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Major depressive disorder (MDD) is a globally prevalent and highly disabling disease characterized by dysfunction of large-scale
brain networks. Previous studies have found that static functional connectivity is not sufficient to reflect the complicated and time-
varying properties of the brain. The underlying dynamic interactions between brain functional networks of MDD remain largely
unknown, and it is also unclear whether neuroimaging-based dynamic properties are sufficiently robust to discriminate individuals
with MDD from healthy controls since the diagnosis of MDD mainly depends on symptom-based criteria evaluated by clinical
observation. Resting-state functional magnetic resonance imaging (fMRI) data of 221 MDD patients and 215 healthy controls were
shared by REST-meta-MDD consortium. We investigated the spatial-temporal dynamics of MDD using co-activation pattern analysis
and made individual diagnoses using support vector machine (SVM). We found that MDD patients exhibited aberrant dynamic
properties (such as dwell time, occurrence rate, transition probability, and entropy of Markov trajectories) in some transient
networks including subcortical network (SCN), activated default mode network (DMN), de-activated SCN-cerebellum network, a
joint network, activated attention network (ATN), and de-activated DMN-ATN, where some dynamic properties were indicative of
depressive symptoms. The trajectories of other networks to deactivated DMN-ATN were more accessible in MDD patients.
Subgroup analyses also showed subtle dynamic changes in first-episode drug-naïve (FEDN) MDD patients. Finally, SVM achieved
preferable accuracies of 84.69%, 76.77%, and 88.10% in discriminating patients with MDD, FEDN MDD, and recurrent MDD from
healthy controls with their dynamic metrics. Our findings reveal that MDD is characterized by aberrant dynamic fluctuations of
brain network and the feasibility of discriminating MDD patients using dynamic properties, which provide novel insights into the
neural mechanism of MDD.
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INTRODUCTION
Major depressive disorder (MDD) is one of the most common
mental illnesses worldwide, the leading cause of disability, and the
single largest contributor to global disease burden in the context
of increasing global turmoil [1]. Although significant progress has
been made in the study of the neural mechanism of depression
and the development of anti-depressants in the past decades, the
understanding of the pathophysiology underlying depression
remains elusive. Non-invasive measurement of neuronal activity
with functional magnetic resonance imaging (fMRI) has emerged
as a useful modality for investigating psychiatric disorders such as
MDD [2–4]. Numerous resting-state fMRI studies have provided
rich evidence of aberrant functional connectivity (FC) or abnormal
network communication in patients with MDD, especially within
default mode network (DMN) [5–8]. Task-based fMRI experiments
also show abnormalities of brain activity patterns in MDD patients
during facial recognition [9], cognitive control [10], and reward

processing [11]. Moreover, aberrant brain functional features can
be used as reliable neurobiological markers for the diagnosis of
MDD [12–14] and help to determine potential therapeutic targets
for treatment [15, 16]. All these fMRI studies assumed that the
interactions between the brain regions are temporally stationary
throughout the entire scan [3, 4].
However, the intrinsic brain activity is highly non-stationary,

which leads to dynamic alterations in signals measured by fMRI
[17]. The investigation of dynamic FC has the potential to provide
novel insight into how brain networks coalesce and dissolve over
time. Dynamic FC has been widely explored in patients with MDD.
A large number of studies on dynamic FC adopted a sliding-
window approach [18] and found that MDD was characterized by
abnormal brain fluctuations in DMN and time-varying brain
activities were significantly associated with depression severity
[19–21]. The sliding-window approach exploited the first-order
(pairwise) relationships between fMRI time series in a consecutive
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small window, wherein its results depend on the window shape
and size. In addition, this approach has lower test-retest reliability
[22], and it cannot detect abruptions in two adjacent windows or
within a consecutive window. To address the above limitations,
numerous methods have been developed, including dynamic
conditional correlation (DCC) approach [23] and co-activation
pattern (CAP) analysis [24]. DCC utilizes multivariate volatility
method (GARCH: a generalized auto-regressive conditional
heteroscedastic model) which can resolve brain dynamics at a
single time point and all the parameters in DCC are estimated by
quasi-maximum likelihood. However, fitting of GARCH model
makes whole-brain computation of DCC much more time-
consuming without dimensionality reduction and parameter
estimation has been shown to have severe negative biases [25].
Different from model-based DCC analysis, CAP uses k-means
clustering, and thus it is data-driven, relies on few model
assumptions, and is time efficient. This approach can flexibly
capture spontaneous spatiotemporal dynamics of brain activity at
frame resolution (single fMRI volume) with good sensitivity and
specificity, and it might provide fine-grained information on brain
dynamics.
The CAP method has been applied to investigate the brain

dynamics in MDD patients [26–30]. All these studies documented
that MDD was characterized by abnormal dynamic fluctuations
within DMN and between DMN and other networks, and specific
dynamic properties were correlated with depressive symptoma-
tology. However, the dynamic properties in DMN were incon-
sistent in these single-site studies. Specifically, Zheng et al.
documented a reduced persistence of DMN [28], while other
studies reported increased dwell time, frequency, or persistence of
DMN [26, 27, 29, 30] in MDD patients. Such inconsistency may be
partly due to sample heterogeneity (such as age, gender,
medication, episode, age of onset, etc.), data collected from
single site, data preprocessing method, and limited statistical
power with small sample size [31].
In the current study, we employed the CAP method to

investigate the dynamic fluctuations of brain functional activity
in a large MDD cohort (n= 436) from multiple centers and
evaluated the feasibility of using these dynamics for MDD
diagnosis. Subgroup analyses were also conducted for patients
with recurrent MDD and first-episode drug-naïve (FEDN) MDD.
Finally, we evaluated the robustness of our results under different
parcellation schemes and cluster numbers.

MATERIAL AND METHODS
Data resource
The data were obtained from the REST-meta-MDD Project [8] of the DIRECT
Consortium [32]. A total of 1300 MDD patients and 1128 healthy controls
from 24 sites in China were recruited in the project, and R-fMRI indices
were shared through the R-fMRI Maps Project (http://rfmri.org/REST-meta-
MDD).

Participants
All patients with MDD were hospital-diagnosed according to the
Structured Clinical Interview of Diagnostic with Statistical Manual of
Mental Disorder (DSM)-IV or International Classification of Disease 10.
We restricted our analyses to those subjects with 240 resting-state fMRI

time points and a repetition time of 2 s to reduce biases caused by
different time points or temporal resolutions when constructing dynamic
analysis. Ultimately, 436 subjects consisting of 215 healthy controls and
221 MDD patients from 6 sites were included in this study based on our
exclusion criteria (see supplementary material). Here, MDD patients were
further divided into subgroups of 43 first-episode drug-naïve (FEDN) MDD
patients and 100 recurrent MDD patients from 4 sites.
The demographic information included gender, age, education, and site

in both MDD patients and healthy controls. Depression severity was
assessed using the 17-item Hamilton Depression Rating Scale (HAMD) in
MDD group.

Image acquisition and processing
Resting-state fMRI data were acquired at each site using different scanners
and parameters. Pre-processing step was described in supplementary step
[8]. Details on the sites and imaging parameters can be found in
Supplementary Table S1.
In the post-processing step, fMRI signals were extracted from 116

regions of interest (ROIs) using automatic anatomic labeling (AAL) atlas
[33]. These 116 ROIs were allocated to 6 networks including ATN, DMN,
sensorimotor network (SMN), visual network (VN), subcortical network
(SCN), and cerebellum network (CN).

Co-activation pattern (CAP) analysis
We adopted an ROI-wise CAP analysis due to data limitations (raw data was
not shared to protect participant privacy) [24]. First, time series extracted
from 116 ROIs were converted to z-score (zero mean and unit standard
deviation) and then temporally clustered using k-means clustering (one
minus the Pearson correlation coefficient between frames as clustering
distance metric, 500 iterations, and 5 repetitions with random initializa-
tions). The Z statistic CAP maps for individual clusters were generated by
averaging the spatial maps of all subjects and then normalized using the
standard error.
The choice of the number of clusters k is a core problem in clustering.

We initially evaluated the clustering performance using elbow criteria,
Silhouette score, Calinski–Harabasz, Davies–Bouldin, and Dunn Validity
index for different k values ranging from 2 to 20. As shown in
Supplementary Fig. S1A, it was difficult to determine an optimal k using
the above evaluation metrics. As such, a trade-off value of k= 7 was used
in this study, considering that k generally ranged from 6 to 8 in previous
studies [34–36].
To provide a rich characterization of temporal properties of CAP, we

quantified MDD dynamics using dwell time, occurrence rate, transition
probability matrix, and entropy of Markov trajectories. Calculations on
these metrics were described in supplementary material. The CAP analysis
was processed using custom-written scripts in MATLAB R2016a (The
MathWorks, Inc., Natick, MA, USA).

Support vector machine (SVM)
A Gaussian radial basis function-based SVM classifier was implemented for
classification procedure using the python package scikit-learn, because of
its promising results in neuroimaging [37, 38]. Here, we applied the nested
cross-validation (CV) strategy to conduct models. Features were indepen-
dently standardized to a normal distribution by z-score normalization,
whose parameters were learned from the training set and then applied to
the testing set. Outer loop of nested CV was performed to split training
and test sets, and quantify classification performance. The classification
performance was described by area under curve (AUC), accuracy (Acc),
sensitivity (Sen), harmonic mean of precision and recall (F1 score), positive
predictive value (PPV), and negative predictive value (NPV). Hyper-
parameters (optimal cost parameter, C; tolerance, gamma) were optimized
using a grid search algorithm based on the highest accuracy in the training
set of inner loops.

Reproducibility analysis
We implemented several strategies to test the robustness of our results. 1)
Different cluster numbers. We examined whether cluster numbers (k= 6
and k= 8) may affect the overall trend of dynamic properties in MDD. 2)
Different parcellation schemes. We constructed brain dynamics using a
structure-based atlas (the Harvard-Oxford structural parcellation [39]) and a
functional atlas (the Craddock functional parcellation [40]). 3) Global signal
regression (GSR) in the preprocessing step. The reproducibility of dynamic
metrics such as dwell time, occurrence rate, persistence probability, and
entropy of Markov trajectories were assessed in the above three scenarios.

Statistical analysis
To examine the statistical difference in dynamic CAP properties between
MDD patients and healthy controls, two-tailed independent sample t-tests
were employed after controlling for age, gender, education level, site, and
frame-wise displacement. T-tests met assumptions for normality and equal
variances. Pearson correlation was used to determine whether these
dynamic properties were correlated with the clinical scores of HAMD in
MDD patients after adjusting for age, gender, education level, site, and
frame-wise displacement. Additionally, spatial similarity between CAPs was
assessed using Pearson correlation. All the results within a specific dynamic
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property were corrected for multiple comparisons using false discovery
rate (FDR) [41]. Statistical significance was considered at P < 0.05 (two-
tailed). These statistical analyses were carried out in MATLAB R2016a (The
MathWorks, Inc., Natick, MA, USA) and Social Sciences, version 26.0 (SPSS,
Chicago, IL).

Ethics
We used publicly-available data from Rest-meta-MDD project of DIRECT
Consortium (Approval ID: U0240). All the sites agreed to share final R-fMRI
indices from studies approved by local Institutional Review Boards.

RESULTS
Demographics and clinical characteristics
The demographic and clinical characteristics of MDD patients and
healthy controls are summarized in Table 1. No group difference
was reported in gender (χ2 = 2.267, P= 0.143) or age (Z=−0.011,
P= 0.991) between MDD patients and healthy controls. MDD
patients had lower education levels than healthy controls
(Z=−3.125, P= 0.002). The mean HAMD-17 of MDD patients
was 21.71 ± 6.60.

Seven dynamically recurring functional brain states
To quantify time-varying heterogeneous information in resting
state fMRI data, we applied CAP analysis to divide the brain into
multiple overlapping states. Using k-means clustering, seven
recurring states were identified (Fig. 1A). We adopted two
methods to determine which network the CAP belongs to. 1)
The proportion of summed–absolute Z statistic (Z > 1.96) of ROIs
inside each network to summed–absolute Z statistic (Z > 1.96) of
all ROIs. 2) The activation matrix (7k × 116ROI) with absolute Z
statistic (Z > 1.96) of each ROI multiplied by the network mask
(116ROI × 6networks), positive network, and negative network were
calculated separately.
CAP1 was mainly dominated by SCN (SCN; both activated and

de-activated, proportion= 30.02%). CAP2 was characterized by
positive activation of DMN (hereafter activation of a network was
expressed with ‘network+’, de-activation was expressed with
‘network−’; DMN+; proportion= 43.36%). CAP3 was the de-
activation of SCN (proportion= 35.25%) and CN (proportion=
34.20%) (SCN−-CN−). CAP4 was mainly overlapped with activated
SCN (SCN+; proportion= 42.93%). CAP5 was a joint network
containing CN, ATN, SMN, and VN (pooled network; proportions=
20.85%, 18.51%, 26.48%, and 17.91, respectively). CAP6 was
mainly dominated by activated ATN (ATN+; proportion= 34.55%).
CAP7 mainly corresponded with de-activated DMN and ATN
(DMN−-ATN−; proportion= 32.95% and 26.91%, respectively)
(Supplementary Fig. S2A). The obtained CAPs had some pairs of
anti-correlated spatial configurations. The first CAP pair showed
anti-correlation between CAP2 (DMN+) and CAP7 (DMN−-ATN−)
(r=−0.5230, P < 0.0001). The second CAP pair showed anti-
correlated configuration between CAP4 (SCN+) and CAP5 (pooled
network) (r=−0.5153, P < 0.0001) (Supplementary Table S2).

Dwell time and occurrence rate of each CAP state
We first tested whether dynamic properties such as dwell time
and occurrence rate were different between MDD patients and
healthy controls. Overall, MDD patients showed a significantly
reduced dwell time in CAP1 (SCN), CAP2 (DMN+), and CAP7
(DMN−-ATN−), and a significantly increased dwell time in CAP3
(SCN−-CN−), CAP5 (pooled network) and CAP6 (ATN+) (Fig. 2A).
Relative to healthy controls, MDD patients had a decreased
occurrence rate in CAP1 (SCN) and increased occurrence rate in
CAP7 (DMN--ATN-) (Fig. 2C, Supplementary Table S3).
The behavior relevance with dwell time was evaluated in MDD

patients using Pearson correlation after adjusting for age, gender,
education level, site, and frame-wise displacement. As shown in
Supplementary Table S4, dwell time of CAP3 (SCN−-CN−)
(r= 0.1715, P= 0.0107) yields strong positive relationship with
depression severity, while dwell time of CAP4 (SCN+) (r=−0.1882,
P= 0.0050) is negatively correlated with depression severity.
We also assessed the difference in dwell time and occurrence

rate between MDD patients and healthy controls at site level
(Supplementary Fig. S4A). The decreased dwell time of CAP1 (SCN)
in MDD patients was consistently observed in 5 of the 6 sites
except site 1 due to data imbalance (nMDD= 31, nhealthy controls=
6), followed by CAP5 (pooled network) and CAP6 (ATN+) (4 of the
6 sites), CAP7 (DMN−-ATN−) and CAP3 (SCN−-CN−) (3 of the
6 sites). The dwell time of CAP7 (DMN−-ATN−) of healthy controls
showed an increasing trend among all sites, albeit less significant
at some sites. The results of occurrence rate were less repeatable
across all sites.

Transition probabilities and entropy of Markov trajectories
between each CAP state
MDD patients had lower persistence probabilities within CAP1
(SCN), CAP2 (DMN+), CAP7 (DMN−-ATN−) and higher persistence
probabilities within CAP5 (pooled network) and CAP6 (ATN+) (Fig.
3A). Note that the transition probability was asymmetric, which
means that the transition was directional. MDD patients showed
significantly increased transition probabilities from 1) CAP1 to
CAP2, CAP3 and CAP7, 2) CAP2 to CAP1, CAP3, CAP6 and CAP7, 3)
CAP3 to CAP1, 4) CAP7 to CAP3, CAP4, CAP5 and CAP6. On the
other hand, MDD patients showed weaker transition probabilities
from 1) CAP3 to CAP5 and CAP6, 2) CAP4 to CAP1 and CAP3, 3)
CAP5 to CAP1, CAP2 and CAP6, 4) CAP6 to CAP3, CAP4 and CAP7,
and 5) CAP7 to CAP1 (CAP1: SCN; CAP2: DMN+; CAP3: SCN−-CN−;
CAP4: SCN+; CAP5: pooled network; CAP6: ATN+; CAP7: DMN−-
ATN−) (Fig. 3A). The detailed statistics are described in Supple-
mentary Table S5. As shown in Fig. 3B, Pearson correlation reveals
a significant correlation between depression severity and transi-
tion probabilities from CAP1 (SCN) to CAP3 (SCN−-CN−)
(r= 0.1924, P= 0.0041), CAP1 (SCN) to CAP6 (ATN+) (r=−0.17,
P= 0.0114), CAP4 (SCN+) to CAP2 (DMN+) (r= 0.1381, P= 0.0403),
CAP5 (pooled network) to CAP6 (ATN+) (r= 0.1458, P= 0.0303),
CAP7 (DMN−-ATN−) to CAP4 (SCN+) (r=−0.2789, P < 0.0001).

Table 1. Demographic and clinical description of healthy controls and MDD patients.

Characteristic Healthy controls (N= 215) MDD patients (N= 221) P value

Gender (male/female) 93/122 80/141 0.143a

Age (years) 33.48 ± 12.88 33.45 ± 12.78 0.991b

Education level (years) 12.87 ± 3.29 11.97 ± 3.07 0.002b

HAMD-17 NA 21.71 ± 6.60 NA

Data were represented as mean ± SD (standard deviation).
MDD major depressive disorder, HAMD Hamilton Depression Scale.
aThe p-value of gender was obtained by the Pearson chi-square cross-table test.
bThe p-values of age and education level were obtained by the Mann–Whitney U test.
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To describe the variation in transitions, we further characterized
these transition matrices using entropy of Markov trajectories.
Surprisingly, we found that the entropies of the remaining CAPs to
CAP7 (DMN−-ATN−) were significantly (or trend-level) higher in
healthy controls, indicating that the trajectories of the remaining
CAPs to CAP7 (DMN−-ATN−) were more accessible in MDD
patients (Fig. 3C). Decreased accessibilities were found within
CAP1 (SCN), CAP2 (DMN+) and CAP7 (DMN−-ATN−) in MDD
patients, while CAP3 (SCN−-CN−), CAP5 (pooled network) and
CAP6 (ATN+) exhibited increased accessibility in MDD patients
(Fig. 3C). Decreased entropy of Markov trajectories from CAP1
(SCN) to CAP3 (SCN−-CN−) (r=−0.1929, P= 0.004), within CAP3
(SCN−-CN−) (r=−0.1596 P= 0.0176), CAP7 (DMN−-ATN−) to
CAP3 (SCN−-CN−) (r=−0.1475, P= 0.0284) were associated with
elevated depression severity. Enhanced entropy of Markov
trajectories from CAP2 (DMN+) to CAP4 (SCN+) (r= 0.1725,
P= 0.0102), CAP3 (SCN−-CN−) to CAP4 (SCN+) (r= 0.1465,
P= 0.0295), within CAP4 (SCN+) (r= 0.1588, P= 0.0182), CAP6
(ATN+) to CAP4 (SCN+) (r= 0.2008, P= 0.0027) and CAP7 (DMN−-

ATN−) to CAP4 (SCN+) (r= 0.2472, P= 0.0002) were correlated
with increased depression severity (Fig. 3D).
We repeated transition probability analysis among all sites

(Supplementary Fig. S5A). The persistence probabilities of CAP2
(DMN+), CAP5 (pooled network), CAP6 (ATN+) and CAP7 (DMN−-
ATN−) have a good reproducibility in MDD patients (4 of the 6
sites). Consistent changes in transition probability were found
from 1) CAP2 (DMN+) to CAP7 (DMN−-ATN−), 2) CAP3 (SCN−-CN−)
to CAP5 (pooled network) and CAP6 (ATN+), and 3) CAP7 (DMN−-
ATN−) to CAP1 (SCN) and CAP6 (ATN+) (3 of the 6 sites). Results on
entropy of Markov trajectories were validated in each site
(Supplementary Fig. S5B). Similar trends of higher accessibility in
MDD patients between the rest CAPs to CAP7 (DMN−-ATN−) were
found in site 1, site 2, site 3, and site 5.

Subgroup analyses
Subgroup analyses of dwell time and occurrence rate. We also
compared the dwell time between FEDN MDD patients, recurrent
MDD patients, and healthy controls. The 135 healthy controls

Fig. 1 The seven identified CAP topographies. A Main network components of each CAP. The CAPs consisted of CAP1 (SCN), CAP2 (DMN+),
CAP3 (SCN−-CN−), CAP4 (SCN+), CAP5 (pooled network), CAP6 (ATN+) and CAP7 (DMN−-ATN−). SCN subcortical network, DMN default mode
network, CN cerebellum network, SMN somatosensory network, ATN attention network.
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(HC1) were selected from sites that contained patients with FEDN
or recurrent MDD patients. FEDN patients showed significantly
lower total dwell time in CAP1 (SCN) and CAP7 (DMN−-ATN−), and
higher total dwell time in CAP6 (ATN+) (Fig. 4A). The results on
dwell time of recurrent MDD patients were consistent with those
of all pooled MDD patients, except that there was no significant
difference in CAP3 (SCN−-CN−). In CAP6 (ATN+), the occurrence
rate was significantly weaker in recurrent MDD patients, higher in
CAP7 (DMN−-ATN−)
(Fig. 4A, B). There were no significant changes in occurrence rate
in FEDN MDD patients (Fig. 4B).

Subgroup analyses of persistence probabilities and transition
probabilities. Results of persistence probabilities in FEDN MDD
patients were similar to those in all pooled MDD patients, except no
difference was found in CAP2 (DMN+) (Fig. 4C). The same results of
persistence probabilities between MDD and healthy controls were
available for recurrent MDD. In addition, the persistence probability
of CAP3 (SCN−-CN−) was lower in recurrent MDD (Fig. 4C).
In patients with FEDN MDD, we found increased transition

probabilities from CAP1 (SCN) to CAP3 (SCN−-CN−), CAP4 (SCN+) to
CAP5 (pooled network), CAP7 (DMN−-ATN−) to CAP6 (ATN+),
decreased transition probabilities from CAP2 (DMN+) to CAP4
(SCN+), and CAP5 (pooled network) to CAP7 (DMN−-ATN−) (Fig. 4C).
Recurrent MDD patients showed similar results to MDD patients in
transition probabilities. We also found a lower transition probability
from CAP6 (ATN+) to CAP3 (SCN−-CN−) in recurrent MDD patients
than in FEDN MDD patients. The detailed statistics are described in
Supplementary Tables S3–5. Behavior relevance is described in
Supplementary Fig. S7.

Subgroup analyses of entropy of Markov trajectories. Compared
with healthy controls, the accessibilities within CAP1 (SCN) and
CAP7 (DMN−-ATN−) were lower in FEDN MDD patients. Increased
accessibilities within CAP6 (ATN+), between CAP7 (DMN−-ATN−)
and CAP6 (ATN+) were found in FEDN MDD patients. Consistent
results with MDD patients in entropy of Markov trajectories were
found in recurrent MDD patients, except no difference was found
within CAP3 (SCN−-CN−). There was no difference in entropy of

Markov trajectories between FEDN and recurrent MDD patients
(Fig. 4D, Supplementary Table S6).

Reproducibility evaluation
We first examined dynamic characteristics with different values of
cluster number k. The CAP7 (DMN−-ATN−) was chosen for
reproducibility assessment. Spatially similar CAPs with CAP7
(DMN−-ATN−) were identified when k= 6 and k= 8 (Fig. 5A).
We found a trend consistent with the previous results in CAP7
(DMN−-ATN−) (Figs. 2 and 3), except inconsistent results in
occurrence rate (Fig. 5A). All spatial patterns of CAPs when k= 6
and k= 8 are displayed in Supplementary Fig. S8A and their
temporal dynamics were overall consistent with those of k= 7
(Supplementary Fig. S8B–C).
Two spatially similar maps can be observed using Craddock200

atlas and HOA112 atlas (Fig. 5B). The results of dwell time,
persistence probability, and entropy of Markov trajectories
between MDD patients and healthy controls using these two
parcellations were shown to be qualitatively consistent with the
above findings (Figs. 2 and 3) while occurrence rate of
Craddock200 atlas yielded contrary results.
GSR was also considered in our analysis, but no significant

difference was found in the dynamic properties between the two
groups. One possible reason is that the centroids were changed
after clustering, and another is that there are too few ROIs to
perform Pearson correlation, thus it cannot identify a similar
spatial map very well. We noted that among the several spatial
maps with high Pearson correlation values, unwanted activations
in some ROIs were exhibited compared with spatial map of CAP7
(DMN--ATN-) when k= 7 (Fig. 5C). Moreover, although GSR can
effectively remove global artifacts arising from motion and
respiration [42, 43], it is still considered to be a controversial step
in fMRI analysis since the global signal may contain important
neurobiological information in MDD [44].

Binary MDD classification of four groups using dynamic
measures
We inputted all pooled dynamic properties including dwell time,
occurrence rate, persistence probabilities, and entropy of

Fig. 2 Dwell time and occurrence rate of CAPs. A Group difference in dwell time between MDD patients and healthy controls for seven CAPs.
B Group difference in occurrence rate between MDD patients and healthy controls in each CAP. Two sample t tests with covariates were used
for dwell time and occurrence rate comparisons. All results were corrected for multiple comparisons using FDR correction within seven CAPs.
Data were represented as mean ± SEM (standard error of mean). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. nMDD= 221; nhealthy
control= 215. See Supplementary Table S3 and 4 for detailed statistics. MDD major depressive disorder; HC healthy controls. CAP1: SCN; CAP2:
DMN+; CAP3: SCN−-CN−; CAP4: SCN+; CAP5: pooled network; CAP6: ATN+; CAP7: DMN−-ATN−.
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Markov trajectories with P values less than 0.05 into SVM
classifier and obtained mean accuracies of 84.69%, 76.77%,
88.10%, and 72.14% in distinguishing MDD patients from
healthy controls, FEDN MDD patients from healthy controls,
recurrent MDD patients from healthy controls, and FEDN from
recurrent MDD patients, respectively (Fig. 6A). The mean AUCs
were 0.93, 0.82, 0.92 and 0.71 for these four groups, respectively

(Fig. 6B). Sensitivity, specificity, F1 score, PPV and NPV are
displayed in Supplementary Tables S7–10.

DISCUSSION
In this study, we employed a large multicenter cohort (n= 436)
to investigate the dynamic properties of brain functional activity

Fig. 3 Transition probabilities and corresponding temporal trajectories among CAPs. A Transition probability matrix of MDD patients and
healthy controls between each CAP and comparison between two groups. The diagonal entries are persistence probabilities. Red rectangle
indicates that the transition probability from a CAP to another CAP in healthy controls was greater than MDD patients. The blue rectangle is
the opposite. B Behavioral evidence of transition probabilities for MDD patients. C Entropy of Markov trajectories matrix and comparison
between MDD patients and healthy controls. D Behavioral evidence of temporal trajectories for MDD patients. Two sample t tests with
covariates were used for comparison of transition probabilities and temporal trajectories. The relationship between these properties and
HAMD scores was assessed using Pearson correlation. All P values were corrected for multiple comparisons with FDR correction within 49
paths. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. nMDD= 221; nhealthy control= 215. CAP1: SCN; CAP2: DMN+; CAP3: SCN−-CN−; CAP4:
SCN+; CAP5: pooled network; CAP6: ATN+; CAP7: DMN−-ATN−. See Supplementary Table S5 and 6 for detailed statistics.
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Fig. 4 Subgroup differences (FEDN MDD vs. Recurrent MDD vs. HC1) in temporal characteristics. A Dwell time. B Occurrence rate.
C Transition probabilities and their behavioral relevance. D Entropy of Markov trajectories (accessibility). All results were corrected for multiple
comparisons using FDR correction. Data were represented as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. nFEDN= 43;
nHC1= 135; nRecurrent= 100. HC1: healthy controls from the same site of FEDN and recurrent MDD patients. CAP1: SCN; CAP2: DMN+; CAP3:
SCN−-CN−; CAP4: SCN+; CAP5: pooled network; CAP6: ATN+; CAP7: DMN−-ATN−.
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in MDD patients using a data-driven CAP method. In current
study, we identified seven CAPs encompassing CAP1 (SCN),
CAP2 (DMN+), CAP3 (SCN−-CN−), CAP4 (SCN+), CAP5 (pooled
network), CAP6 (ATN+), and CAP7 (DMN−-ATN−) in the MDD
cohort. MDD patients showed aberrant dynamic properties in
CAPs including CAP1 (SCN), CAP2 (DMN+), CAP3 (SCN−-CN−),
CAP5 (pooled network), CAP6 (ATN+), and CAP7 (DMN−-ATN−).
Some dynamic characteristics in specific CAPs were associated
with depressive symptoms. Interestingly, CAP7 (DMN−-ATN−)
was the most probable destination of the other six CAPs in both
MDD and recurrent MDD patients. These results suggest that
MDD is characterized by abnormal timing-varying intrinsic
fluctuations of large-scale brain functional networks. We also
found that the time-varying properties could distinguish MDD

patients from healthy controls with an accuracy of 84.69%,
implying that these time-varying properties might be used as
reliable biomarkers of MDD.

Significant alterations of brain dynamics in MDD population
CAP analysis can reflect spatial-temporal heterogeneous informa-
tion in fMRI data [24]. These CAPs represent flexibility and
dynamic coordination between distinct neural systems [45].
DMN is involved in introspection, self-focused thoughts,

emotional control, and motivation. It has long been reported to
contribute to the development of depression [5–8, 26, 46].
Compared with healthy controls, MDD patients were found to
have shorter dwell time and fewer transitions in activated DMN
and de-activated DMN-ATN. In addition, de-activated DMN-ATN

Fig. 5 Reproducibility analysis. A Different cluster numbers k. B Different parcellation schemes. Craddock’s 200 functional clustering atlas
and Harvard-Oxford atlas were tested. C Global signal regression. Two sample t test with covariates. Multiple comparisons with FDR correction.
Data were represented as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. nMDD= 221; nhealthy control= 215. EM entropy of
Markov trajectories. CAP1: SCN; CAP2: DMN+; CAP3: SCN−-CN−; CAP4: SCN+; CAP5: pooled network; CAP6: ATN+; CAP7: DMN−-ATN−.
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occurred more frequently and transitioned more from one of
these two CAPs to another CAP in MDD patients than healthy
controls. These results suggested that the co-activation or co-
deactivation of DMN is temporally unstable in MDD patients,
which is in line with several previous studies [19, 20, 28, 47].
Another finding of our study is that de-activated DMN-ATN, as an
attractor, is more accessible in patients with MDD and recurrent
MDD than healthy controls, and a similar trend was observed
between patients with FEDN MDD and recurrent MDD. To the best
of our knowledge, no studies have applied the entropy of Markov
trajectories in the CAP method to study MDD. Thus, this finding is
novel compared to previous results and further confirms that
highly variable DMN fluctuations may exaggerate internal self-
referential thoughts that may trigger MDD.
Several studies investigated the dynamics of MDD using the

CAP approach. Kaiser et al. documented that MDD patients
showed increased dwell time and persistence in frontoinsular-
DMN, and higher transition frequency between frontoinsular-DMN
and prototypical DMN was associated with elevated depressive
symptoms [26]. Zheng et al. found reduced occurrence rate and
transitions within DMN [28], while Emily L. Belleau reported that
MDD patients dwelled more time in DMN-FPN and had a higher
transition probability between DMN-FPN to prototypical DMN [27].
Goodman et al. found that elevated depressive symptoms were
positively correlated with enhanced frequency and dwell time of
the DMN [29]. Hou et al. found that dominant CAP in the left
posterior DMN was positively correlated with depressive symp-
toms [30]. Consistent with part of findings of Zheng et al. (reduced
transitions within DMN), we also found a reduced persistence
probability of both activated and de-activated DMN in patients
with MDD [28]. Our results are inconsistent with the results of the
other four studies [26, 27]. The possible reasons are as follows: 1)
most of data were collected from single site with limited reliability,
2) different MDD risk genes in Han Chinese compared with
Caucasian subjects [48], 3) somatic symptoms in Han Chinese
rather than psychological symptoms [49], 4) heterogeneity in
clinical characteristics.
We also found that MDD patients had shorter dwell time in SCN

and longer dwell time in de-activated SCN-CN, the joint network,
and activated ATN, suggesting dynamic network disruption in
patients with MDD. Besides, we observed transition trajectories
between CAPs were dynamically and nonmonotonically changed

in MDD patients. These abnormal network communications
(transitions) have been reported to be engaged in MDD in
previous static and dynamic fMRI studies [5, 8, 50–52]. Attention
network is involved in working memory and cue attention, and it
also intrinsically affects MDD [53, 54]. In addition, the crucial role
of subcortical network and somatosensory network in processing
and regulating emotions has also been recognized [55–57].
Cerebellum, which also involves mood regulation and cognitive
processing, has been proven to be associated with depression
[58, 59]. All these evidences suggest that dysfunction of these
networks may contribute to mood regulation and motivation
functions of MDD. Our results showed that dwell time of SCN and
deactivated SCN-CN were positively related to depression severity,
whereas dwell time of ATN and de-activated DMN-ATN were
almost negatively associated with depression severity. Besides,
persistence probabilities within SCN and activated ATN were
associated with depressive symptoms. These findings affirmed
that dynamic metrics of SCN, CN, ATN, and DMN could indicate
depressive symptomatology [19, 26, 60].
In our study, subtle changes of dynamic properties in FEDN

MDD patients were also recognized. In a previous study, Yan et al.
found there was no significant difference in the within-network FC
of DMN between FEDN MDD patients and healthy controls using
traditional static analysis [8]. However, a subsequent study using a
sliding window approach reported robust group differences in
temporal variability, average temporal correlation coefficient, and
average characteristic temporal path length between FEDN MDD
patients and healthy controls [19]. In addition, our results
demonstrate that CAP analysis can detect time-varying differences
between FEDN MDD patients and recurrent MDD patients in
transition probabilities. Such alterations in dynamic properties
may allow an early track of illness trajectory and clinical treatment
response in MDD patients.

MDD classification using dynamic metrics
The current diagnosis of MDD is based on Structured Clinical
Interview of Diagnostic, such as DSM-IV, HAMD score, or
international Classification of Disease. However, such rating scales
bring unavoidable decreases in diagnostic reliability since they are
measured by patients’ subjective experiences. Thus, more
objective tools, such as fMRI [2], are needed for accurate diagnosis
and further treatment. In this study, we found dynamic fMRI

Fig. 6 Accuracy and AUC based on dynamic features using SVM. A Accuracy distribution with 1000 permutation tests of four classifiers
(MDD vs. HC, FEDN vs. HC1, Recurrent vs. HC1 and FEDN vs. Recurrent). B AUC distribution with 1000 permutation tests of four classifiers. P
values were based on 1000 permutation tests.
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metrics achieved accuracies of 84.69%, 76.77%, and 88.10% in
distinguishing MDD patients, FEDN MDD patients, and recurrent
MDD patients from healthy controls, indicating that dynamic
functional properties may serve as potential biomarkers for
stratifying MDD patients from healthy controls. Our model
constructed with SVM and transient networks is comparable to
those studies using static FC [12–14, 61], dynamic FC [62–64], the
joint of two FCs [62] as input features and is superior to models
constructed with structural features [65] in MDD.

Limitations and future directions
We acknowledge several limitations in the current study. First, the
determination of optimal number of k (number of clusters) was
challenging. Even though we have adopted a series of indices for
the evaluation of clustering performance (elbow criteria, SIL, CH,
DB, and DVI), we still cannot determine the most optimal k value.
The frame numbers of fMRI in current study were 240. If k
increases, there will be fewer frames assigned to a specific CAP,
which will lead to loss of clustering stability and dynamic
information [66]. CAP cannot reflect the interaction between
different networks if the value of k is too small. Therefore, a trade-
off value of k= 7 was chosen in accordance with previous studies
[34–36]. Dynamic fMRI analysis with more time points in future
studies is suggested for stable clustering and enriched dynamic
information in future studies. Second, fMRI with temporal
resolution of 2 s might be insufficient to (indirectly) reflect the
transient neuronal activity. Future studies could combine fMRI and
other neuroimaging modalities, such as electroencephalography
and magnetoencephalography to investigate the neuronal
correlates of CAPs. Third, head motion can negatively affect fMRI
data quality. Despite there being no difference of framewise
displacement among each CAP, some de-nosing approaches such
as ICA-FIX could be applied after raw data were shared. Finally, we
only used dynamic FC for MDD classification here. Although the
dynamic properties can achieve a preferable MDD classification,
future research can combine static FC features and other modal
features such as structural features to achieve better classification
performance.

Conclusions
In conclusion, the present study revealed that MDD patients
exhibited aberrant and robust temporal dynamics measured by
CAP approach, providing new perspectives for understanding the
underlying neural mechanisms in MDD population. The related
transient resting-state co-activation networks included activated
DMN, SCN, de-activated SCN-CN, de-activated DMN-ATN, and a
joint network. Some dynamic properties of these networks were
associated with depressive severity. Abnormal fluctuations in
deactivated DMN-ATN were also identified in FEDN and recurrent
MDD patients. Moreover, temporal dynamics showed predictive
value in distinguishing the pooled MDD, FEDN, and recurrent MDD
from healthy controls, highlighting temporal dynamics as valuable
neuroimaging biomarkers for the diagnosis and future clinical
treatment of MDD.
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