidglycoprotein, alpha-1-antitrypsin, alpha-2-macro-
globulin, apolipoprotein A1, fibrinogen, haptoglobin, and transferrin,
according to manufacturer’s manual. Briefly, 10 µL of total plasma was
added to the mini spin columns and incubated for 10min while rotating,
followed by centrifugation of the columns (1,000 × g) for 2 min. The filtrate
was collected in 2 ml plastic tubes and stored at −20 °C until preparation
for mass spectrometry proteomic analyses, which were performed at the
Turku Proteomics Facility in Finland supported by Biocenter Finland.

Protein precipitation and digestion
The proteins of 786 depleted plasma samples were acetone precipitated
and subjected to in-solution digestion according to standard protocol at
the Turku Proteomics Facility, Turku, Finland (https://bioscience.fi/). After
digestion, peptides were desalted with a Sep-Pak C18 96-well plate
(Waters), evaporated to dryness, and stored at −20 °C.

Mass spectrometry analysis
Digested peptide samples were dissolved in 0.1% formic acid, and the
peptide concentration was determined with a NanoDrop device. For data-
independent acquisition (DIA) analysis, 500 ng of peptides were injected
and analyzed in a random order, determined with the Excel rand() function.
Wash runs were submitted between each sample to reduce potential carry-
over of peptides. The Liquid Chromatography-Electrospray Ionization-Mass
Spectrometry (LC-ESI-MS/MS) analysis was performed on a nanoflow HPLC
system (Easy-nLC1000, Thermo Fisher Scientific) coupled to a Q Exactive HF
mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) equipped
with a nano-electrospray ionization source. Peptides were first loaded on a
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trapping column and subsequently separated inline on a 15 cm C18
column (75 μm x 15 cm, ReproSilPur 3 μm 120 Å C18-AQ, Dr. Maisch HPLC
GmbH, Ammerbuch-Entringen, Germany). The mobile phase consisted of
water with 0.1% formic acid (solvent A) or acetonitrile/water (80:20 (v/v))
with 0.1% formic acid (solvent B). A 50min from 5% to 35% solvent B
gradient was used to elute peptides. Samples were analyzed by a DIA LC-
MS/MS method. MS data was acquired automatically by using Thermo
Xcalibur 4.1 software (Thermo Fisher Scientific). In the DIA method, a duty
cycle contained one full scan (400–1000 m/z) and 25 DIA MS/MS scans
covering the mass range 400–1000 with variable width isolation windows.

Protein identification and quantification analysis
Data analysis consisted of protein identification and label-free quantifica-
tions of protein abundances. Data was analyzed using Spectronaut
software (Biognosys; version 17.0.2). The direct DIA approach was used
to identify proteins. The main data analysis parameters in Spectronaut
were: (i) Enzyme: Trypsin/P; (ii) up to 2 missed cleavages; (iii) Fixed
modifications: Carbamidomethyl (cysteine); (iv) Variable modifications:
Acetyl (protein N-terminus) and oxidation (methionine); (v) Precursor FDR
Cutoff: 0.01; (vi) Protein FDR Cutoff: 0.01; (vii) Quantification MS level: MS2;
(viii) Quantification type: Area under the curve within integration
boundaries for each targeted ion; (ix) Protein database: Homo sapiens
Swiss-Prot reference proteome (Uniprot release 2022_01_07_HUMAN) [32],
Universal Protein Contaminant database [33].

Raw data drift and batch correction
Protein abundances were analyzed by LC-MS/MS in three separate
experimental runs or batches. Since the number of samples in each batch
was relatively large, the data was normalized before further analysis, and
batch effects were removed. For the ease of comparing the LC-MS/MS
runs, 10 of the samples were analyzed in 2 out of the 3 runs. For the raw
data analysis, we extracted the data from the .sne file using the iq export
scheme [34]. The data used for normalization was the raw peak area of the
peptide groups. These values were used in the further analyses.

The raw data investigation pre-processing and statistical analyses were
performed in the R (version 4.2.1.) environment (R Core Team, 2022). The
signal drift and the observed batch effect were corrected using the
proBatch (v. 1.13.0) [35] package. The median abundance plots showed the
samples forming four distinct groups, identical to the batches of
instrument runs (Supplementary Fig. 1A). The figure also shows
pronounced signal drift in the third and fourth batches. These effects
were corrected for using the proBatch pipeline. After the batch effect
correction, no significant drift or batch effect could be seen (Supplemen-
tary Fig. 1B).

Bioinformatic analysis
After drift and batch correction, the fastMaxLFQ method from the iq
package (v. 1.9.10) [34] was used to transform the peptide abundancies
into protein abundance values. The contaminant proteins and the proteins
depleted in the sample pre-processing step were removed from the
analysis. Only the identified proteins with quantified abundance levels in at
least 80% of the samples were used in further analyses. Missing values
remaining in the dataset were imputed using the Sample Minimum
method [36]. As an additional sensitivity test, the same modeling was
performed using the proteins present in 20, 40, 60, 80, and 98% of the
samples, to ensure that the modeling was robust, and that the exclusion of
rare proteins did not skew the analysis.
The connection between the p-factor and the protein abundances was

analysed using the limma [37] package (v. 3.54.2). Sex and age were
included into linear models as covariates to ensure reported associations
were not due to sex or age effects. Limma modeling was used to
investigate the association of protein abundance with the p-factor using
linear and non-linear modeling. The possible non-linear relationship
between the p-factor and the protein abundance was investigated by
using splines in limma [38]. A basis matrix for representing the family of
piecewise-cubic splines with 5 nodes were generated using the ns function
from the p-factor variable (Splines package v3.6.2), and was used in limma
modeling, also including sex and age as covariates.

Fig. 1 Distribution of p-factor values in the FT12 cohort. The density distribution of the standardized p-factor values of the participants.
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Moderate F test on the p-factor was carried out to assess the significance
of non-linear associations of the protein abundance with the p-factor using
the function lmFit and eBayes from the R limma package. P values for
linear and non-linear modeling were corrected for multiple testing and the
false discovery rate (FDR) was computed by using the Benjamini &
Hochberg method [39], which were reported as q-values. The significance
level considered in all analyses was 0.05. The linear effect size is reported
as the log2-fold-change in expression that results from a unit (one
standard deviation) change in p-factor.
The protein–protein interaction information for the significantly

differentially abundant proteins was analysed using STRING database (v.
12.0) [40]. The enrichment analysis with Gene Ontology (Process, Function,
and Component), KEGG and Reactome pathways, PubMed publications,
UniProt Keywords, and PFAM/INTERPRO/SMART domain databases was
performed using the STRINGdb package [41]. Result visualizations were
performed using R and ggplot2 (v3.4.0) [42].

RESULTS
Cohort characteristics
The p-factor was calculated based on assessments by multiple
raters at three different ages as described in the Materials and
Methods. A combined p-factor value was available for 775
individuals (318 males and 457 females). The z-score-based
p-factor distribution is presented in Fig. 1.

Protein identification
MS-based proteomics successfully identified 1494 proteins (DIA
spectrometry intensity values) in the FT12 cohort (N= 775) the list
of found proteins is presented in Supplementary File 1. After the
removal of values of proteins depleted in the sample pre-
processing step, 1415 proteins were left, with a mean number of
identified proteins of 835 per sample (SD= 48). Proteins present
in at least 80% of the samples were used, leaving 571 proteins.

Association of proteins with p-factor
The linear modeling showed 5 proteins inversely associated with
the p-factor (Table 1). As the relationship between the altered
proteins and p-factor is not known, the analysis was also
performed using splines, which also made it possible to
investigate non-linear relationships between the protein

abundance and the p-factor. These analyses showed 14 proteins
associated with the p-factor (Table 1). The relationships between
the p-factor and the protein abundance for the significantly
associated proteins are presented in Supplementary Figure 2.
The sensitivity testing showed that 13 of 14 proteins were

consistent across models, the S100 calcium binding protein A4
was significantly associated with the p-factor only when proteins
missing in over 20% of samples were excluded. The results of
additional analyses are presented in Supplementary Table 1.

Functional enrichment and annotation
The STRING protein–protein interaction networks functional
enrichment analysis showed two connected clusters of proteins
with: the first being cystatin-M (CST6) and cathepsin B (CTSB), the
second containing laminin subunit beta-1 (LAMB1), basement
membrane-specific heparan sulfate proteoglycan core protein
(HSPG2), and fibulin-1 (FBLN1) (Fig. 2). Investigation of the first
layer of the string network showed that nine of the significant
proteins were linked specifically through the epidermal growth
factor receptor (EGFR) and transthyretin (TTR) (Fig. 2). Both
proteins were among the 636 proteins we investigated, though
the q-values were above the significance threshold (q values for
both EGFR and TTR were 0.066).
Enrichment analysis of function categories showed only the

extracellular matrix structural constituent to be significantly
enriched. Compartments, component, function, and tissue ana-
lyses showed significantly enriched terms, mostly connected to
extracellular space and matrix, and cell–cell adhesion (Supple-
mentary Table 2).
A connection to a disease of the CNS or other neurodegenera-

tive diseases according to the Disease Ontology database was
found for 6 of the 13 significant proteins [43], shown in Table 2.

DISCUSSION

The field of plasma proteomics is rapidly gaining traction in the
realm of biomedical research, particularly in studies relating to
mental health. There is increasing evidence that alterations in
plasma protein profiles are associated with major psychiatric

Table 1. The plasma proteins significantly associated with the p-factor.

Protein ID Gene name Protein name Linear effect
size

Linear p
value

Linear q
value

Non-linear p
value

Non-linear q
value

Proteins with linear relationship with p-factor

Q15828* CST6 Cystatin E/M −0.086 1.76E-04 0.024 8.43E-04 0.047

P98160 HSPG2 Heparan sulfate
proteoglycan 2

−0.061 3.86E-05 0.006 1.27E-03 0.066

P23142 FBLN1 Fibulin-1 −0.065 2.49E-05 0.006 1.74E-03 0.075

P07911* UMOD Uromodulin −0.145 1.19E-05 0.006 8.89E-05 0.013

Q9Y6R7* FCGBP Fc gamma binding
protein

−0.082 8.11E-06 0.005 3.05E-05 0.007

Proteins with non-linear relationship with p-factor

P04179 SOD2 Superoxide dismutase 2 – 3.90E-01 0.701 1.86E-06 0.001

Q9BY67 CADM1 Cell adhesion molecule 1 – 3.87E-02 0.329 4.24E-06 0.002

Q14126 DSG2 Desmoglein 2 – 8.53E-04 0.072 8.80E-05 0.010

Q8NBJ4 GOLM1 Golgi membrane protein 1 – 7.93E-01 0.866 2.68E-04 0.010

P07858 CTSB Cathepsin B – 1.22E-01 0.496 6.74E-05 0.010

Q86UN3 RTN4RL2 Reticulon-4 receptor-like 2 – 3.66E-01 0.675 8.59E-05 0.012

O75636 FCN3 Ficolin 3 – 9.16E-03 0.183 3.42E-04 0.026

P07942 LAMB1 Laminin subunit beta-1 – 9.11E-03 0.183 5.13E-04 0.035
*indicate proteins with both linear and non-linear relationship.
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conditions, including major depressive disorder (MDD), schizo-
phrenia, psychotic disorders (PSD), and bipolar disorders (BD)
[44–46]. This study presents the first report of differences in
plasma protein levels associated with the p-factor in a population
sample of young adults.
We found 13 plasma proteins associated with p-factor scores in

young adults. All but the FCGBP protein were present in the
Human Plasma Proteome Database [47, 48], FCGBP, however, was
previously reported in serum samples [49]. Of these proteins, ten
belonged to a protein network connected to EGFR, eight being
directly connected to EGFR. The EGF-related signaling pathways
have been previously linked to neurodevelopment [50], synaptic
plasticity [51, 52], chronic pain [53], fear [54], as well as mental
health diseases [44, 52, 55–58]. For example, altered EGFR
signaling has been reported in MDD and BD patients in blood
proteomics studies [44].
In addition to EGFR signaling, we observed the p-factor to be

negatively associated with heparan sulfate proteoglycan 2
(HSPG2). Heparan sulfate proteoglycans (HSPG) are membrane
proteins and a major component of extracellular matrices involved
in many cellular processes, as they function as co-receptors for
growth factors [59]. HSPG2, combined with CEP350 and SMAD5,
was recently presented as a potential diagnostic biomarker for
MDD [60]. Furthermore, the HSPG2 gene was previously connected
to antipsychotic-induced adverse effects such as tardive dyskine-
sia [61, 62], specifically in SCZ patients [63], and the maintenance
and repair of the blood-brain barrier in mice [64]. Moreover,
downregulation of HSPG2 and a depressive-like phenotype were
revealed in mouse models of chronic mild stress and impaired
glutamate function [65].
We also report a negative association with fibulin-1 (FBLN1) and

the p-factor. The FBLN1 gene is connected to central nervous
system development [66, 67] and modulation of neurotrophic

activities of amyloid precursor protein in cultured rodent neural
stem cells [68]. So far, little is known about the possible
connection of FBLN1 to mental health. Shin [69]. reported
decreased FBLN1 plasma protein levels in MDD patients compared
to BD patients and healthy controls. The model proposed in that
study also contained Fc gamma binding protein (FCGBP), which
was reported to be significantly higher in BD patients compared to
MDD patients but not in healthy controls. In our study, FCGBP was
negatively associated with the p-factor. Additionally, increased
plasma protein abundance of desmoglein 3 (DSG3) was reported
in MDD patients and reduced abundance in BD patients compared
to healthy controls [69]. DSG3 is a protein belonging to the same
desmosomal cadherin family as the DSG2 reported in this study,
which had a non-linear association with the p-factor with
increased abundancies in the middle part of the p-factor scale.
DSG2 was previously shown to have a similar function as DSG3
and was also shown to compensate for DSG3 in DSG3− mouse
models [70]. The Shin et al. paper investigated BD, which is
classified as a Thought Disorder factor, and MDD, which is
classified as an Internalizing factor [5], so the differences in the
abundance changes observed compared to our work, where we
used the combined p-factor, are to be expected. Laminin subunit
beta-1 (LAMB1) was associated with the p-factor in this study. A
polymorphism in LAMB1 gene has been earlier associated with
autism severity [71], neural development of embryonic stem cells
[72] and pain sensitivity in mice [73]. LAMB1 is expressed during
the early development of nervous system [71] and in the
hippocampus in the mature brain [74]. In rats, LAMB1 showed
negative regulation of spatial learning through the inhibition of
the ERK/MAPK-SGK1 signaling pathway in the hippocampus [74].
Furthermore, loss of LAMB1 in the anterior cingulate cortex was
found to increase pain sensitivity and be associated with anxiety-
and depressive-like behavior in mice [73].
Cathepsin B (CTSB) was identified here with a non-linear

relationship to the p-factor. Moon et al. suggested CTSB as a
mediator of exercise-induced effects on brain health by enhancing
the expression of neurotrophins [75]. Exercise was found to
increase plasma CTSB levels in monkeys and humans [75], but a
20-week exercise intervention in children did not find any
significant connection between CTSB and brain health outcomes
[76]. Additionally, CTSB has been connected to brain-related
functions in several mice studies [77–79]. For example, a mouse

interacts with

interacts with

interacts with

interacts with

interacts with

interacts with

interacts with

interacts with

interacts withinteracts with

interacts with

interacts with

interacts with

interacts with

interacts with

Fig. 2 The result of STRING analysis of the proteins significantly associated with the p-factor. Line thickness indicates the strength of data
support. Green circles denote proteins with a linear relationship to the p-factor, red circles with non-linear relationships, and blue circles
representing proteins with reported linear and non-linear relationships.

Table 2. The disease ontology classification (STRINGdb).

Gene name Disease ontology

LAMB1, FCN3, CTSB, HSPG2 Nervous system disease

FCN3, CTSB, HSPG2, SOD2 Neurodegenerative disease

FCN3, CTSB, HSPG2 Central nervous system disease
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model for chronic social stress revealed increased activity of
cathepsin В in the hypothalamus and nucleus caudatus with
depressive-like behavior [79]. Contrarily, decreased cathepsin B
activity was found after acute emotional stress in mice [77]. CTSB
shows a potential mediator role in the brain induced by physical
and mental stressors, which should be further investigated.
Other proteins significantly associated with the p-factor and

directly connected to EGFR in our study were golgi membrane
protein 1 (GOLM1), superoxide dismutase 2 (SOD2), and uromodu-
line UMOD. Increased GOLM1 gene expression was found in
soldiers with PTSD [80]. This effect occurs through the activation
of ErbB4-BDNF signaling pathway [81, 82]. Particularly strong
evidence supports the role of the Neuregulin-1 (NRG1)-
ErbB4 signaling on synaptic plasticity [51, 52]. Neuregulins are a
family of epidermal growth factor-related proteins acting on the
ErbB tyrosine kinase receptors [51, 52]. SOD2 was found to play a
role in neurodegenerative disease according to the Disease
Ontology database, a polymorphism in the sod2 gene was
associated with differences in white matter microstructure and
suboptimal brain aging [83]. For the uromodulin (UMOD) proteins
and CST6 gene, no previous connection to mental health
problems was reported.
We observed associations of plasma reticulon-4 receptor-like 2

(RTN4L2), and ficolin 3 (FCN3) with the p-factor. Reticulon-4
receptors (RTN4R), also known as NogoRs, are surface proteins
expressed in neurons [84]. RTN4Rs are involved in synaptogenesis
and inhibition of axonal and dendrite growth, and, thus neuronal
plasticity [84, 85]. Human genetics studies have revealed the
linkage between Nogo receptors and SCZ [85–87]. For example, a
rare variant in RTN4R, affecting the formation of growth cones
in vitro, was associated with SCZ [87]. The role of RTN4Rs in SCZ
seems to be mediated by neurodevelopmental and myelin-related
abnormalities [85]. However, further studies are needed to clarify
the exact role of RTN4Rs in mental health. Interestingly, ficolin
activation was negatively associated with severity of SCZ [88], and
in our recent study, the plasma abundance of ficolin 2, a similar
protein, was found to be positively correlated with the Strength
and Difficulties Questionnaire (SDQ) score in adolescents.
Half of the proteins found to be significant in this study were

connected to the extracellular matrix. HSPG2, FBLN1, and LAMB1
were also strongly connected to each other, according to the
STRING database, being structural components of the basal
membrane, specifically in the brain. Coupled with proteins related
to neuronal plasticity, proteins identified in this study may be
potentially connected to the previously noted inverse relationship
between the p-factor and the microstructural integrity of white
matter as observed through neuroimaging [89]. Further studies
are needed to investigate the possible connections of the found
proteins with the brain microstructure and functioning.
Large-scale proteomic studies with plasma samples can present

multiple challenges that need to be addressed to generate robust
and meaningful results. For instance, protein expression in plasma
is dynamic, and both interindividual and sample variability can be
notable. Furthermore, plasma proteomic studies differ in the
pipelines and methods used due to a lack of standard protocols
[19]. Additional challenges include ensuring consistent sample
handling and processing [90], normalizing data, correcting signal
drift and batch effects [35, 91], accounting for biological variability
[92], improving reproducibility [93], and managing the resource-
intensive nature of such studies [94]. Despite these limitations,
proteomics remains a powerful tool that can contribute to better
diagnostics of mental health [95, 96]. The major constraint in this
study is that the proteomic data was only obtained once for each
participant. This one-time snapshot of a dynamically evolving
organism makes it challenging to conclusively link the identified
biomarkers to the investigated p-factor. The true nature of these
associations is also hard to determine based solely on these data.
These correlations could be the outcome of underlying biological

processes or inherent biological traits of the participants, which
might simultaneously influence both protein abundance and the
p-factor (the observed behavior). Alternatively, the changes in
protein abundance and the p-factor could be causally related,
either as a cause or as an effect. Mental conditions may cause
divergent effects on the abundance of plasma proteins, as
demonstrated in the study by Shin and colleagues [69]. Further
investigations will benefit from the inclusion of the disorder
symptoms into the p-factor, which is missing from the score used
in the present manuscript. These limitations suggest that a more
detailed investigation into the various components of the p-factor
may be needed to identify more specific biomarkers.
The strength of this study lies in its large cohort size, and the use

of modern proteomics methods, which made it possible to obtain
proteome profiles of hundreds of individuals, each comprising
hundreds of plasma protein abundancies. This large scale allows us
to identify common patterns in the proteomes of individuals with
high and low p-factor values. While the changes in plasma
abundancies of some of the proteins were previously reported,
other proteins were linked to a vulnerability to the development of
general psychopathology for the first time. Our research utilized
the FT12 cohort, a large and thoroughly characterized population-
based cohort with a broad range of measured characteristics,
making the proteomic data gathered in this study an invaluable
resource for future exploration and analysis.

CONCLUSIONS
The study suggests that examining plasma proteomic profiles
makes it possible to elucidate the biological processes related to
the p-factor, which may inform the future development of novel
screening, diagnostic, or therapeutic strategies for mental
disorders. The results revealed proteins with common cellular
functions connected to the p-factor, reflecting the general
psychopathology. However, further studies are needed to examine
the identified proteins and their potential as biomarkers for
mental health dysfunction. In the future, utilization of the p-factor
may also have implications for the development of interventions
targeting common underlying factors that contribute to multiple
forms of mental disorders. By addressing these shared factors,
interventions could potentially be more effective in improving
mental health outcomes across a range of disorders.
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