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Cognitive decline is a major health concern and identification of genes that may serve as drug targets to slow decline is important
to adequately support an aging population. Whilst genetic studies of cross-sectional cognition have been carried out, cognitive
change is less well-understood. Here, using data from the TOMMORROW trial, we investigate genetic associations with cognitive
change in a cognitively normal older cohort. We conducted a genome-wide association study of trajectories of repeated cognitive
measures (using generalised estimating equation (GEE) modelling) and tested associations with polygenic risk scores (PRS) of
potential risk factors. We identified two genetic variants associated with change in attention domain scores, rs534221751
(p= 1 × 10−8 with slope 1) and rs34743896 (p= 5 × 10−10 with slope 2), implicating NCAM2 and CRIPT/ATP6V1E2 genes,
respectively. We also found evidence for the association between an education PRS and baseline cognition (at >65 years of age),
particularly in the language domain. We demonstrate the feasibility of conducting GWAS of cognitive change using GEE modelling
and our results suggest that there may be novel genetic associations for cognitive change that have not previously been associated
with cross-sectional cognition. We also show the importance of the education PRS on cognition much later in life. These findings
warrant further investigation and demonstrate the potential value of using trial data and trajectory modelling to identify genetic
variants associated with cognitive change.
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INTRODUCTION
Substantial variation exists in individual levels of general cognitive
function, and this variation persists across the life course. Evidence
suggests that individuals with higher cognitive function are more
likely to stay in school for longer and attain higher qualifications
during childhood and adolescence [1]; obtain higher-paying jobs
[2] and show healthier lifestyle behaviours throughout adulthood
[3]. At the opposite end of the life course, they have greater life
expectancy, greater quality of life, and fewer comorbidities in old
age, such as Alzheimer’s disease (AD) [4]. Thus, understanding both
the environmental and genetic drivers of cognitive function is
critical for informing potential prevention and treatment strategies.
The genetic drivers of cognitive function have been previously

examined, with several genome-wide association studies (GWAS)
identifying genetic variants associated with both global [5] and
domain-specific cognitive function (e.g. executive functioning [6,
7] processing speed [7], and verbal memory [8]). Most studies to
date have examined associations of the genome with global and
domain-specific cognitive function cross-sectionally. For example,
Davies and colleagues [5] identified 148 genome-wide significant
independent loci associated with cross-sectional general cognitive
function, in a sample of 300,486 participants aged 16–102 years
from three data sources—CHARGE, COGENT, and the UK Biobank.

Although several genes have been implicated in cross-
sectionally measured cognitive function, very few studies have
examined genetic drivers of change in cognitive function over
time [9–11]. It is important to study change because genetic risk
factors (and hence potential factors for intervention) may differ
from those observed cross-sectionally in the same way that
genetic risk factors for the incidence of diseases such as lung
cancer (e.g., CHRNA5 as a risk factor for heaviness of smoking)
may differ from genetic drivers of lung cancer progression (e.g.,
there is little evidence that smoking heaviness affects lung cancer
survival). It is also worth noting that most existing studies
examining associations between the genome and cognitive
trajectories have been conducted in clinical populations (e.g., in
those with AD or mild cognitive impairment). Not only does this
make the generalisability of findings to the general population
challenging, but it can also result in spurious (biased) associations
[12, 13].
In this study, we aimed to perform longitudinal GWASs of

trajectories of global and domain-specific (i.e., executive function,
attention, language, episodic memory, and learning) cognitive
function in a sample of 2515 individuals from the TOMMORROW
trial, who were aged 65–83 and cognitively healthy at baseline.
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MATERIALS AND METHODS
Study design
The TOMMORROW study was an interventional trial to delay the onset of
mild cognitive impairment (MCI) due to AD, conducted between 2013 and
2018 across 57 clinical sites from the USA, the UK, Australia, Switzerland,
and Germany (ClinicalTrials.gov Identifier NCT01931566). It is a phase 3,
multicentre, global, double-blind, placebo-controlled, parallel-group clin-
ical trial conducted by Takeda Pharmaceuticals (Deerfield, IL) in partnership
with Zinfandel Pharmaceuticals, Inc. (Chapel Hill, NC). The clinical trial has
been described previously [14]. See Supplementary Fig. 1 for the
TOMMORROW Trial study design and Supplementary Methods for a
further description of the TOMMORROW Trial visit details. Briefly, 3465
individuals, aged between 65 and 83 years at the time of the screening
visit (mean age 73.4, SD= 5.3) were selected for inclusion. These
participants were defined as ‘high’ or ‘low’ risk (according to a combination
of age and two established AD risk genotypes: APOE ε2/3/4 and TOMM40
variable length poly-T variant at rs10524523 (“523”), as shown in
Supplementary Fig. 1B). Low-risk individuals were assigned to placebo
(n= 427) and high-risk individuals were randomised to receive pioglita-
zone treatment (n= 1507) or placebo (n= 1531). Study visits were
conducted every 6 months over a period of ~4 years. The study was
terminated in 2018 for not meeting the futility analysis criteria. The trial
results are reported elsewhere [15].
Cognitively normal individuals (defined as total score ≥25 on the Mini-

Mental State Examination (MMSE) [16] after age and education adjustment
at screening) were selected for inclusion. The TOMMORROW Neuropsy-
chological Battery (TNB), containing tests of attention, executive function-
ing, episodic memory, learning, and language, was also used to confirm
normal cognition in potential participants (see Supplementary Table 1 for a
description of the specific tests).

Ethics
The TOMMORROW trial was conducted in accordance with the require-
ments of the clinical study protocol, in compliance with the ethical
principles that have their origin in the Declaration of Helsinki and the ICH
Guidelines for GCP, and approval by corresponding regulatory authorities,
and the appropriate institutional review boards and independent ethics
committees. Participants gave their written informed consent before
screening in the study and participants in the genetic analysis gave
additional consent to be included in genetic studies. In addition to regular
safety surveillance, the safety of participants was evaluated by an
independent Data Safety Monitoring Board.

Inclusion and exclusion criteria
Key inclusion criteria for the TOMMORROW study required that
participants were 65–83 years of age at screening, able to physically
perform the cognitive tests, and were fluent in the language that tests
were administered. They were also required to be cognitively normal at
baseline, indicated by the Clinical Dementia Rating Scale (CDR) [17]
global score= 0, and by having at least one memory test from the TNB
above −1.5 standard deviation (SD) of the demographically corrected
normative mean. Participants were also required to have a project
partner able to provide information on their cognitive, functional and
behavioural status.
Key exclusion criteria included a current diagnosis or history of any type

of cognitive impairment or dementia; neurological/psychiatric disorder,
significant psychiatric illness, or of any other diagnosis that could
significantly affect cognitive performance; alcohol or drug abuse; macular
oedema or macular degeneration; congestive heart failure (New York Heart
Association Class III–IV); bladder cancer; any cancer in remission for <2
years from screening; hypersensitivity or allergies to pioglitazone or related
compounds; postmenopausal fractures with no or minimal trauma; or
clinically significant unstable illness. In addition, individuals were excluded
from participation if they had been exposed to the cognitive tests
performed in this study (with the exception of the MMSE) within 6 months
before screening or if they or the study staff participating in this study
were aware of the individual’s TOMM40 or APOE status. Participants with
unexplained microscopic/macroscopic haematuria or lab values indicating
that an individual may have undiagnosed diabetes, liver abnormalities, or
positive tests for hepatitis B or C at baseline were also excluded. Any
condition or medication that could interfere with the assessments of
safety, tolerability, or efficacy, or any concurrent participation in another
interventional clinical study was not allowed.

Clinical assessments
The two types of study visits after baseline were: (1) an in-clinic visit
scheduled at 6‐month intervals and (2) a comprehensive medical follow-up
visit (CMFV) that occurred usually within 30 days after a participant met
protocol-specified trigger criteria at the regular 6-month visit. Cognitive
assessments collected at these visits are listed in Supplementary Table 1.
Measurement occasions ranged from 1 to 11 occasions. Following a CMFV,
participants continued regular 6-month visits unless an investigator
decided to withdraw the participant from the trial, or an adjudication
decision determined that the participant met the criteria for a primary
endpoint. See ref. [18] for a detailed description of the adjudication
process of individuals who transfer from MCI to AD.

Cognitive outcomes
Individuals completed assessments of attention, learning, language,
episodic memory, and executive functioning at all measurement occasions
(see Supplementary Table 1 for a description of each task). The z-scores for
the TNB tests at each time point were standardised to the baseline mean
and SD. The TNB domain scores for episodic memory, executive function,
language, learning, and attention were obtained by averaging selected
individual TNB component z-scores; the TNB composite score was
obtained by averaging the five domain scores. The z-scores for the
individual domains and the global cognitive function score were used in
the analyses.

Genotyping and imputation
DNA samples were genotyped using Illumina Infinium Omni Express
Exome array. All samples achieved a call rate of >99%. Relatedness was
calculated using PLINK v1.9 (https://www.cog-genomics.org/plink/) and
related subjects (PI_HAT > 0.10) were removed. As the majority of
participants were of White/European ancestry, those who reported being
of a non-White ancestry or who showed genetic ancestry that was
dissimilar to individuals of European ancestry by principal component
analysis were excluded. Subjects with genetically estimated sex that did
not match their self-reported sex were removed. Sites with a call rate
<95% or Hardy–Weinberg equilibrium p-value < 1 × 10−8 were excluded.
This resulted in 2515 subjects and 924,458 variants. Imputation was
performed on the 2515 individuals using the reference panel of the
NHLBI Trans-Omics for Precision Medicine (TOPmed) project [19] on the
TOPMed Imputation Server. A total of 8,784,549 variants with minor
allele frequency (MAF ≥ 1%) and imputation r2 ≥ 0.7 were included in the
final analysis.

Statistical analysis
A schematic of the analyses is shown in Fig. 1. Multilevel models (MLM)
and generalised estimating equations (GEE) were used to account for the
correlation between repeated measures on the same subjects. Multilevel
models were used for stage 1 model exploration, as these allow estimation
of the variability in intercepts and slopes. For the GWAS, the time taken to
fit each MLM meant they could not be used. Instead, we used GEE, which
treats the correlation between repeated measures as a nuisance parameter
and is therefore much faster to fit. For a normally distributed continuous
variable, GEE and MLM give comparable estimates—and this was checked.
For the PRS modelling MLM was used. Analyses were conducted in R
version 4.2 [20, 21]. For both MLM and GEE, models included one knot
point at 1 year post-baseline, to allow different linear slopes from baseline
to 1 year and from 1 year to the end of the study. Thus, our models
estimated average cognitive function (global and domain-specific) at
baseline, how average cognitive function changed with age at baseline,
and the average change in cognitive function between baseline and 1
year, and between 1 year and the end of the study. Positioning of the knot
point was determined using visualisation of average cognitive function
scores at each measurement occasion to estimate any slope changes
(Stage 1, model identification, Fig. 1) [22].
In stage 1, model identification, the MLM model was adjusted for factors

known (from the trial protocol) to be associated with selection into the trial
and high/low-risk status (i.e., age at baseline, sex, years of education,
lifetime alcohol use, lifetime smoking, BMI, TOMM40 and APOE). We did not
adjust for the trial arm because we were including the low-risk (non-
randomised) arm and entry into this arm was affected by the selection
factors, so including it could have induced selection bias [22]. 3465
individuals completed the baseline assessment, comprising 20,440 rows of
individual data. To account for nonindependence within individuals, an
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unstructured correlation structure (which allows all correlations between
timepoints to differ) was used.
We examined factors related to selection by carrying out a GWAS of age

and sex among the participants—genetic variants should be independent
of both age and sex, but associations could be induced for any genetic
variant causing selection into the trial if age and sex cause selection. Any
variants shown to be strongly related to age or sex would likely be related
to selection into the trial and therefore would be included as covariates in
further models [22]. However, only TOMM40 and APOE showed evidence of
being associated with selection (see the section “Results”), thus these
(together with age and sex) are the only factors that needed to be included
to minimise selection bias.
GWAS (Fig. 1, stage 2) were run using GEE models adjusted only for age

at baseline, sex, TOMM40 and APOE, and the top 5 ancestry principal
components. We did not adjust for years of education, lifetime alcohol use,
lifetime smoking, BMI, as these are all likely influenced by (i.e. downstream
of) genetic variants, and thus including them could induce selection bias.
Six GWAS were run (global cognitive function and the 5 specific cognitive
domains), each comprising ~8.8 million individual GEE models (one per
variant), with the variants included as additive effects with interactions
with age, the intercept, and both slopes. See Supplementary Methods for
information on computational processing time. Following analysis, results
were additionally filtered for expected minor allele count (EMAC) > 200
(EMAC= 2*N*minor allele frequency (MAF)*imputation quality score (r2)),
which corresponds to a (fairly strict) MAF of 4% where imputation quality is
1 (resulting in 6,498,386 variants remaining). Results were clumped in
FUMA [23] to identify independent significant variants using pairwise LD
(r2) of variants in the 1000 genomes Phase 3 European ancestry reference
panel [24]. MAGMA gene-based analysis was also run in FUMA [23] and
p < 3 × 10-6 (number of genes tested) was used to identify any additionally
associated loci.

In addition to identifying novel associations with GWAS, genome-wide
significant associations for cognition function and cognitive change were
identified from the following published studies: general cognitive decline
[11], attention [9], executive functioning [10], and cross-sectional studies of
general cognitive functioning [5], and language [25]. We report the
associations observed for these previously identified variants in our
corresponding models.

Sensitivity analyses
To examine the likelihood of bias due to missing genetic data, GEE models
were conducted for individuals who completed clinic measures (n= 3465)
and for the subgroup who had full genotype data (n= 2515). Model
coefficients were consistent across these two samples (Supplementary
Table 2).

Polygenic risk scores (PRS)
In order to test whether genetic contributions to a set of related traits were
associated with cognitive decline, we constructed polygenic risk scores for
the related traits; general cognitive ability [5] and AD [26], as well as several
traits which have been identified as risk factors for AD or cognition [27]:
Alcohol consumption [28], depression [29], education [30], hearing loss
[31], low-density lipoprotein (LDL) cholesterol [32], obesity [33], physical
activity [34], systolic blood pressure [35], tobacco smoking [36], type 2
diabetes [37], and height [33]. Independent variants with p < 5 × 10−8 were
included, with variants weighted by the effect size from the original GWAS.
We tested each PRS for association with all cognitive domains (Fig. 1, stage
3) using multilevel models from the lme4 R package models, adjusting for
the same confounders as in the GWAS (age at baseline, sex, TOMM40 and
APOE and the top 5 ancestry principal components) and reporting the four
parameters (age, intercept, and two slopes) per model.

Fig. 1 Schematic of the study design. Stage 1 involved model identification of the trajectories and determined that models with a knot
(change) point at 1 year adequately represented the data. The resulting models were then used in GWAS and PRS analyses (adjusting only for
non-heritable confounders and the genetic factors that affected selection into the trial). *Multilevel models were used for initial model
exploration and PRS analysis. For the GWAS, the time taken to fit each MLM meant they could not be used. Instead, we used GEE, which treats
the correlation between repeated measures as a nuisance parameter and is therefore much faster to fit. MLM multilevel model, GEE
generalised estimating equation, GWAS genome-wide association study, SNP single nucleotide polymorphism, PRS polygenic risk score, BMI
body mass index.
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Gene prioritisation
The Open Targets Genetics platform [38, 39] and FUMA [24] were used to
identify the genes with the best evidence of implication at each locus.
For the lead variant at a locus, Open Targets creates a score for each
gene in a 1 Mb region, which combines evidence from pQTL, sQTL, eQTL,
FANTOM5, Promotor capture Hi-C, DNAse hypersensitivity and VEP
sources. FUMA reports similar evidence (we investigated positional, eQTL
and chromatin interaction gene-mapping evidence, using all available
datasets) but for all associated variants in the region. Where FUMA or
Open Targets evidence implicated a certain gene through QTL evidence
we further investigated this association with colocalization.

Colocalization
Where eQTL evidence was identified for variants of interest, we further
tested these signals for colocalization using pairwise conditional coloca-
lization analysis (PWCoCo) [40]. Colocalization was tested using 1Mb
regions around each gene of interest from the relevant cognition GWAS
and the eQTLGen full cis-eQTL dataset (2019-12-11 version) [41].

RESULTS
Cognitive trajectories
Trajectories of cognitive functioning are presented in Fig. 2.
Sample characteristics are presented in Supplementary Table 3.
Generally, cognitive performance was lower for people who
were older at baseline, but slightly increased over time in the
study. The two exceptions to this were for the attention domain
and the executive function domain, which showed little change
over time during the study, but were slightly higher for people
who were older at baseline. Results from the observational
multilevel models are presented in Supplementary Table 4.
Generally, baseline age (all p < 5 × 10−6), sex (all p < 0.05), and
years of education (p < 5 × 10−4, apart from the attention
domain), were associated with the baseline global cognitive
function and all specific cognitive domains. There was little
evidence for associations between the risk factors/confounders
and either slope.

Fig. 2 Trajectories of cognitive functioning separated by minimum age at baseline, mean age, and maximum age at baseline in the
TOMMORROW Trial for each of the six cognitive domains. A Global cognitive functioning, B attention domain, C episodic memory domain,
D executive functioning domain, E learning domain and F language domain. All have a knot point at 365 days, given 2 slopes in the model.
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Selection bias
GWAS of the age of the trial participants showed evidence for
selection bias, as demonstrated by a genome-wide significant
signal that cannot plausibly be causal (Supplementary Fig. 2a).
The bias was limited to a region of chromosome 19 which
harbours APOE and TOMM40, demonstrating that, as expected,
only this region of the genome is affected by selection bias and
therefore adjustment of APOE and TOMM40 is adequate to
mitigate this bias. There was no such obvious bias observed in
the GWAS of sex (Supplementary Fig. 2b).

GWAS
GWAS QQ plots of the four parameters for the six cognitive
measures showed little evidence of genomic inflation (lambda
range= 1–1.04, Supplementary Fig. 3). No variants met the
genome-wide significance (p < 5 × 10−8) for any parameter in
the GWAS of global cognitive functioning, or for four of the five
specific domains (Supplementary Fig. 4). However, in the attention
domain GWAS, rs534221751 associated with slope 1 (p= 1 × 10−8)
and rs34743896 associated with slope 2 (p= 5 × 10−10, Fig. 3,
Table 1, both variants imputation quality r2= 0.99). These results

F

A B

C

D E

λ=1.01

λ=1.02

Fig. 3 GWAS results for attention slope 1 and slope 2. AManhattan plot of the GWAS of slope 1 in the attention domain. The dotted red line
indicates the thresholds for the genome-wide significance of 5 × 10−8. B QQ-plot C GWAS regional Manhattan plot of chromosome 21 for
slope 1 in the attention domain. Colours indicate the LD values (r2) of variants with rs534221751 (in purple). NB—chr21 region is in a gene
desert. D Manhattan plot of the GWAS of slope 2 in the attention domain. The dotted red line indicates the thresholds for the genome-wide
significance of 5 × 10−8. E QQ-plot F GWAS regional Manhattan plot of chromosome 2 for slope 2 in the attention domain. Colours indicate the
LD values (r2) of variants with rs34743896 (in purple).
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were substantively unchanged when additionally adjusted for
‘clinical site’ (p= 1 × 10−8 and p= 8 × 10−10, respectively).
MAGMA gene-based analysis found no additionally associated
(p < 3 × 10−6) loci.
Indel rs534221751 showed a weak association with the

attention domain score at baseline (p= 0.01, with the deletion
associated with a lower score), strong evidence for association
with slope 1 (p= 1 × 10−8, with the individuals harbouring 1 or 2
copies of the deletion showing an increase in score and
individuals without the deletion showing a decrease in score over
the first year of the study) and only weak evidence (p= 0.07) for
an association (in the opposite direction) with slope 2 (Table 1).
This resulted in genotypes showing variation in attention domain
scores within the early stages of the trial, but which had
converged by the end of the trial (Fig. 4a). In contrast, the T
allele of rs34743896, showed little evidence for an effect on
attention domain scores at baseline (p= 0.73), weak evidence for
a positive association with slope 1, but strong evidence
(p= 5 × 10−10) for a negative association with slope 2 (Table 1),
resulting in there being little evidence for a difference in attention
domain scores by genotype in the early stages of the trial, but a
marked divergence towards the end, with individuals with TT
genotype showing the greatest decline in attention domain score
by year 5 (Fig. 4b).
We examined the associations of these two variants with the

other domains. There is some evidence that rs534221751 is also
associated with slope 1 of the global cognition model (p= 0.0002),
but rs34743896 is not associated with slope 2 of any of the other
cognitive domains (Supplementary Table 5). These two variants
were not associated (i.e., p > 1 × 10−5) with any other diseases or
traits in Phenoscanner.

Prioritisation of genes at loci
The indel rs534221751 is not available in Open Targets, but proxy
variant (rs35743227, D’= 1.0, r2= 0.98, 2.4 kb away) showed no
prioritised genes. This variant falls within a gene desert on
chromosome 21, with the nearest gene, MRPL39, >2 Mb away.
FUMA (which utilises all variants in the region) also found no
significant eQTL evidence but did uncover chromatin interaction
evidence between the GWAS locus and NCAM2 in human
embryonic stem cells (FDR= 8 × 10−11).
rs34743896 is an intergenic SNP on chromosome 2. The closest

gene is EPAS1 (~28 kb away) but in Open Targets and FUMA,
higher prioritisation is given to two more distal genes (ATP6V1E2,
277 kb away and CRIPT, 351 kb away) based predominantly on
eQTL evidence in blood. The variant associated with the steepest
decline in attention domain score in our study is associated with
lower ATP6V1E2 expression (p= 1 × 10−22) and higher CRIPT
expression (3 × 10−12) in blood data from eQTLGen [41]. These
two genes also showed chromatin interaction evidence in FUMA
in IMR90 mesenchymal stem cells (CRIPT FDR= 2 × 10−16;
ATP6V1E2 FDR= 6 × 10−9). However, there was little evidence
that either of the eQTL signals colocalize with the respective
GWAS signals (posterior probability for colocalization <0.01% for
both). There was no evidence for this region being associated with
gene expression in available brain eQTL datasets in Open Targets
(lead variant) or FUMA (all associated variants in the region). In the
eQTL catalogue [42] (accessed via FIVEx [43]) the strongest
association with gene expression in the brain (out of the 139
gene-tissue combinations tested, within 500 kb) was with PIGF
(p= 0.004), which does not meet a Bonferroni correction.

Exploring previous associations
We also looked up previously reported cognition variants in our
GWAS results and found little evidence for association (Table 2
and Supplementary Tables 6–8). Amongst the three variants that
had previously shown an association with cognitive change
[9–11], only rs11023139 in SPON1, previously associated withTa
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global cognitive decline in Alzheimer’s disease patients in Sherva
et al. [11], met a nominal significance level (p < 0.05). This variant
showed some evidence for interaction with age at baseline
(beta=−0.01, p= 0.05) and association with slope 2 (beta= 0.22,
p= 0.03) in our global cognition model (Table 2), effect allele not
reported in the original study.
Amongst the larger list of variants that have been associated

with cognition in cross-sectional studies, there was also little
evidence for association in our analyses. Only 6 of the 166 Davies
variants had a p < 0.01 in our global cognition analysis (the
amount you would expect by chance accounting for 166 variants
and 4 parameters) and none reached a Bonferroni corrected p-
value threshold (p < 8 × 10−5) (Supplementary Table 6). Only 2 of
the 127 variants in the Hatoum et al. [6] study had p < 0.01 in our
attention domain analysis (fewer than you would expect by
chance), and none reached a Bonferroni corrected p-value
threshold (p < 1 × 10−4) (Supplementary Table 7). None of the
three variants associated with MRI-based measure language
functional connectivity [25] were associated with our language
domain analysis (Supplementary Table 8).

Association of cognition trajectories with PRS of related traits
Despite the fact that there was little evidence for association
amongst the individual 166 variants identified by Davies et al. [5],
overall the cognition PRS showed evidence (p < 0.008, accounting
for 6 models) for an association with baseline in the expected
direction for global cognitive functioning and attention, learning
and language domains (p-values ranged from 0.006 to 5 × 10−5,
Supplementary Table 9, Supplementary Fig. 5). However, the
association with episodic memory was much weaker (p= 0.06)
and there was little evidence for an association with executive
functioning (p= 0.280), although estimates for all domains were in

the expected direction. There was also some weaker evidence that
this PRS was associated with change for some of the domains (e.g.,
p= 0.002 for slope 1 of the attention domain, Supplementary
Table 9, Supplementary Fig. 5).
There was no evidence (p > 7 × 10−4, accounting for 72 models)

for association between the PRS for Alzheimer’s disease, obesity,
height, tobacco smoking, alcohol consumption, depression,
hearing loss, systolic blood pressure, physical activity, LDL,
diabetes and any of the parameters across all cognitive domains
(Supplementary Table 10, Supplementary Fig. 5). However, the
educational attainment PRS [30] showed evidence for association
with baseline global cognition (p= 5 × 10−6) and suggestive
evidence (p < 0.05) with all specific domains, other than executive
functioning (Supplementary Table 10, Supplementary Figs. 5, 6).
The strongest association was seen with the language domain
(p < 2 × 10−16). The attention and language domains also showed
some suggestive evidence for an interaction between the
education PRS and age at baseline, with the genetic effect getting
weaker with age (attention domain: beta=−0.005, p= 0.01;
language domain: beta=−0.006, p= 0.05).

DISCUSSION
In our genetic analysis of cognitive change, we find preliminary
evidence for the involvement of two novel loci with short-term
change in the attention domain score in a cohort of individuals
aged 65 or over who were cognitively normal at baseline. We find
only weak evidence that a small number of variants previously
associated with cognition (or change in cognition) are associated
with baseline cognition or change in our study, although a PRS
combining cognition variants were strongly associated. We also
find strong evidence that the PRS for educational attainment is

Fig. 4 Variant effects on attention domain trajectories. Trajectories plotted correspond to 0, 1 and 2 copies of the minor allele. Panel
A displays variant rs534221751 for slope 1 in the attention domain; panel B displays variant rs34743896 for slope 2 in the attention domain.
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associated with baseline cognition amongst individuals aged 65
and over. This was true for the global cognition measure, as well
as all specific domains (other than executive functioning), with the
strongest association being with the language domain. PRSs for
other traits previously implicated in Alzheimer’s disease risk or
cognition showed no evidence for association with cognition in
any of our models.
In our GWAS analysis, we report two loci associated with change

in the attention domain score; one associated with change in the
first year of follow-up in an intergenic region on chromosome 21,
and the second associated with change over the 1–5 year follow-
up period near EPAS1 on chromosome 2. Whilst EPAS1 is the
closest gene to the signal on chromosome 2, no further functional
evidence was identified that implicates this gene. However, there
was some evidence that this variant is associated with the
expression of two more distal genes, ATP6V1E2 and CRIPT in blood.
However, colocalization evidence showed the causal evidence for
the implication of these genes (in blood at least) to be weak. The
protein encoded by ATP6V1E2 is involved in proton-transporting
ATPase activity in ubiquitous pathways such as cellular response to
stimuli. CRIPT is the more interesting candidate at this locus, as the
protein binds selectively to the third PDZ domain of the post-
synaptic density protein 95 [44] and has a key role in learning and
memory [45]. Whilst the lead variant at this locus has not
previously been associated with any GWAS, this locus has
previously been implicated in GWAS of brain morphology
(rs17818315, p= 5 × 10−8) [46] and frontal lobe function (using
the anti-saccade test, rs11125080, p= 2 × 10−7) [47]. No eQTL
evidence provides support for the involvement of any gene at the
intergenic chromosome 21 locus. However, chromatin interaction
evidence does provide support for the role of NCAM2 (>1.7 Mb
away). This gene is involved in nervous system development and
has been previously implicated in GWAS of educational attain-
ment [30, 48].
Replication of these findings will be important to ensure they

are robust effects, but this will be challenging given that these
associations appear to be with specific aspects of change in the
attention domain of cognition that may be hard to replicate, given
the scarcity of studies of cognitively normal individuals of similar
age, with such regular cognitive measures. Whilst the lack of
replication amongst any of the previously reported cognitive
change variants in our GWAS is notable, there are a number of
reasons why this might be. The measured cognition phenotypes
(and participants) differ subtly between studies, and it is possible
that associations are with specific aspects of cognition (or in
specific contexts, e.g. in Alzheimer’s disease patients or patients of
the affective-to-psychotic spectrum), our current study may be
under-powered to detect the effects given the relatively small
sample size (N= 2515), or it is possible that the original findings
were false positives. In Sherva et al. [11] their own replication
analysis failed to find an association with their index variant,
rs11023139 and reported replication only for a nearby variant,
rs11606345 and Kamboh et al. [9] lacked a replication stage. It was
not possible to look up the two associations that we reported in
the previous relevant GWAS as they did not publish full summary
statistics [9].
In contrast to the specific variant look-ups of previously

reported cognitive change variants, we did show an association
between the PRS for general cross-sectional cognitive ability
(derived from Davies et al., GWAS [5]) and baseline global
cognition (p= 5 × 10−5), as well as attention, learning, and
language domains to a lesser extent (all p < 0.01). There was also
some evidence that this PRS was associated with cognitive change
in some models, e.g., slope 1 of attention domain (p= 0.002). This
suggests that the lack of association observed between these
individual previously published cognition variants and cognitive
function or change in cognition in our study is likely due to a lack
of power. Once those variants are combined into an allele score

(which has greater statistical power than single variants), we
identify the expected associations. This also highlights the
importance of conducting adequately powered replication stu-
dies, although this remains challenging given the scarcity of large
cohorts with both repeat measures of cognitive function and
genotype data in non-clinical populations.
We found strong evidence for an association between an

educational attainment PRS and the baseline measures of most
cognitive scores, particularly with the language domain
(p < 2 × 10−16). It is of note that the education PRS has an effect
on cognitive measures so much later in the life course than the
education phenotypes from which it was derived. The association
with the education PRS may imply that there are shared genetic
factors between education and later cognitive trajectories, and/or
that there is a causal effect of education on later cognition as
modelled here. This is consistent with the existing literature
[49, 50] showing individuals with higher educational attainment
maintain, on average, higher levels of cognitive function
throughout life. We found no evidence for associations with all
the other PRSs tested (Alzheimer’s disease, height, LDL cholesterol,
physical activity, obesity, type 2 diabetes, systolic blood pressure,
hearing loss, depression, smoking and alcohol consumption). This
does not rule out associations that are small in magnitude, as our
analyses were only sufficiently powered to identify large effects.
Other recent GWAS of cognitive function has applied methods

such as genomic structural equation modelling to identify latent
constructs of global cognition from several tests of specific
domains. For example, de la Fuente et al. [51] estimate a g factor
from seven cognitive tests and perform GWAS on that latent
construct to identify variants associated with general cognitive
function, as well as domain-specific function [51]. Those models
have not yet been extended to examine change over time in
latent constructs using, e.g. latent growth curve modelling and so
their findings cannot be directly compared to ours, but work in
this area is ongoing.
For a phenotype like cognition, change is an important and

understudied trait in the context of GWAS. We have demonstrated
the feasibility of conducting a GWAS of trajectories of repeated
measures using GEE models. This approach allows for variant
associations with specific features of the trajectories to be tested
and provides a useful framework for future studies to investigate
genetic risk factors of cognitive change.
Our study is limited by power, and we expect that it will be

fruitful to conduct similar analyses in larger sample sizes with
repeated cognitive measures (which are currently scarce). We have
undertaken a large number of tests, which has further limited
power and so replication (in independent studies) of specific
findings that we report would be valuable to examine their
robustness. Whilst the power of the PRS analysis could have been
boosted using alternative methods that include variants below the
genome-wide significance threshold [52–54], we chose not to do
this for this study, as we wanted to limit the inclusion of
pleiotropic variants (something that is not of concern when the
aim is prediction). Whilst studies with heritable selection criteria
can cause issues with collider bias, we have demonstrated here
that selection on specific known genetic risk factors (and
subsequent adjustment for these factors) is a tractable and robust
study design in this context.

CONCLUSION
We have conducted a GWAS of cognitive change, through GEE
modelling of trajectories. Whilst the two genetic risk factors
associated with cognitive change in later life in our analysis
require replication, our demonstration of the feasibility of this
approach should pave the way for larger future studies of this
important question. The strong association that we observed
between the education PRS, particularly in the language domain
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shows the impact of early life genetic predictors throughout the
life course.
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