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Bipolar disorder is a leading contributor to disability, premature mortality, and suicide. Early identification of risk for bipolar
disorder using generalizable predictive models trained on diverse cohorts around the United States could improve targeted
assessment of high risk individuals, reduce misdiagnosis, and improve the allocation of limited mental health resources. This
observational case-control study intended to develop and validate generalizable predictive models of bipolar disorder as part of
the multisite, multinational PsycheMERGE Network across diverse and large biobanks with linked electronic health records (EHRs)
from three academic medical centers: in the Northeast (Massachusetts General Brigham), the Mid-Atlantic (Geisinger) and the
Mid-South (Vanderbilt University Medical Center). Predictive models were developed and valid with multiple algorithms at each
study site: random forests, gradient boosting machines, penalized regression, including stacked ensemble learning algorithms
combining them. Predictors were limited to widely available EHR-based features agnostic to a common data model including
demographics, diagnostic codes, and medications. The main study outcome was bipolar disorder diagnosis as defined by the
International Cohort Collection for Bipolar Disorder, 2015. In total, the study included records for 3,529,569 patients including
12,533 cases (0.3%) of bipolar disorder. After internal and external validation, algorithms demonstrated optimal performance in
their respective development sites. The stacked ensemble achieved the best combination of overall discrimination
(AUC= 0.82–0.87) and calibration performance with positive predictive values above 5% in the highest risk quantiles at all three
study sites. In conclusion, generalizable predictive models of risk for bipolar disorder can be feasibly developed across diverse
sites to enable precision medicine. Comparison of a range of machine learning methods indicated that an ensemble approach
provides the best performance overall but required local retraining. These models will be disseminated via the PsycheMERGE
Network website.

Translational Psychiatry           (2024) 14:58 ; https://doi.org/10.1038/s41398-023-02720-y

INTRODUCTION
Bipolar disorder (BD), characterized by episodes of hypomania/
mania and depression [1], is a leading cause of disability [2]. Rates
of suicide among patients with BD are 20- to 30-fold higher than
in the general population [3], and BD is associated with substantial
premature mortality from multiple causes [4]. The diagnosis of BD
can be challenging and may require a prolonged diagnostic
odyssey, averaging 6–10 years [5–7]. Affected patients frequently
present initially with a major depressive episode and are
misdiagnosed with unipolar depression. Misdiagnosis may lead
to inappropriate prescribing of antidepressants without mood
stabilization and increased risk of switching into a manic state [8].
Duration of untreated bipolar disorder is associated with more
severe and recurrent mood episodes and more frequent suicide
attempts [9, 10].
Identifying those at risk for BD might enable targeted

assessment, early intervention, and more appropriate manage-
ment. A recent systematic review of clinical trials to prevent

bipolar disorder showed reliance on family history for risk
identification [11]. However, given BD’s multifactorial nature,
most affected would not have a positive family history [12]. In
addition and unlike schizophrenia, no established prodrome
exists for bipolar disorder. Newer methods for risk identification
not reliant on existing clinical signs or symptoms might be of
substantial value.
Longitudinal electronic health records (EHRs) coupled with

predictive analytics might enable novel risk identification oppor-
tunities in BD. We have previously demonstrated that such data
can produce valid diagnostic phenotyping of bipolar cases
[13, 14]. Here, we extend this work to the domain of prognostica-
tion by leveraging the PsycheMERGE Network, a national research
network of EHR-linked biobanks. Using longitudinal EHRs from
three major healthcare systems, we trained and validated
quantitative bipolar disorder risk prediction models based on
high-dimensional structured EHR data and evaluated their
performance individually and when ensembled.
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METHODS
Study settings
Participating study sites included three major academic medical centers in
the United States: the Northeast (Mass General Brigham [MGB]), the Mid-
South (Vanderbilt University Medical Center [VUMC]), the Mid-Atlantic
(Geisinger [GHS]). Each site participates in the PsycheMERGE Network and
has an extensive EHR repository linked to a biobank. On average, these
sites each serve 1.4 M patients per year and have EHR repositories of
~2.7 M patients linked via EHRs.
The methods were performed in accordance with relevant guidelines

and regulations and approved by Institutional Review Boards at each
participating study site: Vanderbilt University Medical Center, Geisinger
Health System, Mass General Brigham.

Outcome definition
Cases of BD were defined by the published “Bipolar Coded-Broad”
definition per Castro et al. [14]. This rule-based algorithm demonstrated
high positive predictive value (0.80) using a gold-standard of semi-
structured diagnostic interviews (SCID-IV) by experienced doctoral-level
clinicians blind to algorithmic results. To meet “Bipolar Coded-Broad,”
cases must have at least two BD diagnostic codes versions nine or ten of
the International Classification of Diseases (ICD) schema with a minimum
of four weeks between each code and at least two documented
medications used to treat BD (e.g., lithium or valproic acid) within one
year of the index BD diagnosis. To rule out patients with related disorders,
we required the number of diagnostic codes for major depressive disorder
(MDD), schizophrenia (SCZ), schizoaffective disorder, or organic affective
syndrome (OAS) to total fewer than half the number of BD codes. Only
adult patients aged 18 years and older at the time of their index BD
diagnosis were included in this analysis.
All adult patients were included if they had a minimum of three

documented healthcare encounters over a minimum of six months,
regardless of case status.

Predictive modeling approach
We compared three predictive modeling approaches that together span a
range of model architectures and strategies for handling feature relation-
ships (see “Algorithmic Details”, below). Because of prior algorithmic
experience at each study site, each team validated internally one of three
types of models: L2-penalized regression (abbreviated here as “Ridge”) at
MGB; random forests (RF) at VUMC; gradient boosting machines (GBM) at
GHS. In external validation, the remaining two of three models were tested
across sites, e.g., MGB validated externally RF from VUMC and GBM
from GHS.
Internal validation was conducted at each site with a randomly selected

hold-out test and the best internally performing algorithms were shared
for external validation. This reciprocal validation strategy tested general-
izability of each algorithm without the need for each site to train three
separate algorithms in parallel.

Feature engineering
Variables for prediction included demographics: age (continuous), coded
sex (categorical: Male, Female, and Unknown), coded race (categorical:
White, Black, Asian, Other and Unknown); inpatient-administered and
outpatient-prescribed medications (log-transformed counts); and diagnos-
tic codes (log-transformed counts). For log-transformed counts, we
identified each diagnostic code and medication. We grouped medications
by RxNorm ingredient and each diagnostic code by Clinical Classification
Software, Level 2, codes. We then counted occurrences of each group per
person in the time before the prediction. The “log-transform” means the
counts all were incremented by 1 (to avoid log of zero) and then the
natural log of that count +1 value was calculated for all count-based
predictors. This common transform has been shown to be helpful in sparse
and skewed predictors, i.e., many zero values with few very high counts.
Such predictors are common in EHR-based datasets.
Dimensionality reduction included grouping medications by their RxNorm

ingredients [15] and diagnostic codes mapped from ICD-9-CM and ICD-10-CM
to Clinical Classification Software (CCS) Level 2 codes [16]. The final feature list
numbered up to ~2500. Missing data for count variables were imputed as
zeroes and categorized as unknown for race and sex (see Table 1).
Records meeting “Bipolar Coded Broad” were right-censored until the

day before index diagnosis to represent a useful prediction target and to
prevent leakage of bipolar-related data from driving model predictions. For
those not meeting bipolar disorder criteria, right-censoring occurred at the
last date of a visit or first occurrence of an ICD code for BD in the EHR.

Algorithmic details
Ridge regression. Ridge Regression [17] is a regularized regression model that
imposes shrinkage of regression coefficients to reduce multi-collinearity and
model variance, and thereby increasing prediction performance. Despite the
shrinkage, the regression coefficients are never shrunk to zero, and therefore
all features remain in the final model. We used the widely adopted glmnet
[18–20] package in R for model training, using the main (first order) effects of
all available features. The model was developed with 10-fold cross-validation
using 60% of all data to find the best Lambda value (i.e., strength of
regularization) and estimate model parameters, while the remaining 40% data
were used as a hold-out test set. The 60–40 split was chosen due to a larger
sample size at MGB, and the 60% training/validation split approached the
limits in input data size for the glmnet package. Preliminary analyses showed
minimal performance differences by varying the train/test ratio.

RF. VUMC implemented the decision-tree based RF. A commonly
employed nonparametric algorithm, RF permits nonlinear relationships
between predictors, samples with replacement for feature inclusion and
model training, and it tolerates collinearity likely to be present in EHR data.
After preliminary analyses varying the following, parameters of 200 trees,
minimum node size of five, and purity for importance were used. RF were
trained with an 80-20% train-test split. RF were implemented using the
ranger package in R [21].

Table 1. Baseline study participant characteristics.

Site VUMC (%) GHS (%) MGB (%)

Total patients in study, N 932,784 934,749 1,662,036

Total patients, bipolar coded-broad, N (%) 3,357 (0.36%) 3,101 (0.33%) 6,075(0.36%)

Internal validation training set, N (%) 746,226 (80.0%) 701,147 (75.0%) 997,687 (60.0%)

Internal validation testing set, N (%) 186,558 (20.0%) 232,942 (25.0%) 664,349 (40.0%)

Sex, women 535,273 (57.4%) 524,479 (56%) 980,586 (59%)

Sex, men 392,477 (42.6%) 410,270 (44%) 681,372 (41%)

Sex, unknown 34 (0.0036%) 0 (0%) 78 (0.0047%)

Coded Race, White 701,525 (75.2%) 881,433 (94.3%) 1,282,679 (77%)

Coded Race, Black 100,462(10.8%) 33,025 (3.6%) 106,362 (6.4%)

Coded Race, Asian 16,055 (1.72%) 9,129 (1.0%) 69,651 (4.1%)

Coded Race, Other 32,063 (3.43%) 5,786 (0.6%) 203,315 (12%)

Coded Race, Unknown 82,679 (8.86%) 5,490 (0.6%) 29 (0%)

Age, mean (Range) 49.5 (18–89) 52.2 (18–89) 52.82 (18–89)

EHR length in years, median (Q1-Q3) 7 (3–13) 8 (3–15) 9 (4–15)
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GBM. GHS implemented GBM in for internal validation. Boosting is an
ensemble technique based on using multiple “weak learner” algorithms
to train a strong one through sequential training to iteratively improve
prediction accuracy. GBM is a high-performance gradient boosting
framework based on decision trees capable of handling imbalanced
datasets, as the boosting can strengthen the impact of the positive class
(here, cases of BD). Tuning parameters included the ratio of features
used, the ratio of training instances, maximum depth of trees and the
learning rate. In preliminary analyses, dimensionality impacted model
performance, so we selected the most prevalent medications across the
GHS EHR by including those accounting for 95% of cumulative
medication counts by Pareto analysis. GBM were trained with a 75-
25% train-test split. Here, GBM were implemented in Python (package
‘lightgbm’) [22].

Ensembling
Ensembling is designed to improve prediction accuracy by aggregating
the strengths of diverse machine learning models into a single predictive
model. Here, we ensembled the three algorithms via stacking of all three
algorithms at each site and evaluated performance. We combined Ridge,
GBM, and RFs with a stacked ensemble trained with ten-fold cross
validation and logistic regression using the three individual predictions as
multivariate predictors on each site’s training set to avoid leakage of test
data for the internally valid model into the ensemble.

Model evaluation
Evaluation metrics included Area Under the Receiver Operating Character-
istic (AUROC), Precision-Recall Curves and Area Under the P-R Curve
(AUPR). Metrics at specific risk thresholds included sensitivity/recall,
specificity, positive predictive value (PPV), and number needed to screen
(NNS [23], the reciprocal of PPV for a predictive model) Calibration was
measured with Brier score and calibration slope/intercept [24].

Feature importance by site
Because each algorithm, GBM/RF/Ridge, have different inherent metrics of
importance, we applied L1-penalized regression (LASSO) to the training
datasets at each site. L1-penalized regression importance was defined as the
magnitude of regression coefficients by predictor. The top ten L1-penalized
regression selected features for each site are shown here, ranked (Table 4).

RESULTS
Study site data are shown (Table 1).

Individual model performance by site
Discrimination performance is shown for each algorithm by
training site with internal validation (testing within site) denoted
visually for ready comparison to external validation (testing across
sites) (Table 2).
As shown in Table 2, models performed comparably within and

across sites with a tendency for better discrimination at internal
validation sites for locally trained algorithms and better calibration
for GBM and Ensembles of GBM, RF and Ridge.

Optimal thresholds and performance metrics by algorithm
and site
Varying risk percentile thresholds by algorithm and by site showed
specificity was closely linked to the thresholds themselves, while
sensitivity (recall) and PPV tended to decrease and increase,
respectively, as thresholds increased (Table 3). NPV for all
algorithms above these thresholds (90% and above) was over
99%, largely because of the rarity of the outcomes in question.

Predictor importance
The most important predictors to each model are listed in Table 4
(top ten by site) and in the eSupplement (top fifty by site).
Features were driven by medications and contrast agents, e.g.,
those used in imaging studies, at the three sites. We caution
overinterpretation of such predictor weights and underline these
statistics are correlative, not causal.

DISCUSSION
Early identification of individuals at risk for BD offers opportunities
for targeted assessment and prevention. Although a number of
risk factors for BD have been established including family history
[25] and stressful life events [26], quantitative, scalable prediction
of risk is challenging. Prior studies have largely focused on
individuals with a history of depression and/or have included
relatively small samples [27, 28]. Here, we validated multiple
algorithmic approaches across multiple well-powered longitudinal
EHR sites in the absence of a common data model to generate a
novel suite of prediction algorithms for BD. These models
performed well across diverse geography and broad,

Table 2. Model performance by site.

AUROC AUPR Brier score Calibration slope Calibration intercept

VUMC

RIDGE 0.796 0.020 0.004 2.108 6.085

RF 0.836 0.046 0.004 0.946 −0.303

GBM 0.808 0.025 0.004 1.011 0.092

ENSEMBLE 0.837 0.049 0.004 0.996 −0.021

GHS

RIDGE 0.775 0.015 0.003 1.987 5.310

RF 0.775 0.015 0.003 0.625 −2.108

GBM 0.873 0.054 0.003 1.085 0.387

ENSEMBLE 0.825 0.032 0.003 1.027 0.224

MGB

RIDGE 0.865 0.026 0.004 1.502 2.674

RF 0.802 0.019 0.004 0.726 −1.626

GBM 0.852 0.033 0.004 1.000 −0.002

ENSEMBLE 0.822 0.026 0.004 0.981 −0.111

Internal validation italicized.
AUROC Area Under the Receiver Operating Characteristic, AUPR Area Under the Precision-Recall Curve.

C.G. Walsh et al.

3

Translational Psychiatry           (2024) 14:58 



heterogeneous patient populations. However, difficulty in port-
ability and transferring algorithms across sites remains a primary
barrier to replicative and implementation studies.
Our results demonstrate the feasibility and comparative

performance of prediction algorithms using federated analyses
of EHR data across the PsycheMERGE network. We compared
three different machine learning approaches, each reliant on
different assumptions and means of handling noisy, high
dimensional data. Finally, we tested ensembles of these methods
via stacking.

We highlight several noteworthy findings. First, we found that,
regardless of method, performance was optimal at the site at which
the model was developed, supporting the inference that portability
of models may be limited by site-specific features - e.g., a local care
practice common in one setting or region and uncommon in
another. It also suggests potential for overly optimistic performance
estimates with internal validation - underlining again that no
substitute exists for external validation in model evaluation. We also
note little overlap to the most important predictive features at each
site, which likely relates to both site-specific differences and

Table 3. Model performance by risk percentile threshold.

Risk percentile cutoff Specificity (%) Sensitivity (%) PPV (%) NPV (%)

Random forest

VUMC 90 90.2 58.6 2.1 99.8

95 95.2 45.5 3.3 99.8

99 99.1 19.2 6.9 99.7

MGB 90 90.2 51.7 1.9 99.8

95 95.1 34.9 2.5 99.7

99 99 9.1 3.3 99.7

GHS 90 90.1 44.8 1.5 99.8

95 95.1 30.1 2 99.8

99 99 7.6 2.5 99.7

GBM

VUMC 90 90.2 52.7 1.9 99.8

95 95.1 40.5 2.9 99.8

99 99 13.1 4.7 99.7

MGB 90 90.2 63.1 2.3 99.9

95 95.1 45.3 3.3 99.8

99 99.1 15.1 5.5 99.7

GHS 90 90.2 64.2 2.1 99.9

95 95.1 48.8 3.2 99.8

99 99.1 20.4 6.8 99.7

Ridge

VUMC 90 90.1 50 1.8 99.8

95 95.1 34.8 2.5 99.8

99 99 9.2 3.3 99.7

MGB 90 90.2 63.6 2.3 99.9

95 95.1 43.9 3.2 99.8

99 99 10.4 3.8 99.7

GHS 90 90.1 48.8 1.6 99.8

95 95.1 35.1 2.3 99.8

99 99 10.5 3.5 99.7

Ensemble

VUMC 90 90.2 58.2 2.1 99.8

95 95.2 46.9 3.4 99.8

99 99.1 18.9 6.8 99.7

MGB 90 90.2 56.4 2.1 99.8

95 95.1 39.7 2.9 99.8

99 99 12.4 4.5 99.7

GHS 90 90.1 52.5 1.8 99.8

95 95.1 36.3 2.5 99.8

99 99 14 4.9 99.7

Internal validation italicized.
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algorithmic differences, e.g., parametric (Ridge) and nonparametric
(tree-based) approaches. The most generalizable algorithm, the
stacked ensemble, matched internally valid algorithms in discrimi-
nation and was the only well-calibrated model, in part owing to its
recalibration via regression at each site during the stacking process.
Vigilance for drift and miscalibration over time would be necessary
in planning implementation downstream.
Race was included as a predictor in these models, a feature being

reconsidered for a number of clinical predictive applications. We
opted not to blind our algorithms in this case as this process has
been shown not to prevent algorithmic bias and might, in fact,
introduce it. We emphasize race is a social construct that does not
itself cause mental illness but can be a marker of inequitable
healthcare access, experiences of adversity, and systemic inequity
of opportunity. As such, it might be predictive of a coded diagnosis
despite not being in the causal path for the outcome. Prior to
implementation of models like these, close attention to algorithmic
bias and potential for disparities should be considered using
variables like coded race for prediction [29, 30]. As an additional
check that race as a predictor did not bias our model unfairly, we
retrained the RF at VUMC and compared validation set performance
by coded race across 1,000 bootstrap replicates. Performance
distributions did not differ across or within race: coded White race
AUC 0.8 [0.79, 0.82] and 0.79 [0.77, 0.8] for model with and without
race, respectively; coded Black race AUC 0.79 [0.76, 0.83] and 0.78
[0.75, 0.82] for model with and without race, respectively.
The clinical utility of predictive models for rare events like BD

(<1% at each site) merits consideration and attention to the
importance of PPV. Here, the stacked ensembles achieved the best
threshold-specific PPVs across all three sites (a ~forty-fold increase
compared to case prevalence). A resource-limited clinical environ-
ment prioritizing identifying those most likely to have undiag-
nosed BD or predicting onset of BD might benefit from models
that provide such PPVs in the setting of such rare outcomes. Of
note, our models achieved a NNS as low as 20 or fewer at each
site, meaning that fewer than 20 patients would be identified as
high risk for every true case detected.
These models rely on EHR data common to any modern hospital

agnostic to a common data model: demographics, diagnostic codes
in a universally accepted schema (ICD), medications mapped to a
public ontology (RXNORM). For those who wish to leverage these
trained and tested algorithms, a library of the individual models and
the stacked ensemble will be made available on the PsycheMERGE
Network website (psychemerge.com) [31].

Strengths
This study leveraged three large health systems with a validated
definition of bipolar disorder as the prediction target. We applied

three accepted algorithms (RF, Ridge Regression, GBM) to large
real-world cohorts and assessed generalizability and model
fit across partner sites. We ensembled these algorithms on over
3 million patient lives across three major biobanks - the largest
modeling study of this kind in BD, to our knowledge. We relied on
readily available structured EHR data for feature engineering.
Finally, we disseminate these tools via the PsycheMERGE Network
to facilitate replication studies and local deployment.

Limitations
Our results should also be interpreted in light of several
limitations. First, while we explored performance of multiple
different modeling approaches, there are others (including deep
learning approaches) that were not tested. Second, our study
relied on structured longitudinal EHR data, a decision we made to
facilitate ready implementation across sites. However, natural
language processing of narrative text might offer performance
advantages longer term. Third, covariate shift in real-world data
like these mean the joint distribution of model inputs and outputs
may differ between training and testing across sites [32]. Methods
of covariate shift detection and adaption might be investigated
using importance re-weighting or feature dropping methods in
future studies to improve model performance. Finally, class
imbalance remains a notable challenge in this study and studies
like it, and creates the potential for overfitting and spuriously high
model performance metrics (e.g., high AUROCs simply because of
identification of the majority class, here non-BD).

CONCLUSIONS
Generalizable predictive models of bipolar disorder trained and
validated across health systems are feasible targets of clinical and
precision medicine focused initiatives, even in the absence of
common data models across sites. Implications of these models
include BD risk research acceleration, catalyzing pharmacoepide-
miologic studies, and potential for similar models to serve as
probabilistic phenotypes in precision medicine research. Future
work should assess their clinical utility and potential to phenotype
quantitatively this serious mental illness.

DATA AVAILABILITY
Study data including de-identified electronic health records linked to biobanks.
However, complete anonymization to prevent inadvertent or intentional reidentifica-
tion is not possible with granular healthcare data as those used here. Study-related
analytic code and trained algorithms will be made available with publication as per
the manuscript text.

Table 4. Ten most important predictors by algorithm using L1-penalized regression for feature selection and weighting.

MGB GHS VUMC

Clemastine/phenylpropanolamine Varicella zoster virus glycoprotein E Glycolate

Carboxymethylcellulose/glycerin Mood Disorders Carbetapentane

Gentian violet Ioversol Hydrogen Peroxide

Erythromycin/sulfisoxazole Niacinamide Telithromycin

Flaxseed extract Dobutamine Colloidal oatmeal

Chlorpheniramine/ibuprofen/pseudoephedrine Iopamidol Tipranavir

Droperidol Gadobutrol Avibactam

Amyl nitrite Race, Unknown Ceftibuten

Manganese Zonisamide Ticarcillin

Cisapride Witch Hazel Clove oil

Importance refers to impact on model performance and confers insight into correlation, not causation.
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