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Major depressive disorder (MDD) is marked by altered processing of emotional stimuli, including facial expressions. Recent

neuroimaging research has attempted to investigate how these stimuli alter the directional interactions between brain regions in
those with MDD; however, methodological heterogeneity has made identifying consistent effects difficult. To address this, we
systematically examined studies investigating MDD-associated differences present in effective connectivity during the processing
of emotional facial expressions. We searched five databases: PsycINFO, EMBASE, PubMed, Scopus, and Web of Science, using a
preregistered protocol (registration number: CRD42021271586). Of the 510 unique studies screened, 17 met our inclusion criteria.
These studies identified that compared with healthy controls, participants with MDD demonstrated (1) reduced connectivity from
the dorsolateral prefrontal cortex to the amygdala during the processing of negatively valenced expressions, and (2) increased
inhibitory connectivity from the ventromedial prefrontal cortex to amygdala during the processing of happy facial expressions.
Most studies investigating the amygdala and anterior cingulate cortex noted differences in their connectivity; however, the precise
nature of these differences was inconsistent between studies. As such, commonalities observed across neuroimaging modalities
warrant careful investigation to determine the specificity of these effects to particular subregions and emotional expressions. Future
research examining longitudinal connectivity changes associated with treatment response may provide important insights into

mechanisms underpinning therapeutic interventions, thus enabling more targeted treatment strategies.

Translational Psychiatry (2024)14:62 ; https://doi.org/10.1038/s41398-024-02734-0

INTRODUCTION
Major depressive disorder (MDD) is a highly prevalent and
disabling mental health condition, which arises due to interactions
between biological, psychological, and socioeconomic factors
[1-3]. Depression has been associated with an affective processing
bias [4, 5], reflected by both an increased reactivity to negative
emotional stimuli and a reduced reactivity to positive emotional
stimuli [6]. This bias appears to be prominent in the processing of
emotional facial expressions [7, 8]. The processing of emotional
expressions is neurobiologically underpinned by a distributed
collection of brain regions referred to as the ‘face processing
network’ (see Fig. 1) [9-11]. The face processing network is
commonly subdivided into core and extended subsystems, with
most of the observed differences in participants with MDD
occurring in the activity of the extended system [12]. Specifically,
these alterations appear to predominantly occur across regions
including the anterior cingulate cortex (ACC), amygdala, dorso-
lateral prefrontal cortex (dIPFC), and orbitofrontal cortex [12].
More recent work has sought to examine the functional
connectivity between these regions and how this may also be
altered in participants with MDD. Depressed participants demonstrate
significantly decreased connectivity between the amygdala and dIPFC
during the processing of emotional facial expressions [13, 14],
particularly sad facial expressions [15]. While interactions between the

dIPFC and amygdala appears to be important in the regulation of
emotional responses and processing salient emotional stimuli [16-18],
there are only sparse anatomical connections between these areas.
Thus, it seems likely that their interactions are mediated by other
regions, including parts of the ACC and prefrontal cortex [19, 20].
Distinct subregions in the ACC and ventromedial prefrontal
cortex (vmPFC) appear to be associated with specific cognitive and
affective functions [21-23]. Consistent with its role as a key region
of the salience network, the dorsal ACC appears to be broadly
involved in the integration of information in order to influence
attention allocation [24]. Conversely, the subgenual ACC has been
hypothesized to be a key region in regulating dysphoric emotion,
due in part to its connectivity with the amygdala [25-27].
Differences between these regions may, in part, contribute to the
heterogeneity in functional connectivity alterations observed in
participants with MDD. For instance, depressed participants have
demonstrated reduced functional connectivity between the amyg-
dala and rostral ACC during the processing of fearful expressions
[28]. Reduced connectivity between the amygdala and dorsal ACC
but increased connectivity between the amygdala and subgenual
ACC have also been identified [29, 30], with the former being
correlated with depressive symptom severity. Evidence from other
mood disorders, including bipolar disorder, indicates that depres-
sive states differentially alter functional connectivity depending on
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Fig. 1 Regions consistently implicated in the processing of faces. Activation maps identified through NeuroSynth with search terms “face”

(green) and “emotional faces” (blue). Color bars represent Z values.

the valence of the stimuli under investigation [31]. Versace
et al. [31] found that in comparison to healthy controls and
remitted bipolar disorder participants, bipolar disorder participants
currently in a depressive episode illustrated increased connectivity
between the amygdala and orbitofrontal cortex in response to sad
expressions, but reduced connectivity from the amygdala to
orbitofrontal cortex in response to happy expressions. Together,
these findings suggest that the valence of the processed stimuli
may also influence MDD-associated alterations to connectivity.

Although functional connectivity has been a useful method for
assessing the relationship between face processing regions, it cannot
infer which regions are driving these changes [32]. Effective
connectivity addresses this by examining how brain regions
directionally influence one another, and can be estimated using
methods including dynamic causal modelling (DCM), Granger
causality, and structural equation modelling. Previous reviews have
not comprehensively examined MDD-associated effective connectivity
during the processing of emotional expressions [12, 33]. Emotional
processing paradigms remain crucial in exploring the neurobiology of
MDD as they represent tasks that are well-validated and reliably
activate regions commonly implicated in depression etiology [34].
Directional interactions between regions of the extended system are
particularly important for informing our understanding of depression-
associated alterations to emotion generation, salience processing, and
emotional regulation [12, 18, 35]. As such, we aimed to provide the
first systematic review of differences in effective connectivity present
during the processing of facial emotions in those with MDD compared
with individuals without a diagnosed mental illness. We explored
whether, despite methodological differences in neuroimaging mod-
alities and estimation methods of effective connectivity, there
remained consistent findings among these studies. Furthermore, in
a subgroup of studies with treatment outcome data we investigated
the association between these effective connectivity parameters and
changes in depressive symptoms following treatment.

METHODS

Search criteria

This systematic review was preregistered with the International
Prospective Register of Systematic Reviews (registration number:
CRD42021271586) and undertaken in adherence with the Preferred
Reporting Items for Systematic-Reviews and Meta-Analyses [36] (for
details concerning the associated checklist see Supplementary

SPRINGER NATURE

Table S1). Systematic searches of the literature were conducted on
the 16™ of August 2021 and the 16" of May 2023, searching title and
abstracts for the following keywords: “major depressive disorder” or
depress* or MDD and emotion* or face or “facial expression” and
“effective connectivity” or “directional connectivity” or “Granger
causality” or “dynamic causal modelling” or “dynamic causal modeling”
or “structural equation modelling” or “structural equation modeling”.
These terms were searched through five databases which included
PsycINFO, EMBASE, PubMed, Scopus, and Web of Science. The specific
syntax used was adjusted across databases (see Supplementary
Table S2). The inclusion criteria for these searches were: a clinical
diagnosis of MDD (past or present) and a neuroimaging assessment of
effective connectivity that was conducted during a task that used
emotional facial stimuli. Articles were excluded if their focus was not
on participants with MDD: ie, if participants had comorbid
neurological, health, or psychiatric conditions (excluding comorbid
anxiety disorders). All study types, excluding reviews and case reports
were included in this synthesis. Manual screening of abstracts and full
texts using the aforementioned criteria was conducted by two
researchers (AJ and CL), and any discrepancies were then discussed
further to determine their eligibility.

Data extraction and synthesis

Data extraction was conducted manually by one researcher (A.))
and included the lead author, year of publication, participant
characteristics (sample size, gender, age), treatment used (if
applicable), measurement of depressive symptoms, neuroimaging
modality and task type, assessment of effective connectivity,
regions investigated (including derivation method) and key
findings. The primary outcome of interest was the presence of
directional interactions between brain regions and the stimuli for
which they were presented. Due to differences in the selected
regions, methods for assessing effective connectivity and neuroi-
maging modalities examined across these studies, a qualitative
synthesis of the literature was undertaken rather than a meta-
analytic review. For details concerning the quality assessment
tools used in this review see the Supplementary Materials.

RESULTS

Study characteristics

Following the removal of duplicates from the 1135 identified
papers, 510 unique papers remained. Subsequent screening of
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Fig. 2 PRIMSA flow diagram detailing the filtering process for articles.

titles and abstracts by the two researchers resulted in 30 papers
being identified as potentially relevant to this review. Full-text
screening identified a total of 17 papers that met all inclusion
criteria (Fig. 2). In total, 11 studies examined effective connectivity
differences in participants with MDD using fMRI [37-47], three
using MEG [48-50], and three using EEG [51-53]. Thirteen of the
17 studies used DCM to assess effective connectivity
[37-44, 47, 48, 50, 52, 53], three used Granger causality
[45, 49, 51] and one used structural equation modelling [46].
The preference for DCM was evident in more recent studies. See
Supplementary Fig. S1 for the structure of specified models from
each study.

By far the most investigated region was the amygdala (15 of 17
studies), followed by the fusiform gyrus (FG; 10 of 17 studies),
dIPFC (seven of 17 studies), vIPFC (seven of 17 studies), dorsal ACC
(seven of 17 studies), and V1 (six of 17 studies). See Fig. 3 for
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depiction of the distribution of regional coordinates across studies
and Supplementary Fig. S2 for the percentage of studies
investigating each region. Thirteen of the 17 included studies
explored cross-sectional differences in effective connectivity
between participants with MDD and healthy controls
[37, 38, 40-43, 45-51]. Five studies examined whether baseline
effective connectivity estimates could predict longitudinal
changes in depressive symptoms [39, 41, 44, 50, 52]. Included
studies had an average sample size of 26.9 healthy controls (range
15-89) and 31 MDD (range 5-103) participants, with only six
studies having an average sample size greater than 25 for each
group [39, 41-44, 47]. This is notable given that previous estimates
for using frequentist comparisons in DCM suggest that for a
Cohen’s d=0.03, at least 27 participants are required in each
group to achieve 80% power [54]. Across all included studies there
was a total of 403 healthy controls and 528 MDD participants.
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Fig. 3 Spatial distribution of regions of interest reported across
cortical midline structures.

Overall, the quality of all included studies was rated fair-to-good
by both authors (for full details see Supplementary Table S3-5).
Adherence to the modified fMRI reporting guidelines first
conceived by Davies et al. [55] (Supplementary Table S6) was
high amongst included fMRI studies (all greater than 70%;
Supplementary Table S7), with an increase in adherence observed
across time. Common deviations were not including details about
the fMRI coil, the distance of the gap between slices in acquisition,
the paradigm presentation software, the version of preprocessing
and analysis software, and whether relevant covariates were
adjusted for in the analysis.

With regards to behavioral analyses, seven studies reported no
behavioral differences in face processing between MDD partici-
pants and healthy controls. Of the four that reported behavioral
differences, one reported slower reaction time for detecting
negative faces in participants with MDD compared with controls
[51], one reported slower reaction times for identifying happy
incongruent, sad congruent and sad incongruent trials [53], and
another reported higher accuracy for MDD participants [50].
Notably, the tasks used in these studies were not the implicit or
explicit face-processing tasks that are more common in the field,
but a face-in-the-crowd [51], an emotional Stroop [53], and a dot-
probe task [50]. The fourth study examined brain stimulation and
observed a reduction in reaction time following stimulation of the
subgenual ACC [52]. The remaining 6 studies did not report
conducting any behavioral analyses. For full characteristics of
included studies see Table 1.

Systematic review findings

The most consistent finding was that participants with MDD had
reduced connectivity from the dIPFC to the amygdala during the
processing of negatively valenced stimuli in comparison to
healthy controls (Fig. 4) [41, 45, 49]. Relatedly, one study also
observed significantly reduced intrinsic connectivity from the
dIPFC to the amygdala in those with depression [48]. As such, four
of the seven studies examining the dIPFC and amygdala illustrated
this ‘top-down’ alteration, including 67% of implicit and explicit
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Fig. 4 Diagram illustrating findings found across multiple studies
relating to the processing of positively and negatively valenced
expressions. Red solid line indicates greater inhibitory connectivity,
green dotted line indicates reduced connectivity (reduced excita-
tory or greater inhibitory connectivity) for the MDD group. Image
created with BioRender (www.biorender.com).

face processing tasks examining these regions. This difference was
observed across estimation methods for assessing effective
connectivity, including Granger causality and DCM, as well as in
fMRI and MEG research. While this reduction appears to be
generally related to negatively valenced emotional expressions,
one study has suggested it may be specific to sad facial
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expressions and not present during the processing of fearful
expressions [41].

Two studies further reported greater inhibitory connectivity
from the left vmPFC to amygdala during the processing of happy
facial expressions in MDD participants compared with controls
(Fig. 4) [37, 38]. Greater inhibition appears specific to positively
valenced expressions, as other work examining this connection
during the processing of fearful faces has revealed reduced
inhibitory connectivity from the vmPFC to amygdala [41]. These
two papers represented 50% of the studies investigating the
vmPFC/rACC and 67% of those investigating these regions and
happy facial expressions. Nearby regions, including the subgenual
ACC have shown conflicting evidence, with some research
demonstrating lower amygdala to subgenual ACC intrinsic
connectivity [42], lower subgenual ACC to amygdala intrinsic
connectivity [47], and increased subgenual ACC to amygdala
connectivity during fearful face processing in MDD participants
[371.

While most of the studies compared differences between MDD
participants and controls, five of 17 examined associations
between connectivity and treatment response
[39, 41, 44, 50, 52]. Due to heterogeneity in the treatments and
regions examined, there were no directly replicated findings
across studies. Interactions between the FG and amygdala,
however, appear to be broadly implicated across multiple studies.
Baseline modulation from the amygdala to FG was more inhibitory
for remitters compared with non-remitters during the processing
of happy faces [39]. Relatedly, stimulation of the subgenual ACC
was associated with reduced excitatory connectivity from the right
temporal pole to the right FG [52], with this temporal pole area
including the amygdala. Gilbert et al. [50] found faster NMDA
transmission in the FG and slower NMDA transmission in the
amygdala in those with treatment-resistant depression following
ketamine treatment. However, these changes were not associated
with reductions in depressive symptom severity [50].

DISCUSSION

Our systematic review of effective connectivity alterations in MDD
during the processing of emotional facial expressions has
confirmed three major findings. First, MDD is marked by a
reduction in effective connectivity from the dIPFC to amygdala
during the processing of negatively valenced facial expressions.
Second, there is greater inhibitory connectivity from the left
vmPFC to amygdala during the processing of happy facial
expressions in MDD participants. And third, there is emerging
evidence of an association between treatment response and
interactions from the amygdala to FG.

Connectivity from the dIPFC to amygdala

The reduced directed connectivity from the dIPFC to the
amygdala during the processing of negatively valenced stimuli
[41, 45, 49] is consistent with findings from functional connectivity
studies demonstrating reduced amygdala and dIPFC connectivity
in participants with MDD [13]. Compared with healthy controls,
MDD participants have been shown to demonstrate increased
amygdala reactivity for emotional tasks as well as decreased dIPFC
activity during cognitively demanding tasks [56, 57]. In addition to
emotional processing tasks, reduced connectivity between these
regions has been observed for MDD participants in resting-state
functional connectivity analyses [58, 59], with increased connec-
tivity following treatment being associated with greater depres-
sive symptom score reductions [60]. Given that connectivity
between the amygdala and dIPFC has been associated with one’s
ability to downregulate negative emotions [61], depression-
associated changes to this connectivity may underpin the altered
regulation of emotional responses common to this disorder
[16, 18].

Translational Psychiatry (2024)14:62
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The dIPFC is typically recruited during voluntary and explicit
emotional regulation, and thus for healthy individuals, the dIPFC
has a less prominent role in the implicit emotional regulation that
occurs during the processing of emotional stimuli [62]. Altered
recruitment of the dIPFC during automatic cognitive control tasks
in those with MDD might arise in an attempt to overcome
reactivity of the amygdala induced by emotional contexts [63]. In
turn, this may be due to insufficient regulation occurring from
regions commonly involved in implicit regulation. Findings from
the effective connectivity literature further support this interpreta-
tion by consistently demonstrating that these alterations originate
in the dIPFC, rather than the amygdala. Notably, due to
inconsistencies between studies, including task design, participant
age, and how the connectivity parameters were modelled (e.g.,
mean-centering of the direct input), it is unclear whether this
effect represents greater inhibitory or reduced excitatory con-
nectivity in MDD participants in comparison to healthy controls. A
greater variety of studies examining these regions will hopefully
clarify which of these factors may be modifying this baseline
connectivity in healthy individuals.

It is also likely given the sparse anatomical connectivity
between the amygdala and dIPFC that their interactions are
mediated by other regions, including the dorsal, rostral, and
subgenual ACC [19]. Connectivity differences between the
amygdala and ACC were noted in the majority (5 of 7) of studies
investigating these regions [38, 42, 46, 48, 64], despite limited
consistency concerning the directionality (from the ACC to the
amygdala or the amygdala to ACC) and direction (MDD
participants demonstrating greater connectivity than healthy
participants or vice versa) of this effect. This is important as these
regions, in addition to the medial prefrontal cortex, have been
suggested to be involved in recruiting the dIPFC to produce
appropriate automatic emotional regulation in those with MDD
[63]. Reduced connectivity has also been observed from the dIPFC
to sgACC [45], whereas greater connectivity has been found from
the dIPFC to vmPFC [41] and from the rostral ACC to dIPFC during
the processing of sad expressions [48]. Resting-state effective
connectivity studies further highlight the centrality of rACC
dysfunction in MDD [65], with greater negative connectivity being
illustrated from this region to the bilateral dIPFC, insular, dACC
and left amygdala. Nevertheless, it remains unclear from these
findings whether any one region or a combination of regions are
responsible for mediating the relationship from the dIPFC to
amygdala.

In addition to these depression-associated differences, the
hypothesized function of the ACC during emotional regulation
may contribute to the relevance of such regions in predicting
treatment response [66-69]. For example, Godlewska et al. [70]
illustrated that in participants with MDD, dorsal ACC activity to sad
compared with happy masked faces was predictive of treatment
response to escitalopram. Other effective connectivity research
has similarly shown that baseline connectivity between the dorsal
ACC to amygdala was greater in MDD non-responders compared
with healthy controls during fearful face processing [44]. As such,
consideration of cingulate connectivity in conjunction with the
interactions between the amygdala and dIPFC may provide a
more accurate model of this pathway. The development of more
precise models may, in turn, have greater utility in predicting
response to treatment.

Connectivity from the vmPFC to amygdala

Although two studies demonstrated greater negative connectivity
from the left vmPFC to amygdala during the processing of happy
facial expressions [37, 38], in one study this was observed in a
secondary analysis conducted only in female participants [37].
Interestingly, the interaction from the vmPFC to amygdala has also
been shown to be reduced during the processing of fearful
expressions [41], an effect that has also been observed in
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functional connectivity studies [28]. This suggests that the valence
of the stimuli under investigation may influence these results.
While this has not yet been directly examined in participants with
MDD, it would be consistent with findings from healthy controls
demonstrating the medial and vmPFC's sensitivity to valence
[64, 71]. Notably, both positively and negatively valenced
expressions were directly examined in a recent study by Willinger
et al. [47]; however, modulation-specific effects were not observed
between interactions of the amygdala, subgenual ACC, and vIPFC.

In contrast to the dIPFC, the vmPFC is more commonly
associated with implicit regulation, which is evoked automatically
and without insight [18]. Importantly, while the proximal vIPFC has
commonly been viewed as a region involved in explicit regulation,
there is also evidence for its role in implicit emotional regulation
[72, 73]. The VIPFC is also a potential mediator between the dIPFC
and vmPFC in the regulation of amygdala activity [74-76]. This
relationship is likely influenced by the valence of the stimuli, as
participants with MDD demonstrate reduced dIPFC and vIPFC
functional connectivity during the processing of happy facial
expressions [77]; however, this connectivity has been observed to
increase for sad and angry facial expressions [78]. While there
have been several investigations of VIPFC effective connectivity
[40, 43, 44, 46, 47, 50, 52], this has often not been conducted in
consideration of other prefrontal regions. Thus, comprehensive
examination of the vIPFC, vmPFC, amygdala and dIPFC together in
future studies may enable a more complete understanding of
depression-associated dysfunction between prefrontal and sub-
cortical circuitry.

Connectivity from the amygdala to fusiform gyrus

The broader literature provides insights into the potential
significance of amygdala to FG connectivity in predicting response
to treatment. While there is limited direct evidence from effective
connectivity studies of depression, alterations in amygdala and FG
connectivity have been shown in functional connectivity studies.
For instance, during an implicit negative face matching task
functional connectivity between the amygdala and FG has been
shown to be reduced in participants with MDD and their relatives
compared to controls [14]. These findings are broadly consistent
with results of greater negative connectivity from the left
amygdala to right FG [43]. Notably, the analyses conducted in
Wackerhagen et al. [14] and Sacu et al. [43] were undertaken in
the same participant sample and thus are not independent
sources of evidence. Examination of remitted MDD participants
also reveals more negative functional connectivity between the
amygdala and FG during the processing of sad expressions and
more positive connectivity during the processing of happy
expressions in comparison with healthy controls [40]. This finding
is supported by a meta-analysis of fMRI tasks examining emotional
stimuli which showed valence-dependent effects in the activation
of both the amygdala and FG in participants with depression [79].
Feedback from the amygdala has been suggested to play an
important role in the optimization of visual information encoding
to better enable the prediction of aversive events [80]. Indeed,
repeated exposure to the same stimuli appears to be associated
with reduced connectivity from the amygdala to FG [81]. As such,
this may represent a more general-purpose function in which the
amygdala influences the prioritization of the processing of stimuli
of high social or emotional relevance [82]. The changes to this
connectivity demonstrated in participants with MDD would,
therefore, represent alterations to the prioritization of positively
and negatively valenced expressions by the early visual system,
which, in turn, occurs as a result of altered feedback of information
from prefrontal regions. Greater negative connectivity in this
pathway may represent a more typical form of depression which
has greater sensitivity to commonly used treatments [39]. More-
over, this interpretation is supported by the finding that
stimulation of the subgenual ACC results in both downstream

SPRINGER NATURE

reductions to this connectivity and reductions in depressive
symptoms [52]. This highlights the importance of modelling both
the core and extended face processing networks despite the
notion that depression-associated effects are localized to the areas
of the extended system.

Quality of the included studies

As illustrated through the quality assessment tools, all studies
were rated by the authors as having either a ‘fair’ or ‘good’ quality
and were consistent with reporting guidelines. However, there
remain several limitations and considerations which were
consistent among multiple studies. First, there was a moderate
amount of variation across studies in terms of the task type, the
regions of interest, the stimuli used, and the treatments applied.
All these factors are likely to add to the heterogeneity in results,
which have been observed and pose further difficulties in
disentangling “true effects” due to the small number of studies
in the area. It is also worth noting that despite the amygdala being
implicated in all of the results highlighted above, this may be a
function of the number of studies that included this as a region of
interest. Only two studies did not explicitly examine this region,
though one of these attempted to examine it indirectly [52]. This is
likely to bias the overall findings away from implicated regions
that were less frequently examined as regions of interest,
including the insular, which despite its importance to emotion
processing was only examined in one study [43]. Finally, like many
neuroimaging studies, much of the work highlighted in this review
had relatively few participants [83]. This is likely to result in low
statistical power and increased risk of false positives, particularly in
studies that conducted subgroup analyses. None of the included
studies performed an a priori power analysis to determine
whether they had a sufficient sample size. These issues are
particularly important for interventional studies and those which
aim to have clinical relevance, as underpowered studies result in
claims that lack generalizability beyond the sample under
investigation [83, 84]. While data suggests that methodologies,
including measures of effective connectivity, may aid in reducing
the number of participants required to detect between-group
effects [54], the precise numbers required are likely to vary due to
the task and parameters in question. If, as suggested by previous
research, alterations to these interactions relate to specific
symptoms or symptom profiles rather than MDD as a whole
[85, 86], much larger sample sizes than those shown in this review
will be necessary to accurately examine these relationships.

Future directions

Most studies have focused on the analysis of connectivity changes
during the processing of negatively valanced facial expressions. In
contrast, few studies examined positively valenced expressions,
which made determining which effects may be valence-specific
difficult. Examination of the interactions highlighted above with a
wider range of emotional expressions would aid in disentangling
any valence specific effects. Further, there remains a paucity of
studies examining the association between treatment response
and these directional interactions. Potentially more importantly
when considering the potential mechanisms of therapeutic
interventions, no studies have examined longitudinal changes in
effective connectivity following treatment. Determining the
reliability of these estimates within depressed participants is an
important step in illustrating the usefulness of identified
connectivity parameters as biomarkers. Through the use of 7
Tesla imaging, more accurate examination of the effective
connectivity of subcortical regions, which were largely unexa-
mined in this review, may additionally be achieved. The effective
connectivity of these regions, particularly the thalamus, have
received recent attention for their importance in MDD-associated
alterations at rest [87] and their association with repetitive
negative thinking in healthy controls [88].
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Consideration of potential confounders is also a necessary step
going forward, particularly in terms of the effects of age and
gender as these factors are known to influence MDD presentation
[89-92]. Recent advancements in the methodology for assessing
between-group differences and the effects of covariates, including
parametric empirical Bayes for DCM [93], will be important tools in
minimizing these effects in future studies.

CONCLUSIONS

While investigations into depression-associated alterations in
effective connectivity during the processing of emotional faces
have been occurring for over a decade, only recently have enough
studies been published to determine consistent findings. This early
work has illustrated direct evidence for altered connectivity from the
prefrontal cortex to the amygdala, which is suggested to vary
according to the valence of the stimuli. Overall, the findings from
this review provide a framework for future research to further
disentangle the specificity and generalizability of the associations
highlighted above. Additional work examining the predictive validity
and clinical utility of these connectivity parameters longitudinaly will
aid in providing a more nuanced understanding of the neurobio-
logical mechanisms underlying treatment response in depression.
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