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Obsessive-compulsive disorder (OCD) is associated with a high disease burden, and treatment options are limited. We used
intensified electrical stimulation in two dosages to target a main circuitry associated with the pathophysiology of OCD, left
dorsolateral prefrontal cortex (l-DLPFC), and pre-supplementary motor area (pre-SMA) and assessed clinical outcomes,
neuropsychological performance, and brain physiology. In a double-blind, randomized controlled trial, thirty-nine patients with
OCD were randomly assigned to three groups of sham, 2-mA, or 1-mA transcranial direct current stimulation (tDCS) targeting the
l-DLPFC (F3) and pre-SMA (FC2) with anodal and cathodal stimulation respectively. The treatment included 10 sessions of 20-minute
stimulation delivered twice per day with 20-min between-session intervals. Outcome measures were reduction in OCD symptoms,
anxiety, and depressive states, performance on a neuropsychological test battery (response inhibition, working memory, attention),
oscillatory brain activities, and functional connectivity. All outcome measures except EEG were examined at pre-intervention, post-
intervention, and 1-month follow-up times. The 2-mA protocol significantly reduced OCD symptoms, anxiety, and depression states
and improved quality of life after the intervention up to 1-month follow-up compared to the sham group, while the 1-mA protocol
reduced OCD symptoms only in the follow-up and depressive state immediately after and 1-month following the intervention. Both
protocols partially improved response inhibition, and the 2-mA protocol reduced attention bias to OCD-related stimuli and
improved reaction time in working memory performance. Both protocols increased alpha oscillatory power, and the 2-mA protocol
decreased delta power as well. Both protocols increased connectivity in higher frequency bands at frontal-central areas compared
to the sham. Modulation of the prefrontal-supplementary motor network with intensified tDCS ameliorates OCD clinical symptoms
and results in beneficial cognitive effects. The 2-mA intensified stimulation resulted in larger symptom reduction and improved
more converging outcome variables related to therapeutic efficacy. These results support applying the intensified prefrontal-SMA
tDCS in larger trials.
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INTRODUCTION
With a lifetime prevalence of 2–3%, Obsessive-compulsive disorder
(OCD) is one of the most disabling psychiatric disorders [1], with
substantial functional impairment and increased risk of early
mortality [2, 3]. Individuals with OCD have unwanted and distressing
thoughts (obsessions) and repetitive behaviors that the individual
feels driven to perform (compulsions) [4]. While cognitive-behavioral
therapy with exposure/response prevention and serotonin reuptake
inhibitor medication are considered first-line treatments for OCD, up
to 40% of patients fail to respond to these treatments [5].

Non-invasive brain stimulation techniques provide unique
opportunities to not only study brain functions but also to modify
core physiological parameters of human behavior and cognition
(e.g., neuroplasticity) in both healthy and clinical populations
[6, 7]. Some non-invasive brain stimulation techniques, such as
repetitive transcranial magnetic stimulation (rTMS), are Food and
Drug Administration (FDA)-approved for the treatment of several
major neuropsychiatric disorders, including OCD [8], suggesting
that other forms of techniques may be considered as a potential
intervention for patients with OCD. Transcranial direct current
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stimulation (tDCS) is a non-invasive brain stimulation technique
that uses a weak direct electrical current to modulate brain
activity and excitability [9]. The exact mechanisms by which tDCS
works are not fully understood, but its primary mechanism of
action, which emerges immediately during stimulation, involves
subthreshold de- or hyperpolarization of neuronal membrane
potentials, resulting in excitability-enhancing effects by anodal
and excitability-reducing effects by cathodal stimulation in
conventional protocols [10, 11]. In neuropsychiatric disorders
that are characterized by functional brain abnormalities (i.e.,
hyper- or hypoactivity of specific brain region/s and network/s), it
is possible to modify altered brain functions with tDCS and affect
target behavior or cognition [12–16]. In OCD, results of tDCS
studies have been mixed so far, and knowledge is still limited
about optimal stimulation parameters and efficacy of interven-
tions, such as in other clinical non-invasive brain stimulation
scenarios [12, 17–20].
Functional abnormalities of the dorsolateral prefrontal cortex

(DLPFC) are documented in OCD [21]. Specifically, response
inhibition, a core cognitive ability that is severely impaired in
OCD is linked to several regions of the prefrontal cortex,
including the DLPFC and inferior frontal gyrus [22–24]. Another
cortical region that is consistently shown to be involved in the
pathophysiology of OCD is the pre-supplementary Motor Area
(pre-SMA), which is important for inhibitory control, especially of
ongoing actions [25–27]. In OCD patients, the pre-SMA is
hyperactive, especially during cognitive task performance that
requires attentional and inhibitory control [28, 29], and is,
therefore, a major target of non-invasive brain stimulation
treatment [17, 30, 31]. Although the left DLPFC and pre-SMA
have been targeted in previous tDCS studies, targeting both
regions with anodal and cathodal stimulation respectively has
not been reported so far [19, 32]. Applying a protocol that can
modulate the prefrontal-SMA network and presumably restore
physiological abnormalities can have therapeutic effects.
Beyond the choice of the target region, stimulation parameters

(e.g., stimulation intensity and repetition) are critical for the
efficacy of the neurostimulation intervention, and recent work
stress on optimizing and/or individualizing the intervention
[33, 34]. Physiological findings in healthy humans have shown
that repeated stimulation with a short interval (e.g., two
consecutive stimulation sessions with a 20 min interval) can
induce long-lasting LTP-like plasticity in the brain [35]. This has
implications for the clinical application of tDCS. We recently
showed that such a stimulation protocol, which we refer to as
“intensified” protocol, has stronger and longer therapeutic
effects on social anxiety disorder [36]. In the present study, we
adopted the same stimulation protocol and furthermore,
included different outcome variables to evaluate treatment
efficacy. In addition to primary clinical symptoms, we assessed
core cognitive deficits in OCD patients (e.g., response inhibition,
working memory) [37] and monitored changes in the oscillatory
power spectrum and functional connectivity of the brain, which
are abnormally changed in OCD, such as reduced and raised
alpha and delta power respectively and reduced functional
connectivity [38–41].
Accordingly, in this registered, randomized, double-blind, sham-

controlled clinical trial we aimed to (1) investigate the effect of
intensified stimulation over prefrontal and pre-SMA regions on
primary and secondary clinical variables in patients with OCD, (2)
explore the stimulation dosage-dependency (1-mA vs 2-mA) of
treatment efficacy, (3) and examine the effects of these
interventions on cognitive (response inhibition, attention bias)
and electrophysiological (oscillatory power, functional connectiv-
ity) correlates of the psychopathology of OCD. This is the first tDCS
RCT in OCD to explore the effects of a novel intensified tDCS
intervention at two different stimulation intensities on symptom
reduction and neurocognitive correlates of OCD.

METHODS
Participants
This study had a randomized, double-blind, parallel-group design to
prevent blinding failure and carry-over effects. Thirty-nine individuals
diagnosed with OCD (mean age= 31.59, SD= 8.24, 26 females) were
recruited from several neuropsychiatric clinics in Ardabil, Iran from August
2020 to January 2022. Patients were randomly assigned to the active and
sham stimulation groups by the block randomization method (supple-
mentary content). The sample size was calculated a priori based on a
medium effect size suggested for tDCS studies [42] (f= 0.30, α= 0.05,
power= 0.95, N= 39, mixed-model ANOVA with 3 measurements). Two
patients from the 1-mA and sham groups did not complete the whole
treatment, and final analysis was conducted on 37 participants (1 mA tDCS
N= 12, 2 mA tDCS N= 13, sham tDCS N= 12) (Fig. 1). The inclusion criteria
were: (1) diagnosis of OCD according to DSM-5, (2) being 18–50 years old,
(3) being non-smoker, (4) no previous history of neurological diseases,
brain surgery, epilepsy, seizures, brain damage, head injury, or metal brain
implants, and (5) absence of other psychiatric disorders. Those patients
taking anxiolytic (N= 6) and/or SSRI (N= 22) medication were receiving
stable doses for 6 weeks before the experiment up to the follow-up. All
participants were native speakers and had normal or corrected-to-normal
vision. This was a registered clinical trial (ClinicalTrials.gov Identifier:
NCT05501132) approved by the Ethics Committee of the Ardabil University
of Medical Science (Ethics code: IR.ARUMS.REC.1399.102). Participants gave
their written informed consent before participation (see Table 1 for
demographics).

Outcome measures (primary and secondary clinical measures,
cognitive deficits, and brain physiology)
Primary and secondary clinical measures. The primary outcome measure
to examine the effects of the intervention on OCD symptoms was the Yale-
Brown Obsessive-Compulsive Scale (Y-BOCS) [43]. Additionally, anxiety and
depressive states were tested by the Beck Anxiety Inventory (BAI) [44] and
the Beck Depression Inventory (BDI-II) [45], respectively, and quality of life
was assessed with the WHO Quality of Life Questionnaire (WHOQUL) [46].
These measures were used to evaluate the clinical efficacy of the
intervention. The Y-BOCS is the most widely used clinician-rated interview
for assessing OCD symptom severity and is a reliable measure of
treatment-based reduction of symptoms [47]. The BAI is also well suited
to monitor treatment outcomes [48], and the evaluated anxiety state is
correlated with OCD symptoms [49, 50]. Similarly, BDI-II scores are
associated with OCD symptoms [50], in line with the fact that around
one-third of OCD patients suffer from comorbid depression [51]. A detailed
description of these measures can be found in the supplementary
information.

Cognitive assessment and brain physiology. We used a battery of
neuropsychological tests that are sensitive to the cognitive deficit profile
of OCD affected by interventions. Deficits of inhibitory control, working
memory performance, and attention (e.g., sustained attention, set-shifting)
are among the most well-documented cognitive deficits in OCD
[37, 52, 53]. Importantly, these cognitive deficits are associated with
frontal–striatal and frontal dysfunctions [29, 54–56], which are targeted by
the intervention in this experiment. We examined response inhibition with
the Go/No-Go task and Flanker test, working memory with the n-back task,
and attention bias to OCD-related stimuli with an adapted dot-probe task.
A detailed description of these measures is provided in the supplementary
information. Finally, we monitored resting EEG to see how power spectrum
and functional connectivity change after the intervention, specifically in
frequency bands of interest (e.g., alpha, delta, gamma) [38–41]. A detailed
description of the measures and EEG data preprocessing and analysis are
in the supplementary content.

tDCS
Direct currents were generated by an electrical stimulator (Oasis Pro, Mind
Alive, Canada), and applied through a pair of saline-soaked sponge
electrodes (7 × 5 cm) for two periods of 20 min and 20min intervals
between each stimulation period [36]. Stimulation was delivered on 5
consecutive days (two stimulations per day). In both active (1-mA, 2-mA)
and sham conditions, anodal and cathodal electrodes were placed over
the left DLPFC (F3), and right pre-SMA (FC2), respectively, to keep a
minimum 6 cm distance between the edges of the electrodes [57]. To
localize the right pre-SMA first, the pre-SMA was identified using the EEG
10–20 system for electrode positioning (i.e., 15% cm anterior to Cz)
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[17, 58]. In sham stimulation, the electrical current was ramped up and
down for 30 seconds to generate the same sensation as in the active
condition and then turned off [59]. To guarantee blinding, tDCS was
applied by independent investigators who were not involved in outcome
measures rating [60]. A side-effect survey was done after each tDCS
session. Blinding efficacy was not explored among patients and
experimenters. A 3D model of the current flow in the head was created
to determine induced electrical fields in the brain for the above-
mentioned tDCS protocol (Fig. 2).

Procedure
Prior to the experiment, participants completed a brief questionnaire to
evaluate their suitability for brain stimulation. All participants received 10
sessions of stimulation (2 sessions daily, 5 days in total) with 20-minute
intervals between the sessions. To avoid confounding effects of the
intervention at circadian non-preferred time, which can significantly affect
neuroplasticity induction [61], all stimulation sessions took place between
11:00–14:00, and participants were not under sleep pressure [62]. Clinical
cognitive measures were evaluated before the first intervention (pre-
intervention), right after the end of the last intervention (post-interven-
tion), and 1-month following the last stimulation session (follow-up). EEG
measurements took place only before and after the intervention. Patients
were instructed about the tasks before the beginning of the experiment.
None of the patients received any kind of psychotherapy during the study.
Participants were blind to the study hypotheses and stimulation
conditions. The experimenter who conducted the outcome measures
was blinded to the tDCS conditions (Fig. 2).

Statistical analysis
Data analyses were conducted with the statistical package SPSS, version
26.0 (IBM, SPSS, Inc., Chicago, IL), and the GraphPad Prism 8.2.1 (GraphPad

Table 1. Demographic data.

1-mA
tDCS

2-mA
tDCS

sham
tDCS

p
value*

Sample size (n) 12 13 12

Age – Mean (SD) 33.91
(9.52)

28.46
(7.04)

32.66
(7.67)

0.224

Sex – Male (female) 4 (8) 3 (10) 4 (8) 0.809

Marital status

Single 6 6 6 0.221

Married 6 8 7

Divorced 0 1 1

Time since diagnosis
(years)- mean (SD)

4
(1.85)

3.50
(1.78)

4.16
(2.24)

0.851

On medication (n) 9 11 8 0.578

Medication type

SSRI 7 8 7 0.459

BDZ 1 4 1

Education

Under diploma 5 8 10 0.221

Diploma or higher 6 5 2

tDCS transcranial Direct Current Stimulation, M mean, SD standard
deviation; *= between-group differences in demographic variables were
explored by Chi-square tests or Fisher’s exact test for categorical variables
and F tests for continuous variables.

0

0

0

00

Analysed (n=12)
Excluded from analysis (n=0)

Analysed (n=12)
Excluded from analysis (n=0)

Analysed (n=13)
Excluded from analysis (n=0)

Fig. 1 CONSORT flow diagram of study inclusion.
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Software, San Diego, California). The normality and homogeneity of data
distribution, and variance were confirmed by Shapiro-Wilk and Levin tests,
respectively. Between-group differences in demographic variables were
explored by Chi-square tests or Fisher’s exact test for categorical variables
and F-tests for continuous variables. A multivariate Analysis of Variance
(MANOVA) was first performed on the post-intervention and follow-up
means of all outcome variables with group as the fixed factor and pre-
intervention measures as covariates. This was to help protect against
inflating the Type 1 error rate in the follow-up ANOVAs and post-hoc
comparisons. A series of one-way ANOVA’s on each dependent variable
was conducted as follow-up tests to the MANOVA. Finally, a series of post-
hoc analyses were calculated using Dunnett’s multiple comparisons to
examine individual mean difference comparisons across groups (active
1mA, active 2mA, sham) and time points (pre-intervention, post-
intervention, follow-up). The critical level of significance was 0.05 for all
statistical analyses.

RESULTS
Side effects and baseline assessment
Participants tolerated the stimulation well, and no adverse effects
were reported during and after stimulation, replicating the safety
of the intervention [63, 64]. No significant difference was found
between the group ratings of tDCS side effects (Supplementary
Table S1). No significant between-group differences emerged in
the pre-intervention measurements (Supplementary Table S2).

Primary clinical outcome: reduction of OCD symptoms and
anxiety
A statistically significant MANOVA effect was seen for both post-
intervention (Pillais’ Trace= 1.64, F(24, 24)= 4.63, p < 0.001) and
follow-up measurements (Pillais’ Trace= 2.98, F(24, 24)= 4.63,

Fig. 2 Study procedure and the intervention. A The experiment was conducted in a randomized, double-blind, sham-controlled parallel-
group design. Participants were randomized to 3 tDCS arms: 1-mA tDCS (n= 12), 2-mA tDCS (n= 13), and sham tDCS (n= 12). B Results of the
electrical field simulation for the current flow in the head based on the applied protocols. The anodal electrode (red) was placed over the left
DLPFC and the cathode (blue) over the pre-SMA (FC2). The induced electric fields (EF) were calculated using SimNIBS [80], an open-source
pipeline for Non-invasive Brain stimulation. (NIBS) modeling (available at https://simnibs.github.io/simnibs/). SimNIBS employs the mri2mesh
tool, integrating FSL and FreeSurfer, to estimate the EF distribution. FSL segments extracerebral tissues, while FreeSurfer handles brain
segmentation and gray matter surface reconstructions. Simulations were performed for the MNI-152 standard head [81]. Two stimulation
protocols were modeled: one with 7 × 5 cm electrodes over the left DLPFC (F3) and the pre-SMA (FC2), with 1-mA current intensity, and the
same parameters except for the intensity, which was 2-mA (10–20 EEG electrode positioning system). The average EF value (undirected) in
each region was calculated based on the sum of EF values and the number of voxels in the area. All the calculations were performed using FSL
and Matlab.
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p= 0.005). The results of the follow-up ANOVAs revealed a
significant main effect of group on both Y-BOCS scores (post-
intervention: F(2, 22)= 7.14, p= 0.004, ηp2= 0.394; follow-up:
F(2, 22)= 13.54, p < 0.004, ηp2= 0.552) and BAI scores (post-
intervention: F(2, 22)= 8.78, p= 0.002, ηp2= 0.423; follow-up:
F(2, 22)= 5.78, p= 0.010, ηp2= 0.345). Next, Dunnett’s multiple
comparisons were performed on individual mean difference and
showed a significant decrease in Y-BOCS scores at the post-
intervention time in the 2-mA group (p= 0.021, d= 0.98), at the
1-month follow-up in both the 2-mA (p= 0.004, d= 1.01) and
1-mA (p= 0.013, d= 1.23) groups as compared to pre-intervention

time, but no significant changes were seen in the sham group
(Fig. 3A). When compared to the sham group, reduced Y-BOCS
scores were significant in both active groups only at the follow-up
(1-mA: p= 0.044, d= 1.16; 2-mA: p= 0.045, d= 0.82) (Fig. 3B). For
the BAI scores, Dunnett’s multiple comparisons showed a significant
decrease in BAI scores from pre-intervention to both post-
intervention (p= 0.025, d= 0.85) and 1-month follow-up
(p= 0.009, d= 0.97) only in the 2-mA group (Fig. 3C). When
compared to the sham group, both active groups showed a non-
significant trendwise reduction of BAI scores at the post-intervention
assessment (1-mA: p= 0.074; 2-mA: p= 0.083) (Fig. 3D).

Fig. 3 Clinical examination. OCD symptoms measured by Y-BOCS (A, B) and treatment-related variables (C–H) (anxiety measured by BAI,
depressive state measured by BDI-II, and quality of life measured by the WHO quality of life scale), before and immediately after intervention
and 1-month follow-up. Y-BOCS Yale-Brown Obsessive-Compulsive Scale, BAI Beck Anxiety Inventory, BDI-II Beck Depression Inventory-II.
Floating asterisks [*] in the left panel represent a significant difference between pre-intervention measurement vs post-intervention and
follow-up measurements in all groups. Floating asterisks [*] in the right-side figures indicate a significant difference between active
stimulation groups (1 and 2-mA) vs sham tDCS at each time point. ns non-significant. All pairwise comparisons were conducted using
Dunnett’s multiple comparisons. All error bars represent s.e.m.
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Secondary clinical outcomes: mood and quality of life
The results of the follow-up ANOVAs revealed a significant main
effect of group on BDI-II scores (post-intervention: F(2, 22)= 7.13,
p= 0.004, ηp2= 0.394; follow-up: F(2, 22)= 10.47, p < 0.001, ηp2=
0.488) and quality of life (post-intervention: F(2, 22)= 3.58,
p= 0.045, ηp2= 0.246; follow-up: F(2, 22)= 7.33, p= 0.004, ηp2=
0.400). Dunnett’s post hoc tests showed that BDI-II scores were
reduced from the pre-intervention to both post-intervention and
1-month follow-up assessment in both, 2-mA (post-intervention:
p= 0.002, d= 1.15; follow-up: p < 0.001, d= 1.34) and 1-mA (post-
intervention: p < 0.001, d= 1.65; follow-up: p= 0.001, d= 1.49)
groups, but not in the sham group, and reduced depressive state
at each time point was significant in both active groups vs. the
sham group (Fig. 3E, F). No significant individual mean differences
were found across groups in quality-of-life scores (Fig. 3G).
However, we calculated the changes in quality of life scores from
the baseline to post-intervention and follow-up. Dunnett’s post
hoc test of score changes across groups showed that quality of life
scores significantly improved after the intervention only in the
2mA group (p= 0.025) (Fig. 3H).

Cognitive functions: improved inhibitory control in both
active tDCS groups
In the Flanker test, the follow-up ANOVAs revealed a significant
main effect of group on both, congruent (post-intervention:

F(2, 22)= 10.08, p < 0.001, ηp2= 0.478; follow-up: p= 0.901) and
incongruent trials (post-intervention: F(2, 22)= 8.01, p= 0.002,
ηp2= 0.422; follow-up: p= 0.445) only after the intervention and
not follow-up. Dunnett’s multiple-test comparisons revealed a
significant pre vs post-intervention RT reduction of incongruent
stimuli (p= 0.015, d= 1.35) only in the 1-mA group, which,
however, was not significant vs the sham (Fig. 4A, B). In the Go/
No-Go task, the results of the follow-up ANOVAs revealed a
significant main effect of group for No-Go trials reaction time
(post-intervention: F(2, 22)= 7.11, p= 0.004, ηp2= 0.393; follow-up:
F(2, 22)= 4.34, p= 0.026, ηp2= 0.283) and a marginally significant
effect on No-Go trials accuracy at the post-intervention measure-
ment (F(2, 22)= 3.39, pfollow-up= 0.054, ηp2= 0.233). Dunnett’s
multiple-test comparisons showed increased accuracy from the
pre-intervention to the follow-up measurement in 2-mA
(p= 0.022, d= 0.87) and 1-mA (p= 0.032, d= 0.27) groups
(Fig. 4C). The 2-mA protocol significantly reduced RT from pre vs
post-intervention (p= 0.027, d= 1.92) and pre vs follow-up
(p= 0.037, d= 1.95) as well (Fig. 4E) and here the performance
speed on the No-Go trials was significantly faster in the 2-mA group
vs the sham after the intervention (p= 0.014, d= 1.73) (Fig. 4F).

Cognitive functions: working memory and attention bias
In working memory performance, the follow-up ANOVAs revealed
a significant main effect of group only on performance speed after

Fig. 4 Neuropsychological performance. Response inhibition measured by Flanker (A, B) and Go-No/Go (C–F) tasks, before, immediately after
the intervention, and at the 1-month follow-up. Working memory and attention bias were measured by n-back (G, H) and dot-probe (I–L)
tasks, before, immediately after the intervention, and 1-month follow-up. RT Reaction time, s seconds. Floating asterisks [*] in the left panel
represent a significant difference between pre-intervention measurement vs post-intervention and follow-up measurements in all groups.
Floating asterisks [*] in the right panel indicate a significant difference between active stimulation groups (1 and 2-mA) vs sham tDCS at each
time point. ns non-significant. All pairwise comparisons were conducted using Dunnett’s multiple comparisons. All error bars represent s.e.m.
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the intervention (F(2, 22)= 16.76, p < 0.001, ηp2= 0.604) and
1-month follow-up (F(2, 22)= 13.87, p < 0.001, ηp2= 0.558). Dun-
nett’s multiple comparisons showed a significantly faster pre- vs
post-intervention RT (p < 0.001, d= 1.92) and pre vs follow-up RT
(p < 0.001, d= 1.95) in the 2-mA and a significant pre vs follow-up
RT reduction (p= 0.003, d= 1.01) in the 1-mA group. In the 2-mA
group, this RT reduction was furthermore larger than that of the
sham group at post-intervention (p= 0.007, d= 1.73) and follow-
up (p= 0.002, d= 1.91) measurements (Fig. 4G, H). Finally, in the
attention bias of patients to OCD-related stimuli, the follow-up
ANOVAs showed a significant main effect of group for both, OCD-
related (post-intervention: F(2, 22)= 8.82, p= 0.002, ηp2= 0.445;
follow-up: F(2, 22)= 5.53, p= 0.011, ηp2= 0.335) and unrelated
stimuli (post-intervention: F(2, 22)= 5.82, p= 0.009, ηp2= 0.346;
follow-up: F(2, 22)= 9.45, p= 0.001, ηp2= 0.462). Dunnett’s
multiple-test comparisons showed a significantly faster pre- vs
post-intervention RT for both, OCD-related (p < 0.026, d= 0.70)
and unrelated (p < 0.007, d= 0.93) stimuli in the 2-mA group (Fig.
4I, K). No significant between-group RT differences were, however
found for the post-intervention and follow-up measurements.

Intervention-related changes in EEG power spectrum density
and functional connectivity
PSD Analysis with a cluster-based permutation test (post vs pre)
revealed a significant increase in relative alpha power in the left
frontal region (cluster-level statistic= 16, p < 0.01) and the
occipital region (cluster-level statistic= 11, p < 0.05) in the 2-mA
group compared to the sham group. Additionally, a significant
decrease in relative delta power was observed in a cluster located
in the occipital region (cluster-level statistic=−11, p < 0.05) in the
2-mA group compared to the sham group. In the 1-mA group, a
significant increase in relative alpha power was observed in the
right frontal region (cluster-level statistic= 11, p < 0.001) (Fig. 5C).
Topographical plots of the relative power changes (post power –
pre power) in all frequency bands after each intervention are in
supplementary information (Fig. S1). Regarding functional con-
nectivity, comparative analysis of post-intervention Phase Locking
Value (PLV) matrices showed a general trend of increased
connectivity in higher frequency bands in both active groups as
compared to the sham group (Fig. 5A, B and Fig. S2). When we
compared both groups with each other, the 2-mA group generally
decreased functional connectivity across most frequency bands
(EEG connectivity results are fully described in the supplementary
information). We did not see any relevant correlation between EEG
parameters and clinical/cognitive measures.

DISCUSSION
In this randomized, double-blind, sham-controlled, parallel-group
clinical trial, we investigated the impact of an intensified tDCS
protocol (stimulation twice per day with 20-min intervals) over the
prefrontal-supplementary motor network, in two dosages (1-mA
vs. 2-mA) on primary clinical symptoms, neuropsychological
performance, and electrophysiological correlates in patients with
OCD. The 2-mA stimulation dosage significantly reduced OCD
symptoms and anxiety after the intervention and in the follow-up.
Both active stimulation protocols significantly reduced depressive
symptoms. At the neuropsychological level, both active protocols
partially improved response inhibition, and the 2-mA protocol
reduced attention bias to threat-related stimuli and improved
working memory performance as well. Both protocols increased
alpha, and the 2-mA protocol decreased delta oscillatory power
too. Both protocols increased connectivity in higher frequency
bands at frontal-central areas compared to the sham. No
significant changes were observed in the sham group for any
outcome measures.
These findings can be explained from neurophysiological and

neuropsychological perspectives. The hallmark finding of

neuroimaging studies refers to lateral hypoconnectivity (including
the DLPFC) and medial hyperconnectivity (including the pre-SMA)
in OCD [37, 65], which was the rationale for applying our
stimulation protocol and is in line with findings from rTMS studies
[66]. We applied anodal stimulation over the left DLPFC to increase
the activity of this region and cathodal stimulation of the pre-SMA
to downregulate activity. With causal modulation of cerebral
excitability with tDCS [6], we expected to restore functional
abnormalities in the OCD-relevant brain circuitry, and in principal
accordance, this intervention was associated with behavioral and
clinical improvement in this study. In further accordance, the
intervention, especially after 2-mA stimulation, restored altered
alpha and delta oscillatory power in patients [38], and both
protocols increased connectivity in the prefrontal regions, which is
reduced in OCD patients, that can be likely an appropriate
treatment cortical target [21, 66].
In addition to neurophysiological changes, neuropsychological

accounts could also explain our findings. The most well-known
psychological mechanisms underlying OCD psychopathology
include impaired cognitive control (the inability to regulate
compulsive behavior) [67], impaired cognitive flexibility (the
inability to regulate thinking) [68], and impaired balance between
goal-directed behavior and more automatic habit learning [69, 70].
Importantly, these cognitive abilities are related to lateral and
medial prefrontal cortices [23, 37, 71]. The behavioral tasks we
used are primarily related to cognitive control and cognitive
flexibility (e.g., response inhibition, working memory), and the
performance of these tasks was significantly improved after
intervention, more obviously in the 2-mA group. Here, it should
however be noted that the effects of both protocols on response
inhibition were smaller than expected, which could be due to the
higher relevance of the right prefrontal region in cognitive
inhibition [72]. That said, anodal stimulation of the left DLPFC was
also shown to improve executive functions in neuropsychiatric
patients in previous studies [13, 36, 73, 74], and might explain
treatment effects in OCD patients.
One major rationale of this study was to identify the effect of

different stimulation dosages on treatment efficacy, specifically in
the intensified protocol, which we had already applied in another
study with promising results [36]. This protocol has not been
applied in OCD to the best of our knowledge. Our results in this
study show that the 2-mA intensified tDCS protocol was overall
more effective than both, sham stimulation and the 1-mA
stimulation, especially for the clinical variables, and it improved
more outcome measures including measures of behavioral
performance, compared to the 1-mA protocol (e.g., working
memory, attention bias). The rationale behind the protocol comes
from a study showing that twice-stimulation with 20-minute
intervals leads to longer aftereffects on cortical excitability
compared to non-repeated stimulation or stimulation with long
intervals and resembles features of late-phase LTP [35, 75]. This
finding has at least two important clinical implications. First, the
2-mA stimulation is associated with higher clinical efficacy in OCD,
and probably in other anxiety disorders, as shown in our previous
work in patients with social anxiety disorder [36]. Second, the
intensified stimulation (twice per day with a 20 min interval), has
significant clinical efficacy for treatment-related variables. This is in
line with physiological studies that have shown that repeated
tDCS sessions induce larger increases in excitability [76] and more
importantly suggest that the intensified protocol (repetition of
two 20-minute stimulation with a 20-minute interval between) can
be promising for clinical application in other neuropsychiatric
diosders.
Our protocol was different from other commonly applied

protocols in other aspects. First and to the best of our knowledge,
none of the previous tDCS randomized trials targeted the
prefrontal-SMA network by stimulating both left DLPFC and pre-
SMA [77, 78]. Additionally, this is also the first randomized-
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controlled trial that compared the efficacy of two stimulation
dosages which is typically needed for establishing clinical efficacy of
an intervention. Finally, in comparison to other protocols used in
previous studies, a recent metanalysis of tDCS RCTs in OCD showed
that protocols that applied cathodal stimulation over the pre-SMA

with an extracephalic return electrode delivered stronger electric
fields to the circuity involved in OCD in comparison to the other
montages [19]. None of these tDCS studies targeted the left DLPFC
with anodal tDCS. This metanalysis, however, did not find significant
differences between active vs sham tDCS in contrast to our study.
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Our study had several limitations. First, the intrinsically limited
focality of tDCS can result in a relatively diffuse stimulation.
Neuroimaging methods can help to more accurately identify the
regions directly affected by tDCS in future studies. Furthermore,
we did not examine blinding efficacy in patients and could not
measure EEG in the follow-up due to COVID-19-related restric-
tions. With respect to blinding efficacy, the 2-mA intensity
typically results in more sensations over the skin as compared to
the sham and 1-mA protocol, which may affect patients’ blinding.
However, there was no significant difference in reported ratings
of tDCS side effects between groups (see supplementary
information, Table S1).
Taken together, our findings suggest that the intensified

prefrontal-supplementary motor cortex tDCS protocol introduced
for the treatment of OCD is promising and might be effective in
other neuropsychiatric disorders. Both primary OCD symptoms
and secondary treatment-related variables (anxiety, depressive
state, quality of life) and cognitive functions (response inhibition,
working memory, and attentional bias) improved after the
intervention, especially in the 2-mA group. Partial effects of the
intervention on response inhibition might suggest further
optimizing the protocol by targeting the right prefrontal cortex,
which was not the primary target here, and the sessions were
relatively low. Both protocols also significantly restored brain
oscillatory power in frequency bands introduced as biomarkers of
OCD. In line with rTMS intervention [8, 79], tDCS may also hold the
potential to serve as a therapeutic intervention in OCD treatment.
Future larger trials with longer follow-up assessments are needed
to support the clinical efficacy of this intervention.
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