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Polygenic scores for tobacco use provide insights into systemic
health risks in a diverse EHR-linked biobank in Los Angeles
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Tobacco use is a major risk factor for many diseases and is heavily influenced by environmental factors with significant underlying
genetic contributions. Here, we evaluated the predictive performance, risk stratification, and potential systemic health effects of
tobacco use disorder (TUD) predisposing germline variants using a European- ancestry-derived polygenic score (PGS) in 24,202
participants from the multi-ancestry, hospital-based UCLA ATLAS biobank. Among genetically inferred ancestry groups (GIAs), TUD-
PGS was significantly associated with TUD in European American (EA) (OR: 1.20, CI: [1.16, 1.24]), Hispanic/Latin American (HL)
(OR:1.19, CI: [1.11, 1.28]), and East Asian American (EAA) (OR: 1.18, CI: [1.06, 1.31]) GIAs but not in African American (AA) GIA (OR:
1.04, CI: [0.93, 1.17]). Similarly, TUD-PGS offered strong risk stratification across PGS quantiles in EA and HL GIAs and inconsistently in
EAA and AA GIAs. In a cross-ancestry phenome-wide association meta-analysis, TUD-PGS was associated with cardiometabolic,
respiratory, and psychiatric phecodes (17 phecodes at P < 2.7E-05). In individuals with no history of smoking, the top TUD-PGS
associations with obesity and alcohol-related disorders (P= 3.54E-07, 1.61E-06) persist. Mendelian Randomization (MR) analysis
provides evidence of a causal association between adiposity measures and tobacco use. Inconsistent predictive performance of the
TUD-PGS across GIAs motivates the inclusion of multiple ancestry populations at all levels of genetic research of tobacco use for
equitable clinical translation of TUD-PGS. Phenome associations suggest that TUD-predisposed individuals may require
comprehensive tobacco use prevention and management approaches to address underlying addictive tendencies.
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INTRODUCTION
Tobacco use causes significant global mortality and morbidity,
contributing to several systemic conditions, including cardiometa-
bolic diseases and cancers [1, 2]. Tobacco use has historically been
studied as an environmental risk factor for other diseases.
However, tobacco use could instead be viewed as a complex
psychiatric trait with environmental risk factors [3] and significant
genetic contributions [4, 5]. Multi-ancestry genetic studies report
an estimated SNP-based heritability (i.e., the proportion of the
phenotypic variance explained by genetics) of tobacco use
behaviors ranging between 5–18% [4, 5]. Twin and family studies
report heritability estimates of 40–56% for cigarette smoking and
72% for nicotine dependence. These family-based heritability
estimates vary widely between different tobacco use traits and
between males and females [6]. Prevention and management
strategies for tobacco use can benefit from precision medicine
approaches, with the inclusion of baseline genetic risk to develop
individualized preventive and therapeutic strategies for tobacco

use. However, these efforts require a thorough understanding of
the effects of a genetic predisposition to tobacco use and the
impact of tobacco predisposition on the overall systemic health of
an individual.
To understand the genetic etiology of tobacco use, researchers

use genome-wide association studies (GWAS) to identify single
nucleotide polymorphisms (SNPs) associated with tobacco use
disorder. GWAS have identified over 2000 loci associated with
tobacco use traits, such as smoking behaviors and nicotine
dependence [4, 5]. However, single variants rarely capture a large
proportion of phenotypic variation for a complex behavioral trait
like tobacco use. To capture the overall genetic predisposition to
tobacco use, polygenic scores (PGS) aggregate the weighted
effects for multiple variants of interest, thus capturing a larger
proportion of phenotypic variation than single variants. Polygenic
scores have been used in research for disease prediction and to
evaluate disease correlations, with the potential for clinical
translation to identify high-risk individuals [7]. In particular,
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tobacco use behaviors have shown genetic correlations with
diseases such as schizophrenia and substance use disorders
[8–12].
To further contextualize disease-associated genetic variants,

phenome-wide association studies (PheWAS) systematically test
the association of a single genetic variant across multiple
phenotypes [13]. PheWAS potentially identify other traits or
disorders upon which the single genetic variant could exert an
effect, i.e., horizontal pleiotropic effects of the genetic variant.
Generally, PheWAS use phenotypes that are identified using
phecodes, or ICD codes that are aggregated into clinically
meaningful groupings.
In our analysis, we combined a PGS for tobacco use disorder

(TUD) with a PheWAS approach to create a PGS-PheWAS, a
powerful way to examine the potential pleiotropic effects of
multiple genetic variants that predispose to tobacco use disorder
and identify systemic disease risks for individuals with a genetic
predisposition to tobacco use [14]. We used a publicly available
PGS for tobacco use disorder, developed in European-ancestry
individuals in UK Biobank [15] and imputed these scores into the
UCLA ATLAS biobank which comprises consented and genotyped
UCLA patients representing diverse ancestry groups and pheno-
types drawn from their electronic health records [16–20]. We
found that the TUD-PGS demonstrated inconsistent predictive
performance and risk stratification in non-European ancestry
groups within the UCLA ATLAS biobank. In a PGS-PheWAS, we
identified several phecodes associated with a genetic predisposi-
tion to tobacco use, mainly in cardiometabolic, respiratory, and
neuropsychiatric phenotype categories. Next, to separate out the
effects of tobacco use behavior from a genetic predisposition to
tobacco use, we restricted a PGS-PheWAS to patients with no
smoking history and identified persistent associations with obesity
and alcohol-related disorders, suggesting shared genetic etiolo-
gies for these complex traits. Finally, we used publicly available
GWAS summary statistics to perform Mendelian randomization
[21] to evaluate the nature of the persistent tobacco use-obesity
associations. We found evidence of causality between adiposity
measures and tobacco use. Our work underscores the need to
expand the diversity of study populations to generalize findings
and to equitably translate genetic research to patient care.
Further, the potential pleiotropic effects of tobacco-predisposing
genetic variants suggest a more comprehensive approach to
addressing tobacco use addiction that includes due consideration
to other associated behavioral traits.

METHODS
Study population
All analyses were performed with UCLA ATLAS Biobank data, a biobank
embedded within the UCLA Health medical system [16–20]. UCLA Health is
a comprehensive healthcare system serving the population in and around
the greater Los Angeles area. The UCLA Institute for Precision Health is
home to the UCLA ATLAS biobank with >40k participants genotyped, of
which 24,202 participants were included in this study. This large-scale
collection of genotyped biospecimens is integrated with the UCLA Data
Discovery Repository (DDR), containing de-identified patient electronic
health records (EHR) which include clinical, procedural, laboratory,
prescription, and demographic information.
Final analyses included 24,202 ATLAS participants (7902 cases and

16,283 controls) with complete information on the outcome and covariates
including smoking status and insurance information. For ancestry-specific
analysis, we included European American (N= 15,780), Hispanic/Latin
American (N= 4412), East Asian American (N= 2377), and African
American (N= 1633) ancestry groups with sufficient sample sizes for
analysis.

Data processing and population stratification
Detailed information on data processing can be found in previous
publications [16–20]. Briefly, blood samples were collected from consented
participants and genotyped on a custom array [22]. Initial array-level

quality control measures included removing strand ambiguous SNPs and
variants with >5% missingness and filtering out SNPs that do not pass the
Hardy–Weinberg equilibrium test with a p-value set at (“–hwe 0.001”). After
restricting to unrelated individuals, the QC-ed genotypes were imputed to
the TOPMed Freeze5 reference using the Michigan Imputation Server
[23, 24]. The final QC steps were to filter the variants at the threshold of
R2 > 0.90 and minor allele frequency > 1%. All quality control steps were
conducted using PLINK 1.9 [25].
We computed the top 10 principal components for the study population

using FlashPCA2 software [26]. We then grouped the study population into
genetically inferred ancestry groups (GIAs) - European American (EA),
Hispanic/Latin American (HL), East Asian American (EAA), African American
(AA) - by k-nearest neighbor (KNN) stratification of the principal
components, using the continental ancestry populations from 1000
Genomes Project [27, 28] as a reference. To account for differences in
population stratification between GIA groups, for the PGS-PheWAS
analysis, we conducted individual PGS-PheWAS within each GIA group
and then meta-analyzed across GIA groups to obtain cross-ancestry results.

Polygenic score imputation within UCLA ATLAS biobank
We used a publicly available polygenic score trained on 391,124 European
individuals (21,954 cases and 35,7624 controls) from the UK biobank for
the trait ‘tobacco use disorder’ from the PGS catalog (PGS002037) [15, 29].
This trait, ‘tobacco use disorder’ was identified using phecode 318.0 which
corresponds to ICD codes F17.0, F17.1, F17.2, F17.3, F17.4, F17.9, Z72.0,
305.1, 305.10, 305.11, 305.12, 305.13, 649.0, 649.00, 649.01, 649.02, 649.03,
649.04 and V15.82. This PGS was selected for two reasons: (1) the PGS was
trained on the same phecode for TUD that is available in ATLAS and (2)
there is a high degree of overlap with ATLAS genotyped variants (800,381
of 847,691 total variants in TUD-PGS overlapping with ATLAS data - 94.4%
overlap). The original PGS training analyses were performed using LDpred2
[30] and adjusted for the following covariates: sex, age, birth date,
Townsend’s deprivation index, and the first 16 principal components of the
genotype matrix. We computed the PGS for each ATLAS participant by
multiplying the individual risk allele dosages by their corresponding
weights that are provided by the PGS catalog [29]. The PGS was mean-
centered and standardized by the standard deviation within each GIA
group to generate a PGS Z-score.
We also tested the predictive performance of 16 multi-ancestry PGS

from Saunders et al, Nature 2022 [5], trained on European, Admixed, East
Asian and African ancestry populations for traits ‘Smoking initiation’, ‘Age
of smoking initiation’, ‘Cigarettes smoked per day’ and, ‘Smoking
cessation’. We downloaded these PGS (PGS003357- PGS003372) from the
PGS Catalog [29] and tested their predictive performance on 4 genetically
inferred ancestry groups within ATLAS for phecode 318.0 for tobacco use
disorder, since we do not have information on the traits that the PGS were
originally trained in.

Phecodes
ICD9 and ICD10 billing codes were aggregated into clinically meaningful
groupings called phecodes using mappings derived from the PheWAS
catalog, v1.2 [31]. Cases were defined by the presence of an ICD code
tagged by the respective phecode and controls by the absence of the ICD
codes. Tobacco use disorder diagnosis was derived from the presence of
“tobacco use disorder” phecode (318.00) within an individual’s health
record which groups ICD codes (F17.200, F17.201, F17.210, F17.211,
F17.220, F17.221, F17.290, F17.291, O99.33, O99.330, O99.331, O99.332,
O99.333, O99.334, O99.335, Z87.891) for tobacco use disorder (TUD). For
the PheWAS analysis, we used 1847 phecodes, extracted from each
individual’s health record as described above, to capture phenotypes
across the phenotypic spectrum [31].

Statistical analysis
All analysis was conducted in either Python 2.6.8 [32] or R 4.2.1 [33].

Predictive performance and risk stratification. We analyzed the predictive
performance of the standardized TUD-PGS across ancestry groups and risk
quantiles using GIA-stratified logistic regression models, with the phecode
for TUD as the outcome and with predictors including terms for age, sex,
the first five principal components of the genotype matrix, and
insurance class.
We include insurance class information as the closest proxy to bias

introduced by participation and access to healthcare within the de-
identified electronic health records [34]. This insurance class variable
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consists of the type of insurance used by the patient in their clinical
encounters. The classes include “Public”, “Private” or “Self-pay”. Public class
includes ‘Medicare’, ‘Medicare Advantage’, ‘Medicare Assigned’, ‘Medi-Cal’,
‘Medicaid’, and ‘Medi-Cal Assigned’. Private class includes ‘International
Payor’, ‘Group Health Plan’, ‘Worker’s Comp’, ‘Tricare’, ‘UCLA Managed
Care’, ‘Blue Shield’, ’Commercial’, ’Blue Cross’, ‘Package Billing’ and ‘Other’.
Odds ratios were calculated within each GIA, with P-values from Wald-

type test statistics and a Bonferroni-corrected significance level of 0.0125
= (0.05/4). For risk stratification analysis, we grouped individuals of each
GIA group into 5 groups of equal size based on their PGS and compared
the quintile with the highest score with the quintile with the lowest scores.
This model can be represented as

Tobacco use disorder phecode ð318:0Þ � PGSZðorÞ PGS quintile
þAgeþ Sex þ PCs1� 5þ Insurance Class

Phenome-wide association meta-analysis. For the phenome-wide associa-
tion analysis, we tested the association between the standardized TUD-PGS
and 1847 electronic health record-derived phecodes across the phenome.
Each GIA-specific PheWAS analysis consisted of logistic regressions across
1847 EHR-derived phecodes, controlling for age, sex, first 5 PCs, and
insurance class. For the cross-ancestry meta-analysis, we use the PGS-
PheWAS results computed within each GIA group and meta-analyze across
these ancestry groups using a random effect, inverse variance weighted
model using the metafor (version 3.4) package in R [35]. We use a phenome-
wide Bonferroni-corrected p-value significance threshold of 2.7e-05 to adjust
for the multiple testing burden (P= 0.05/1847 tests for each trait identified
by phecodes). The never-smoker analysis followed a similar analysis plan,
restricted to individuals of European American GIA with no history of
smoking recorded by their provider within their medical records (n= 9921).

Mendelian randomization. We evaluated causality using Mendelian
Randomization (MR) methods to test for and evaluate the causality between
tobacco use and obesity [21]. We used summary statistics from GSCAN
Consortium GWAS for “Cigarettes Smoked Per Day” (249,752 participants of
European Ancestry and 12,003,613 SNPs) [36] and summary statistics from
MRC Integrative Epidemiology Unit - the University of Bristol and UKBB
GWAS for “Waist Circumference” (462,166 participants of European Ancestry
and 9,851,867 SNPs) [37] as the instrumental variables to test the causal
association between tobacco use and obesity measures. We performed a
second MR analysis to validate the previous analysis using summary
statistics for ‘Body Mass Index - BMI’ using summary statistics from UK
Biobank [37] (461,460 individuals and 9,851,867 SNPs), using the same
‘Cigarettes smoked per day’ summary statistics from GSCAN as the outcome.
Lastly, GSCAN consortium and UK Biobank have approximately 35%

sample overlap and hence we also tested this association using summary
statistics for BMI from GIANT consortium (322,154 individuals and 2,554,668
SNPs) [38]. We used the ‘TwoSampleMR’ R package to extract instruments,
harmonize and obtain effect sizes from multiple MR methods (MR Egger,
Weighted median, Inverse variance weighted, Simple mode, and Weighted
mode) [39].

RESULTS
Baseline characteristics of included ATLAS Biobank
participants
The final analysis included n= 24,202 individuals with complete
information on all covariates. Within the “TUD” phecode, the study
population consisted of 7902 cases and 16,283 controls. The
average age of individuals with a TUD phecode was 64.3 years.
Participant sex was significantly associated with TUD phecode
with 55.1% of the phecode represented by the male sex. Four
genetically inferred ancestry groups had sufficient sample size to
perform the analyses: European American (EA), Hispanic/Latin
American (HL), East Asian American (EAA), and African American
ancestry (AA) (n= 15,780, 4412, 2377, and 1633, respectively).
Table 1 summarizes the demographics of the study sample.

Prediction and risk stratification of TUD using TUD-PGS across
genetically inferred ancestry groups
We first evaluated how well the TUD-PGS predicts TUD across the
multi-ancestry study sample within the ATLAS biobank. The TUD-

PGS associated significantly with the phecode for TUD within the
ATLAS biobank for individuals of European American (EA) GIA
(OR:1.20, CI: [1.16, 1.24]), showing an increase in odds of TUD by
20% for each standard deviation increase in the TUD-PGS.
Similarly, we observed significant associations between TUD-PGS
and TUD among Hispanic/Latin American (HL) GIA (OR:1.19, CI:
[1.11, 1.28]), and East Asian American (EAA) GIA groups (OR: 1.18,
CI: [1.06, 1.31]). However, the TUD-PGS was not associated with
TUD in individuals of African American (AA) GIA group (OR: 1.04,
CI: [0.93, 1.17]). Supplementary Table 1 summarizes these
associations.
In addition, we used multi-ancestry PGS (PGS003357-

PGS003372) and tested their predictive performance in the
ancestry group corresponding to their training group. These PGS
showed inconsistent albeit significant associations in EA GIA and
insignificant associations in non-European GIAs with TUD in ATLAS
(Supplementary Table 2).
Next, we assessed if the TUD-PGS could stratify individuals by

risk for tobacco use disorder. Based on TUD-PGS, we divided the
study sample into quintiles and estimated the odds ratio of TUD
for each quintile compared to the bottom quintile. When
compared to the quintile with the lowest TUD-PGS, the quintile
with the highest TUD-PGS demonstrated an OR= 1.69 (CI: [1.51,
1.88]) in EA and 1.71 (CI: [1.36, 2.14]) in HL ancestry groups. The
TUD-PGS offered strong risk stratification for individuals of EA GIA
and for the top two risk quintiles in HL. Risk stratification was
weaker and inconsistent in the EAA, (OR= 1.60, CI = [1.15, 2.24])
and AA ancestry groups (OR= 1.02, CI = [0.71, 1.47]) (Fig. 1,
Supplementary Table 3). This TUD-PGS risk stratifies individuals in
EA and HL ancestry groups, potentially identifying individuals at a
higher risk of tobacco use disorder within these ancestry groups.
However, this risk stratification was inconsistent or absent in EAA
and AA ancestry groups.

Systemic comorbidities in TUD-predisposed individuals
identified by TUD-PGS- PheWAS
Next, we systematically evaluated associations between a genetic
predisposition to TUD with 1847 traits or diseases across the
phenome. The TUD-PGS captures the genetic predisposition to
TUD and the 1847 traits are captured using phecodes extracted
from each individual’s electronic health record. In a PheWAS of the

Table 1. Baseline characteristics of ATLAS participants included in
this study.

Overall

n 24,202

Age, median [Q1,Q3] 61.0 [46.0,72.0]

Sex, n (%) Female 13,277 (54.9)

Male 10,914 (45.1)

Insurance class, n (%) Private 14,996 (62.0)

Public 8431 (34.8)

Self-Pay 775 (3.2)

Tobacco use disorder,
n (%)

Controls 16,283 (67.3)

Cases 7902 (32.7)

Genetically Inferred
Ancestry, n (%)

African American
(AA)

1633 (6.7)

Hispanic/Latin
American (HL)

4412 (18.2)

East Asian American
(EAA)

2377 (9.8)

European American
(EA)

15,780 (65.2)
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TUD-PGS across 1847 phecodes (Supplementary Fig. 1a), meta-
analyzed across 4 GIAs, we found 17 significant associations at
Bonferroni-adjusted P < 0.05 after adjusting for age, sex, first 5
principal components of the genotype matrix, and health
insurance information. The top phecodes associated with the
TUD-PGS were ‘morbid obesity’, ‘obstructive chronic bronchitis’,
‘substance addiction and disorders’, and ‘ischemic heart disease’
(P= 1.38E-09, 2.73E-09, 4.45E-08, 1.61E-07) (Fig. 2a). Phecode
categories with multiple associations were circulatory (n= 5),
respiratory (n= 3), neurological (n= 2), and metabolic (n= 2)
phenotypes (Supplementary Table 4). The results of this analysis
systematically identify the health risks associated with a genetic
predisposition to tobacco use captured by the PGS.
However, it must be noted that these associations may reflect

the traits and diseases associated with tobacco use behavior,
which lie on the TUD-PGS to trait/disease pathway (Supplemen-
tary Fig. 1b). To study the potential pleiotropic effects of germline
variants that predispose to TUD, we leveraged the fact that
individuals with genetic predisposition to TUD may choose not to
engage in tobacco use behaviors. We can thus account for the
effect of tobacco use behavior to identify systemic risks of TUD
genetic predisposition by stratifying to individuals with no
smoking history recorded in their electronic health records.
Accordingly, we repeated the PGS-PheWAS association analysis,
restricting to “never-smokers” in individuals of EA ancestry, i.e.
individuals who reported that they have never smoked tobacco
(Supp Fig. 1b). In this analysis, the TUD-PGS demonstrated
associations with obesity, alcohol-related disorders, cancer of the
esophagus, and hypertension (P= 3.54E-07, 1.61E-06, 3.05E-06,
2.62E-05) (Fig. 2b, Supplementary Table 5).
In an evaluation of the trends of obesity and alcohol-related

disorders across quintiles of the TUD-PGS, we observed higher ORs
among never-smokers compared to ever-smokers for obesity and
alcohol-related disorders. TUD-PGS offered inconsistent risk strati-
fication for obesity and alcohol-related disorders in ever-smokers, or
individuals with a history of smoking (Fig. 3). In contrast, a reverse
trend is noted in lung cancer, an established trait associated with
smoking behavior, which can thus serve as a negative control,
where we observed higher ORs in ever-smokers compared to
never-smokers. (Supplementary Fig. 2, Supplementary Table 6) We

can conclude from this analysis that, individuals predisposed to
TUD show associations with obesity and alcohol-related disorder
even in the absence of tobacco use behavior.

Mendelian randomization analysis finds evidence of causality
in the association between obesity and tobacco use
To evaluate if the association between obesity and tobacco use
can be given a directional and causal interpretation, we performed
Mendelian randomization (MR) analysis between quantitative
measures of obesity and tobacco use using publicly available
GWAS of “waist circumference” [36] and “cigarettes smoked per
day” [35]. From the results of multiple MR methods, we observed
that the exposure “waist circumference” demonstrated significant
positive causal associations with the outcome “cigarettes smoked
per day” across all methods used to test this association (MR
Egger, Weighted median, Inverse variance weighted, Simple
mode, Weighted mode with P= 2.39E-03, 1.50E-32, 1.49E-46,
8.22E-05, 2.05E-08, respectively). A second MR analysis of “body
mass index” as the exposure and “cigarettes smoked per day” as
the outcome showed similar positive causal associations (MR
Egger, Weighted median, Inverse variance weighted, Simple
mode, Weighted mode P= 2.65E-03, 8.34E-33, 1.17E-45, 8.23E-
06, 5.78E-07). An MR analysis of the reverse direction, with
“cigarettes smoked per day” as the exposure and “waist
circumference” and “body mass index” as outcomes did not show
significant causal effects. Supplementary Fig. 3a, b presents the
causal effect estimates and confidence intervals. In a subsequent
MR analysis in both directions using summary statistics for BMI
from GIANT consortium, we find similar results, shown in
Supplementary Table 7.

DISCUSSION
In this study, we examined the predictive performance and risk
stratification of a publicly available, European ancestry PGS for
tobacco use disorder in a multi-ancestry EHR-linked biobank. Our
results demonstrated that this TUD-PGS predicts TUD and risk
stratifies European American and Hispanic/Latin GIA groups.
However, inconsistent prediction and risk stratification was noted
in the East Asian American and African American GIA groups.

Fig. 1 TUD-PGS correlates with TUD phecode in EA, HL, and EAA ancestries across risk quintiles. The X-axis represents the top 4 quintiles
grouped according to TUD-PGS. Y axis represents effect sizes represented by odds ratios. The red line indicates OR= 1. Effect sizes between
TUD-PGS and TUD phecode vary across PGS quintiles in 4 genetically inferred ancestry groups with strong risk stratification noted in EA and
HL and inconsistent risk stratification in AA and EAA groups.
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Based on these results, we anticipate two issues if TUD-PGS is
used clinically to identify individuals at high risk for tobacco use or
to predict tobacco use in individuals. First, the risk stratification
offered only to certain ancestry populations does not allow for
equitable clinical translation of genetic research. Second, the
application of these PGS to individual-level clinical decisions must

proceed with caution with additional extensive validation with
clinical history. At present, we do not recommend interventions
solely based on being classified as “high risk” by TUD-PGS due to
large uncertainty in imputed polygenic scores at an individual
level [40] and inconsistent performance in non-European
populations.
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Next, we evaluated the potential pleiotropic effects of TUD
predisposing variants using the PGS to conduct a phenome-wide
association analysis. Additionally, we repeated this analysis in a
subgroup of participants without a reported history of smoking
behavior, to evaluate the systemic associations of a genetic
predisposition to tobacco use in the absence of tobacco use
behavior. The PGS-PheWAS cross-ancestry meta-analysis demon-
strated significant associations with respiratory and cardiovascular
phenotypes, both of which have robust clinical and biological
evidence [41, 42]. Other significant associations were in the
category of psychiatric disorders, including associations with
anxiety disorders and substance addiction disorders. These
psychiatric disorder associations have been consistently reported
in past genetic studies of smoking and tobacco use [43].
In the PGS-PheWAS analysis of never-smokers, phenotypes

associated with tobacco use behaviors, namely, respiratory and
cardiovascular phecodes, did not demonstrate statistical signifi-
cance. Instead, we observed associations with psychiatric phe-
codes including alcohol-related disorders, and metabolic
phecodes with potential behavioral contributions such as obesity.
The MR analysis results suggest a causal association between
adiposity and tobacco use, in line with other published literature
with similar directionality and effect sizes [44]. Together, the
associations between tobacco use, obesity, and alcoholism are
suggestive of shared genetic architecture between these traits,
likely originating from the biological regulation of impulsivity and
addictive behaviors [45].

While this TUD-PGS cannot yet be translated clinically, these
findings nevertheless have implications for patients with tobacco
use disorder. We demonstrate the systemic comorbidities
associated with a genetic propensity to TUD. Additionally, we
demonstrate that genetically predisposed individuals may be at
risk for obesity and alcohol use disorder even when tobacco use
behavior is absent. For patients in the TUD high-risk genetic
propensity group, these findings would necessitate broadening
the focus of the preventive and therapeutic strategy to include a
more comprehensive regulation of biological pathways that
underlie addiction and impulsivity.
A major strength of this study is that we evaluated TUD-PGS in

an information-rich biobank across multiple genetically inferred
ancestry groups. The rich phenotypic information available in the
biobank allowed us to test associations across the phenome in a
hypothesis-free manner, allowing for the discovery of disease
associations. Another strength of the paper is that we accounted
for possible confounding bias introduced by participation/access
to healthcare bias, which can arise from using data from a
hospital-based biobank, by using an insurance class variable as a
proxy marker for participation and access.
Previous work has shown that PGS accuracy decreases linearly

when there is a large difference in genetic ancestry between the
training sample and the target sample. These differences in
performance lead to bias and imprecision in risk stratification
when PGS are applied clinically for complex traits such as TUD.
Our results add to these results and motivate more sophisticated

Fig. 3 TUD-PGS associations with alcohol-related disorders and obesity among all vs ever vs never-smokers across TUD-PGS quintiles.
Associations between TUD-PGS quintiles and Alcohol-related disorders (phecode = 317.0) and Obesity (phecode = 278.1). The X-axis
represents the top 4 quintiles grouped according to TUD-PGS. Y axis represents effect sizes represented by odds ratios. The red line indicates
OR= 1. TUD-PGS risk stratifies for the phecodes for alcohol-related disorders and obesity in ‘never-smokers’ but not in ‘ever-smokers’.

Fig. 2 Phenome-wide associations for TUD-PGS. A TUD-PGS-PheWAS plot across 1847 phecodes (cross-ancestry meta-analysis). Associations
between TUD-PGS and 1847 phecodes across the phenome, meta-analyzed across 4 GIA groups with significant associations labeled. The
X-axis represents the Z value (beta/SE). Each color represents a phecode category and each dot represents a phecode. Phenome-wide
significance is represented by the red dashed line at a Z value= 4.2 which corresponds to a P value of 2.57e-5 (1847 tests/0.05). Top
associations were noted in circulatory, metabolic, mental and respiratory phenotype categories. B TUD-PGS-PheWAS plot across 1847
phecodes in never smokers of EA ancestry group. Associations between TUD-PGS and 1847 phecodes across the phenome in never smokers
of EA ancestry with significant associations labeled. The X-axis represents the Z value (beta/SE). Each color represents a phecode category and
each dot represents a phecode. Phenome-wide significance is represented by the red dashed line at a Z value= 4.2 which corresponds to a P
value of 2.57e-5 (1847 tests/0.05). In TUD-PGS-PheWAS restricted to ‘never-smokers’, top associations were obesity and alcohol-related
disorders.
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computational methods to improve the portability of PGS,
especially for complex traits, like TUD, that are influenced greatly
by both genetics and the environment and are risk factors for
other diseases.
We conclude with limitations and future considerations of our

work. Our study included a multi-ancestry sample of patients, but
non-European ancestries are represented at smaller sample sizes
for most analyses using the UCLA ATLAS biobank. With continued
enrollment, we hope to increase the non-European sample sizes
and evaluate differential genetic effects in these ancestries. Next,
phecodes are derived from ICD codes which are billing codes and,
accordingly, may not always capture the full extent of an
individual’s disease history. The interpretations of our analyses
are within the limitations of these phenotype definitions. We
emphasize that the risk of having a phecode in the electronic
health record does not accurately reflect the risk of having the
disease. Phecode assignments come with biases, including access
to healthcare. We have attempted to address this bias introduced
by healthcare access by including an insurance class information
variable. Nevertheless, this difference must be considered when
applying these results to the general population. Lastly, the MR
analysis has a partial sample overlap which might offer biased
results. However, subsequent analysis with summary statistics
from GWAS without sample overlap demonstrates similar results
as the original MR analysis, supporting a conclusion of a potential
causal association between measures of adiposity and tobacco
use.
The results of our study have implications for public health and

clinical approaches to the treatment of tobacco use disorder.
Future research should strive to improve the prediction and risk
stratification of TUD-PGS in all ancestry groups. With consistent
performance across ancestry groups and improved individual-
level prediction, TUD-PGS can be useful to identify individuals who
can benefit from comprehensive preventive and therapeutic
strategies to manage their underlying addictive tendencies. Given
the growing evidence on health risks associated with obesity and
tobacco use, our results suggest possible shared genetic etiology
between these two risk factors, strengthening the argument that
public health approaches must consider this shared risk while
formulating interventions.
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