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Antipsychotic (AP)-naive first-episode psychosis (FEP) patients display early dysglycemia, including insulin resistance and
prediabetes. Metabolic dysregulation may therefore be intrinsic to psychosis spectrum disorders (PSDs), independent of the
metabolic effects of APs. However, the potential biological pathways that overlap between PSDs and dysglycemic states remain to
be identified. Using meta-analytic approaches of transcriptomic datasets, we investigated whether AP-naive FEP patients share
overlapping gene expression signatures with non-psychiatrically ill early dysglycemia individuals. We meta-analyzed peripheral
transcriptomic datasets of AP-naive FEP patients and non-psychiatrically ill early dysglycemia subjects to identify common gene
expression signatures. Common signatures underwent pathway enrichment analysis and were then used to identify potential new
pharmacological compounds via Integrative Library of Integrated Network-Based Cellular Signatures (iLINCS). Our search results
yielded 5 AP-naive FEP studies and 4 early dysglycemia studies which met inclusion criteria. We discovered that AP-naive FEP and
non-psychiatrically ill subjects exhibiting early dysglycemia shared 221 common signatures, which were enriched for pathways
related to endoplasmic reticulum stress and abnormal brain energetics. Nine FDA-approved drugs were identified as potential drug
treatments, of which the antidiabetic metformin, the first-line treatment for type 2 diabetes, has evidence to attenuate metabolic
dysfunction in PSDs. Taken together, our findings support shared gene expression changes and biological pathways associating
PSDs with dysglycemic disorders. These data suggest that the pathobiology of PSDs overlaps and potentially contributes to
dysglycemia. Finally, we find that metformin may be a potential treatment for early metabolic dysfunction intrinsic to PSDs.
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INTRODUCTION
Individuals with psychosis spectrum disorders (PSDs), including
schizophrenia, have a significantly higher risk of developing
metabolic disorders such as type 2 diabetes (T2D) compared to
the general population [1]. In turn, individuals with PSDs face
increased cardiovascular mortality, resulting in decreased life
expectancy by 20–25 years [2, 3]. Several factors contribute to
metabolic abnormalities associated with PSDs, including antipsy-
chotic (AP) drug exposure and illness-related lifestyle factors, such
that metabolic outcomes worsen progressively with longer illness
duration [1, 4]. However, extrinsic factors do not fully explain the
metabolic risk present in PSDs. Abnormal glucose metabolism and
insulin resistance are often already present in individuals who are at
high-risk for PSDs or experiencing their first episode of psychosis
(FEP), even prior to the introduction of APs [5–9]. Notably,
schizophrenia confers a three-fold increase in risk for T2D. Indeed,

AP-naive FEP has been associated with impaired glucose tolerance
and insulin resistance, and as many as 15.4% of FEP patients in
community settings have prediabetes [9, 10]. Furthermore,
independent of additional risk factors, this schizophrenia-
associated T2D risk is further exacerbated by beginning AP
treatment [11]. This suggests that PSDs may present an intrinsic
risk for metabolic dysfunction, foremost dysglycemia. Taken
together, the pathobiological changes underlying PSDs may include
biological pathways that not only contribute to illness psycho-
pathology but may also explain premorbid or early dysglycemia.
Several genetic studies support causal biological associations

between PSDs and dysglycemia. For instance, susceptibility genes
for schizophrenia and T2D are found in overlapping biological
networks, suggesting common underlying mechanisms [12].
Additionally, a prospective study found that genetic predisposi-
tion to T2D is associated with an increased risk of psychosis in
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young adulthood [13]. Further, a Mendelian randomization study
demonstrated causal links between gene variants linked to
elevated fasting insulin levels and schizophrenia risk [14]. Thus,
changes at the gene level associated with PSDs may be
responsible for dysglycemia among patients with PSDs, providing
support for intrinsic dysglycemia in PSDs.
At the gene expression level, PSDs and T2D also show biological

overlap [15]. However, it is unclear whether these overlapping
gene expression changes can explain intrinsic dysglycemia in
PSDs. Namely, this line of evidence has been based on work in AP-
treated schizophrenia patients, precluding exclusion of extrinsic
factors such as AP use. Additionally, examination of T2D gene
expression signatures may lack external validity to early dysgly-
cemia in FEP (i.e., insulin resistance and prediabetic states such as
impairments in fasting glucose and glucose tolerance), consider-
ing that individuals with FEP very rarely present with overt
T2D [16]. Thus, examining gene expression of FEP patients who are
AP-naive (lack prior AP exposure) enables us to study dysglycemia
intrinsic to PSDs independently of potential confounds such as AP
use and illness duration. Further, we posit that examining early
dysglycemia may be more in line with the intrinsic disruptions in
glucose metabolism observed in the early stages of psychosis.
Intriguingly, metabolic derangements early in the course of PSDs

may be mechanistically linked to illness psychopathology, includ-
ing treatment-resistant domains such as cognition. T2D and insulin
resistance are associated with worse cognitive impairments in the
general population and in schizophrenia [17, 18], which suggests
that the pathophysiological mechanisms contributing to premor-
bid cognitive dysfunction and intrinsic dysglycemia in PSDs may
overlap. Therefore, examining the overlap in gene expression
between AP-naive FEP and non-psychiatrically ill unaffected
individuals with dysglycemia may inform novel treatment options
for both the psychiatric and metabolic aspects of PSDs.
Here, we investigated whether AP-naive FEP patients share

overlapping gene expression patterns with non-psychiatrically ill
individuals with early dysglycemia by meta-analyzing published
transcriptomic datasets. We reasoned that the overlapping gene
expression signatures between AP-naive FEP and early dysglyce-
mia may represent gene expression changes endogenous to PSDs
that are likely responsible for producing dysglycemia independent
of extrinsic factors such as AP treatment. While post-mortem brain
transcriptomics are rare in young AP-naive FEP patients, we used
peripheral samples as an alternative avenue to pursue our
investigations given significant transcriptomic overlaps in brain

and peripheral blood [19, 20]. Additionally, data repositories were
probed for peripheral transcriptomics of early dysglycemia
subjects for comparison. The overlapping gene expression
signatures between AP-naive FEP and early dysglycemia were
analyzed for associated biological pathways and utilized to
identify potential pharmacological treatments for intrinsic dysgly-
cemia in PSDs. Taken together, our analyses revealed that PSDs
and early dysglycemia share common gene expression changes
that may be mediated by endoplasmic reticulum (ER) stress and
abnormal brain bioenergetics. Further, the T2D drug metformin
represents a potential treatment for intrinsic dysglycemia in PSDs.

METHODS
The workflow consisted of the following components: (1) systematic search
and selection of relevant datasets; (2) differential expression analysis;
(3) signal homogeneity assessment; (4) meta-analysis; (5) pathway
enrichment analysis; (6) Integrative Library of Integrated Network-Based
Cellular Signatures (iLINCS) connectivity analysis for identification of
candidate drug treatments; and (7) biomarker prediction (Fig. 1).

Antipsychotic-naive first-episode psychosis database
We employed a systematic search to curate transcriptomic datasets examining
peripheral tissue of AP-naive FEP patients. Ovid PsychINFO, Embase, and
Medline were searched for studies published before March 2021 (PROSPERO ID:
185602). The search string combined keywords covering three conceptual
groups: AP-naive, psychosis, and transcriptomics (Table S1). Study de-
duplication and selection took place in Covidence (https://
www.covidence.org/). Each article was screened by two independent reviewers
(JL, WBM, RA, and MP) based on title and abstract, followed by full texts
according to pre-specified eligibility criteria. Inclusion criteria were: (1) case-
control design; (2) lack of prior exposure AP exposure; (3) clinically confirmed
FEP in cases; (4) adult age (18–65); and (5) use of transcriptomics approaches in
the respective studies. Exclusion criteria included: (1) absence of an unaffected
comparison group; (2) study examined too few genes (inferred from the range
of p-values of the reported genes); or (3) co-morbidities or medications which
may induce confounding gene expression changes (e.g., kidney/liver disease,
cancer, pregnancy, anti-inflammatory medications, and immunosuppressants).
Disagreements were resolved between the two reviewers and involved a third
reviewer (MKH) whenever necessary.
As only one of the five included studies provided raw gene expression

data, we extracted differential gene expression (DGE) data, comprising the
gene symbol, log-fold-change, and p-value. If available, full DGE analysis
results were extracted. Otherwise, partial DGE analysis results were
extracted (i.e., studies that reported significant genes only). Efforts were
made to contact authors of unpublished studies (e.g., conference abstracts)
for additional data.

Fig. 1 Study workflow. AP-naive FEP antipsychotic-naive first-episode psychosis, GEO Gene Expression Omnibus, DEG differentially expressed
gene, iLINCS Library of Integrated Network-Based Cellular Signatures.

J. Lee et al.

2

Translational Psychiatry           (2024) 14:19 

https://www.covidence.org/
https://www.covidence.org/


Non-psychiatrically ill early dysglycemia database
Transcriptomic datasets examining blood-derived tissue in non-
psychiatrically ill early dysglycemia patients were searched systematically
via OVID Embase, Medline, and Gene Expression Omnibus (GEO). The
search in GEO was conducted in July 2020 and updated in March 2021
and again in March 2022. The search in Embase and Medline were
conducted in March 2022. All searches were limited to human studies. The
search string combined keywords comprising two conceptual groups:
early dysglycemia and transcriptomics (Table S2). Each study was
screened by two independent reviewers (EA, JL, ES, WBM, DS, KM, SC,
ER, and FP) according to pre-specified inclusion criteria. Inclusion criteria
were: (1) case-control design; (2) cases demonstrated prediabetic markers
as defined by American Diabetes Association diagnostic criteria [21]
(HbA1c: 5.7–6.4%, fasting plasma glucose: 100–125 mg/dl; or an oral
glucose tolerance test 2 h glucose level: 140–199 mg/dl) or Homeostatic
Model Assessment for Insulin Resistance (HOMA-IR) greater than 1.8 [22];
and (3) the study examined transcriptomics of blood-derived tissue. The
justification for the last inclusion criterion was to make the early
dysglycemia datasets comparable to the AP-naive FEP studies, most of
which examined blood-derived tissue. Datasets were excluded if the study
examined: (1) non-human tissue; (2) patients with overt type 1 or 2
diabetes; (3) psychiatrically-ill patients; (4) patients with co-morbidities or
medications as deemed clinically significant which may induce confound-
ing gene expression changes (e.g., kidney/liver disease, cancer, pregnancy,
anti-inflammatory medications, and immunosuppressants); (5) lack of
unaffected subjects used as a comparator; or (6) early dysglycemia cases
and unaffected subjects were not matched for body mass index (BMI). The
last criterion was applied to segregate glucose dysregulations occurring
independently of adiposity. Raw gene expression data for all the included
studies were available and downloaded from GEO.

Differential expression analysis of non-psychiatrically ill early
dysglycemia datasets
Differential expression analysis was conducted on the non-
psychiatrically ill early dysglycemia datasets. The analytical pipeline
consisted of the following: (1) log2 transformation; (2) filtering to remove
genes with low expression; (3) quantile normalization in R; and (4)
differential expression analysis using the limma package in R [23]. Log2
transformation was applied to datasets if one of the two following
conditions were met: (1) the 99th quantile is greater than 100, or (2) the
range of the data is greater than 50 and the first quartile is greater
than 0. To filter for low expression, genes that have negative values
before any transformation in more than half of the samples were filtered,
except for genes that were present in the AP-naive FEP results. We then
performed quantile normalization in R, as needed. For genes with
duplicate records, we retained the record with the greatest variance.
Subsequently, limma package in R [23] was used to identify differentially
expressed genes (DEGs) for each study. One study [24] examined two
contrasts with completely different participants, which were treated as
two separate studies; two-group differential expression analysis was
conducted on each contrast separately.

Signal homogeneity assessment
To ensure comparability and homogeneity among the studies within
each database (AP-naive FEP and non-psychiatrically ill individuals with
early dysglycemia), we examined the concordance of differential
expression signals by summarizing the number of genes that have the
same direction of effect size across studies. We found that many genes
with discordant directions of effect size possessed only marginal signals
in some studies and could therefore be considered noise. To account for
this, we introduced the conditional concordance criteria, where only
studies with p < 0.05 are checked for concordance of signal directions.
This ensured a focus on studies with more robust evidence for
differential expression. Finally, genes that were not concordant in all
studies or not conditionally concordant were considered discordant. In
summary, we categorized all genes into three categories: (1) all
concordant (ConSat = “C”), if the gene shows the same direction of
differential expression across all studies with accessible effect size
(because we do not have the full differential expression results from
some FEP studies); (2) conditionally concordant (ConSat = “S”), if the
gene shows the same direction of differential expression with p < 0.05 in
all studies with accessible effect size (the p < 0.05 criteria is applied to
filter out marginal signals); and 3) discordant (ConStat = “D”), if the gene
does not satisfy the above two criteria.

Meta-analysis
We first meta-analyzed studies within each database (AP-naive FEP and
non-psychiatrically ill early dysglycemia). To meta-analyze the AP-naive FEP
datasets, the truncated p-values combination method [25] was applied.
Briefly, mean imputation was used to impute the missing p-values for
datasets with partial differential expression results. Then, the p-values for
all studies were combined using the adaptively weighted Fisher’s method
(AW-Fisher) [26]. The early dysglycemia datasets were meta-analyzed by
directly applying AW-Fisher, as they comprised of full DGE data only. The
resulting meta-analyzed data from each database (AP-naive FEP and non-
psychiatrically ill early dysglycemia) were then meta-analyzed with each
other using AW-Fisher to identify common DEGs between AP-naive FEP
and early dysglycemia. Common DEGs were defined as: (1) genes with AW-
Fisher p < 0.05, weight (1,1); and (2) genes classified as either concordant
or conditionally concordant for both AP-naive FEP and early dysglycemia
by the signal homogeneity assessment. Additionally, log-fold-changes
were combined by calculating a weighted average across studies that
reported log-fold-changes for each gene, where the weight was based on
the inverse p-value of each gene within each study.

Pathway enrichment analysis by Metascape
Metascape, an annotation and analysis tool to examine gene expression
data [27], was used for pathway analysis. The gene symbol and p-values of
the common DEGs between AP-naive FEP and non-psychiatrically ill early
dysglycemia were inputted into Metascape. Additionally, we inputted the
full list of genes that overlapped across studies as background genes. The
following parameters were applied in the analysis: minimum overlap of 3,
minimum enrichment of 1, and p < 0.05. We applied the following pathway
databases: GO Biological Processes, Reactome Gene Sets, and KEGG
Pathway. Additionally, pathways with ≤5 gene members were excluded to
avoid interpretation challenges associated with small pathways.

Prediction efficiency of biomarkers
We used machine learning models to test whether genes identified from
the meta-analysis demonstrate predictive accuracy as biomarkers for
illness status. Because the raw data of the AP-naive FEP studies were
largely unavailable, we only validated the possibility of predicting non-
psychiatrically early dysglycemia status using our identified gene list. We
accessed the raw data of the five early dysglycemia studies from GEO. After
routine normalization in each study (as described earlier), we further
centered and scaled the expression of each gene to reduce potential
between-study heterogeneity. This resulted in gene expression data with a
mean of 0 and a standard deviation of 1 for each gene in each study. Here,
only genes that were identified as differentially expressed by the meta-
analysis were inputted into the machine learning models.
Two well-recognized machine learning models were implemented for

the prediction task: (1) the elastic net regularized generalized linear model
(R package glmnet), and (2) random forest model (R package randomFor-
est). To avoid overfitting, we used a cross-validation procedure to evaluate
the performance of the models. We trained the model using data from four
studies combined, and the prediction accuracy was assessed on the one
study left as test data. This procedure was repeated until all five studies
were used as the test data once, and we reported the final prediction
accuracy as a mean of the five prediction accuracies.
We conducted the parameter tuning using nested cross-validation

within the training data for the best prediction accuracy. For the glmnet
model, we performed a grid search to tune the elastic net mixing
parameter (α) and the regularization parameter (λ). For random forest
model, we tuned number of trees (ntree) and the number of variables
sampled for node split (mtry).

Identification of drug treatments via iLINCS
We used iLINCS to identify pharmacological agents that have gene
expression patterns discordant (reverse) to the common DEGs of AP-naive
FEP and non-psychiatrically ill individuals with early dysglycemia. This
approach represents a rational approach to identify novel pharmacological
treatments for intrinsic dysglycemia in PSDs. Specifically, we reasoned that
pharmacological agents with discordant gene expression patterns may be
able to treat intrinsic dysglycemia in PSDs by correcting the common DEGs
shared between AP-naive FEP and early dysglycemia. Because the
“concordance score” of each pharmacological agent relies on the direction
of dysregulation of each gene, we first selected common DEGs that were
dysregulated in the same direction in both AP-naive FEP and early
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dysglycemia databases, based on the sign of the average log-fold change
(upregulated and downregulated genes). The lists of upregulated and
downregulated genes, containing the gene symbols, were inputted into
‘iLINCS Signatures’ for connectivity analysis. Connectivity analysis was
conducted with the Connectivity Map signature signatures library, which
contains gene expression profiles of various pharmacological perturba-
gens. Perturbagens were considered as potential treatments if they were
highly discordant to the inputted signatures based on a previously used
concordance score cutoff of ≤−0.321 [28].

Scripts
All scripts used in the analysis are deposited in GitHub (https://github.com/
XiangningXue/FEP_MetaAnalysis).

RESULTS
Systematic search results
The AP-naive FEP search identified 712 records, of which 5 met our
inclusion and exclusion criteria and were included in subsequent
analyses (Fig. 2) [29–33]. One study applied transcriptomics to two
different tissue types [29], which were each treated as individual
studies. Thus, a total of 6 datasets were retrieved and used in
subsequent analyses. Five of these datasets applied microarrays,
while the remaining dataset applied RNA sequencing for
transcriptomic analysis. The datasets examined whole blood
(N= 3), peripheral blood mononuclear cells (N= 1), fibroblasts
(N= 1), and lymphoblastoid (N= 1) tissue. Further characteristics
of included AP-naive FEP datasets are detailed in Table S3.

For early dysglycemia studies in non-psychiatrically ill subjects,
of the 12,592 studies retrieved, 4 were included (GSE101931 [34],
GSE21321 [35], GSE153837 [36], and GSE87005 [24]; Fig. 2), which
contained 5 separate datasets. All datasets applied microarrays for
transcriptomic analysis. The datasets examined peripheral blood
mononuclear cells (N= 4) and whole blood (N= 1). The char-
acteristics of included early dysglycemia datasets are further
described in Table S4.

Signal homogeneity assessment
To ensure that DEG datasets within AP-naive FEP and non-
psychiatrically ill early dysglycemia groups are homogeneous and
comparable with one another, we evaluated the concordance of
each gene. Among AP-naive FEP studies which contained 22,008
genes in total, 18,357 (83.3%) genes exhibited concordant effect
size, 3420 (15.5%) genes were conditionally concordant if filtered
by p < 0.05, and only 231 (1.0%) genes were discordant. Among
early dysglycemia studies containing a total of 38,418 genes,
12,241 (31.9%) genes showed concordant signals across all
studies, 25,561 (66.5%) genes were concordant in studies with
p < 0.05, and only 616 (1.6%) genes were discordant. The low
percentage of discordant genes among both the AP-naive FEP
and early dysglycemia studies (1.0% and 1.6% respectively)
supports an overall concordance of signals across studies and
supports our combination of signals across studies (i.e., meta-
analysis) to increase power. The results of the signal homogeneity
assessment are detailed in Table S5.

Fig. 2 PRISMA flowchart. PRISMA flowchart of antipsychotic-naive first-episode psychosis (AP-naive FEP) and non-psychiatrically ill early
dysglycemia studies.
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Common differentially expressed genes
Following meta-analyses and filtering for genes that were
concordant or conditionally concordant for both AP-naive FEP
and non-psychiatrically ill early dysglycemia based on signal
homogeneity assessment, we identified 221 common DEGs
shared between AP-naive FEP and non-psychiatrically ill early
dysglycemia (p < 0.05). Of these genes, 47 were upregulated and
62 were downregulated in both databases. The full results of the
meta-analysis are detailed in Table S5.

Pathway enrichment analysis
Pathway analysis via Metascape demonstrated that, for the
common DEGs between AP-naive FEP and non-psychiatrically
ill early dysglycemia datasets, there were 17 significant path-
ways (p < 0.05) (Table 1). These pathways were primarily related
to ER stress [protein folding, protein sumoylation, regulation of
calcium ion transport, and regulation of microRNA (miRNA)
transcription] and abnormal brain bioenergetics [regulation of
fatty acid metabolic process, positive regulation of receptor
signaling pathway via Janus kinase/signal transducer and
activator of transcription (JAK/STAT), positive regulation of
glucose import, and regulation of glial cell proliferation]. The
full results of the pathway analysis are detailed in Table S6.

Prediction efficiency of biomarkers
To validate our use of a meta-analytic approach to identify genes that
may underly early dysglycemia in AP-naive FEP, we used two machine
learning models (glmnet and random forest models) to test whether
genes from the meta-analysis demonstrate predictive accuracy as
biomarkers for illness status. Due to raw data unavailability of AP-
naive FEP studies, we examined the possibility of predicting non-
psychiatrically ill early dysglycemia status using our identified gene
list. The glmnet and random forest models achieved promising
average prediction accuracies of 0.71 and 0.73, respectively (Table S7).
The final fitted glmnet model selected 88 genes as informative
biomarkers for predicting non-psychiatrically ill early dysglycemia
status. The top 10 genes with greatest magnitude of effect size were
LILRA2, PPIL3, FYN, RUSC1, LCN2, PACSIN2, GALC, CHST7, TRIM26, and
SDF2L1. The top 10 most important genes identified by the random
forest model were COX4I1, LILRA2, CRLF3, TRIM26, EPSTI1, F13A1,
PCMTD1, SH2D3C, FYN, and CCDC90B. Interestingly, the genes FYN,
LILRA2, and TRIM26 were identified among the top 10 genes by both
the glmnet and random forest models, which not only suggests these
three genes as potentially important predictive biomarkers, but also
validates the use of our meta-analytic approach to identify putative
biomarker genes. The output of glmnet and random forest models
are found in Tables S8 and S9 respectively.

iLINCS identification of drug treatments
iLINCS is a web-based platform for analysis of omic signatures [37].
It holds an online library of systematically generated gene
signatures, including transcriptomic profiles of over 40,000 drugs
in various cell lines that represent gene expression changes in
response to drug treatments. Considering that iLINCS contains
established drug gene signatures, it can be used to identify
putative drug candidates by searching for drugs within the library
that have reverse signatures to the disease signatures. This
approach has been used in several prior studies to identify
putative drug candidates [28, 38–40].
We inputted the upregulated and downregulated genes that

were common between AP-naive FEP and non-psychiatrically ill
early dysglycemia into iLINCS, identifying 9 FDA-approved drugs
with discordant gene signatures (Table 2). Of the identified drugs,
the diabetes drug metformin [41–43] has been tested in the
context of PSDs, with evidence showing that metformin
ameliorates metabolic disturbances [42, 44–48]. Our results
suggest that the agents we have identified may correct the
overlapping gene expression changes of early dysglycemia and

AP-naive FEP and hence represent putative treatments for intrinsic
dysglycemia in PSDs. Importantly, based on these findings, we
posit the presence of specific biological pathways that are shared
between dysglycemia and PSDs that provide the mechanisms of
action for the identified agents.

DISCUSSION
Increasing evidence suggests that dysglycemia is intrinsic to the
pathophysiology of PSDs and therefore occurs independently of
the metabolic liabilities resulting from AP treatment [49]. An
important clue supporting this observation is that markers of early
dysglycemia, including insulin resistance and impaired glucose
tolerance, are observed in early psychosis patients who are AP-
naive [9]. Nonetheless, the biological mechanisms underlying
intrinsic dysglycemia remain largely unknown. This raises the
question of whether there are shared pathophysiological mechan-
isms between PSDs and early dysglycemia in non-psychiatrically ill
patients at the gene expression level. To identify these mechan-
isms, we examined whether AP-naive FEP and non-psychiatrically
ill early dysglycemia patients present with an overlap in DEGs. We
found 221 common DEGs, suggesting that PSDs and early
dysglycemia indeed share common gene expression signatures.
These findings extend previous work examining the genetic links
between PSDs and T2D [12–14] by demonstrating that an overlap
exists at the gene expression level. The overlapping gene
expression signatures between AP-naive FEP and early dysglyce-
mia potentially represent gene expression changes endogenous
to PSDs that are responsible for producing dysglycemia indepen-
dent of AP treatment. Consequently, our findings suggest that
dysglycemia is intrinsic to PSDs, and may be further exacerbated
by AP treatment.
The common DEGs between AP-naive FEP and non-

psychiatrically ill early dysglycemia revealed potential mechanisms
for intrinsic dysglycemia in PSDs (Fig. 3). Notably, our pathway
analyses demonstrated processes suggestive of abnormal
glucose bioenergetics in the brain, including regulation of glucose
transmembrane transport. Glucose represents the primary source
of energy for the brain and is transported across the blood brain
barrier from peripheral circulation to astrocytes via glucose
transporter 1 (GLUT1) [50]. Glucose then undergoes glycolysis
into lactate, which not only represents a fuel source for neurons,
but also mediates regulation of whole-body glucose homeostasis
[50, 51]. Specifically, ATP produced from metabolizing lactate
activates ATP-sensitive potassium (KATP) channels in hypothalamic
neurons. This, in turn, signals the liver to reduce hepatic glucose
production, a process termed glucose sensing [50, 51]. Thus,
dysfunctions in hypothalamic bioenergetics and glucose sensing
may underly dysglycemia intrinsic to PSDs. Accordingly, patients
with PSDs demonstrate elevated brain lactate levels, a marker of
deranged bioenergetics [52, 53].
Additional bioenergetic abnormalities may contribute to these

intrinsic metabolic disturbances including mitochondrial dysfunc-
tion. Indeed, mitochondrial markers are observed throughout the
progressive stages of insulin resistance and glucose dysregulation
that ultimately culminate in T2D [54], as well as in the blood and
brain of schizophrenia patients [52, 53, 55–57]. This suggests that
mitochondrial dysfunction may directly hamper oxidative phos-
phorylation and ATP production in neurons, thereby deranging
brain bioenergetics and glucose sensing to induce intrinsic,
systemic dysglycemia.
A key contributor to abnormal brain bioenergetics in PSDs may

be gliosis, consistent with our findings implicating glial prolifera-
tion as another top pathway shared between AP-naive FEP and
non-psychiatrically ill early dysglycemia. Gliosis, which is char-
acterized by proliferation, neuroinflammation, and morphological
transformation of astrocytes and microglia, may dysregulate brain
bioenergetics by impairing glial modulation of hypothalamic
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Table 2. FDA-approved drugs with signatures discordant to the signatures of AP-naive FEP and early dysglycemia.

Perturbagen Canonical Mechanism of Action Anatomical Therapeutic
Chemical First Level
Classification

Studies in PSDs

Chlorpropamide Bind to ATP-sensitive potassium channels on pancreas,
leading to insulin secretion

Alimentary tract and
metabolism

-

Clobetasol Bind to glucocorticoid receptors Dermatologicals -

Daunorubicin DNA topoisomerase inhibitor Antineoplastic and
immunomodulating agents

-

Flunisolide Glucocorticoid receptor agonist Respiratory system -

Irinotecan DNA topoisomerase inhibitor Antineoplastic and
immunomodulating agents

-

Medrysone Glucocorticoid receptor agonist Sensory Organs -

Mestranol Estrogen receptor agonist Not available -

Metformin Inhibits mitohcondrial complex 1 in the liver Alimentary tract and
metabolism

de Silva et al., 2016; Siskind
et al., 2016; Praharaj et al., 2011

Tamoxifen Estrogen receptor competitive inhibitor; protein Kinase
C inhibitor; sex hormone-binding globulin inducer

Antineoplastic and
immunomodulating agents

-

The canonical mechanism of action was referenced from DrugBank (https://go.drugbank.com/) and the classification from Anatomical Therapeutic Chemical
(https://www.whocc.no/atc_ddd_index/). Studies examining these agents as a potential therapeutic for psychopathology or metabolic dysfunction in PSDs are
indicated on the right.
AP-naive FEP antipsychotic-naive first-episode psychosis, PSDs psychosis spectrum disorders

Table 1. Functional clusters enriched in the common signatures between AP-naive FEP and early dysglycemia (p < 0.05).

Pathway name # Genes found −Log(P-value) Genes

Regulation of fatty acid metabolic process 6/15 3.460399803 ACADVL,AKT1,IL1B,PTGS2,SNCA,MID1IP1

Regulation of glial cell proliferation 4/8 2.86158745 TSPO,IL1B,PPP1CC,RNF10

Negative regulation of microtubule
polymerization or depolymerization

4/9 2.631020976 DYRK1A,SNCA,KATNB1,MID1IP1

Negative regulation of fibroblast proliferation 4/9 2.631020976 EMD,MYC,MED25,PARP10

Negative regulation of catabolic process 15/96 2.575941533 AKT1,TSPO,CSNK2A1,EIF4G2,
FYN,IL1B,IL10,YBX1,SNCA,VHL,OGT,
USP8,DHX34,BSCL2,AZIN1

Endocytosis 16/109 2.431050442 CANX,CSNK1D,CTBP1,DNM2,FCN1,
SNCA,PSTPIP1,MTMR6,PDLIM7,
SCAMP1,PACSIN2,SNX10,SCYL2,
RAB22A,OCIAD2,C9orf72

Regulation of calcium ion transport 10/54 −2.404312995 TSPO,F2R,FYN,PTGS2,SNCA,
CXCR4,LILRA2,TRPV2,AHNAK,LILRA5

Positive regulation of cold-induced
thermogenesis

6/24 2.265940912 ACSL1,LCN2,CXCR4,OGT,BSCL2,TRPV2

Detection of external stimulus 3/6 2.2217321 FYN,CXCR4,PITPNM1

Positive regulation of Rho protein signal
transduction

3/7 2.001880207 F2R,AKAP13,ARHGEF3

Protein modification by small protein conjugation 22/187 −1.945960753 AKT1,FYN,NFE2L2,SKP2,UBE2H,
VHL,TRIM26,CUL4A,UBE4A,
RNF10,RBX1,HMG20B,RUSC1,
RNF11,MYLIP,PIAS4,FEM1C,
PELI1,IFIH1,TRIM4,NSMCE1,FBXO33

Protein folding 10/63 1.920788148 CANX,CSNK2A1,DNAJB1,
DNAJC4,NKTR,VBP1,SDF2L1,
PPIL3,UNC45A,TXNDC5

Protein sumoylation 4/14 1.85357116 HMG20B,PIAS4,IFIH1,NSMCE1

Regulation of miRNA transcription 4/14 1.85357116 FOS,IL10,MYC,NCOR2

Positive regulation of receptor signaling pathway
via JAK-STAT

4/14 1.85357116 F2R,IL10,CRLF3,OCIAD2

Response to temperature stimulus 8/46 1.852476337 ACADVL,AKT1,FOS,DNAJB1,PTGS2,
CXCR4,PSIP1,TRPV2

Positive regulation of glucose import 3/8 1.82085996 AKT1,NFE2L2,RNASEL

AP-naive FEP antipsychotic-naive first-episode psychosis.
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neurons required for metabolic control [58]. Astrocytes play crucial
roles in glucose uptake into the brain, lactate production, and
glucose sensing [50, 51]. In line with this, astrocytic dysfunction
results in a reduction of glucose uptake into the brain, impairing
peripheral glucose tolerance [59]. Glial cells also have important
roles in the regulation of lipid homeostasis and fatty acid synthesis
in the central nervous system [60], consistent with the enrichment
of regulation of fatty acid metabolism in the pathway analysis.
Indeed, dysfunction of astrocytes has been linked to disorders of
central and peripheral lipid and glucose metabolism [60, 61].
Alterations in the expression of the lipid chaperone fatty acid
binding protein 7 (FABP7), which is expressed primarily in
astrocytes in the brain [62], have been found in the brains of
schizophrenia patients [63].
In addition, activation and proliferation of microglia and

astrocytes result in an upregulation of proinflammatory cytokines
and pathways in the hypothalamus, which exacerbate gliosis and
induce peripheral dysglycemia [64]. Upregulation of inflammatory
IKKβ/NF-κB signaling in rodents also impairs astrocyte process
remodeling which is expected to impair astrocytic regulation of
neurons, and in turn, reduce glucose tolerance [65]. Conversely,
downregulating IKKβ/NF-κB signaling diminishes hypothalamic
inflammation, gliosis, and peripheral glucose intolerance [66–70].
Furthermore, JAK/STAT signaling, which was implicated by the
pathway analysis, may contribute to neuroinflammation in PSDs [71]
through overactivation of astrocytes and microglia [72]. The JAK/
STAT pathway is additionally involved in regulation of glucose
homeostasis through various mechanisms including effects on
pancreatic β-cell function and hepatic glucose metabolism [73].
Taken together, gliosis along with associated abnormalities in
brain bioenergetics, neuroinflammation, and JAK/STAT signaling may
contribute to intrinsic dysglycemia in PSDs. Nonetheless, while gliosis
has been associated with impaired glucose tolerance and insulin
resistance in humans [74, 75], the precise relationships between
gliosis and intrinsic dysglycemia of PSDs remain unclear [76],
requiring future investigation.
The overlap between AP-naive FEP and non-psychiatrically ill

early dysglycemia was also characterized by pathways related to

ER stress, a state characterized by an accumulation of unfolded
and misfolded proteins. Specifically, our analyses implicated
pathways relating to protein folding, protein sumoylation,
regulation of calcium ion transport, and microRNA (miRNA)
transcription. Sumoylation, a post-translational protein modifica-
tion, modulates the function of transcription factor, X box-binding
protein 1 (XBP1), which in turn regulates gene expression of
proteins involved in ER stress [77]. Just as importantly, XBP1 is
associated with hepatic insulin resistance via regulation of gene
expression involved in hepatic glucose production [78]. Calcium
ions are important players in ER stress-mediated cellular apoptosis,
as well as quality control via chaperones, which ensure proper
folding of proteins [79]. MiRNAs are non-coding RNAs that may be
linked to ER stress through cell survival or apoptotic mechanisms
[80]. Chronic ER stress and abnormal unfolded protein response
activation have been implicated in both PSDs [81–84] and
dysglycemia [78, 85]. For example, in the dorsolateral prefrontal
cortex of schizophrenia patients, aberrant expression of proteins
involved in the unfolded protein response has been postulated to
contribute to aberrant neurotransmission [83, 84]. In the
periphery, ER stress plays important roles in pancreatic β-cells
which may also contribute to dysglycemia. Indeed, sustained ER
stress has been implicated in β-cell dysfunction and impaired
insulin secretion in T2D [85]. Additionally, genes involved in ER
stress are implicated in abnormal glycemic control, including
PERK, JNK and XBP1 [86]. Of these, genetic variants of XBP1 have
also been linked to schizophrenia [87, 88]. Taken together, ER
stress may represent a potential mechanism contributing to
intrinsic dysglycemia in PSDs.
Our findings have significant implications by demonstrating

promising prediction accuracies of the meta-analyzed genes. By
using two machine learning models (glmnet and random forest
models), we demonstrated that the DEGs identified by our meta-
analysis among non-psychiatrically ill early dysglycemia studies
were able to predict early dysglycemia status with reasonable
accuracy. In particular, the genes FYN, LILRA2, and TRIM26 were
implicated as top 10 biomarker genes by both the glmnet and
random forest models. Of these, FYN has previously been

Fig. 3 Pathways that are potentially impacted by drugs. The pathways associated with dysglycemia in psychosis spectrum disorders (PSDs)
and the possible mechanisms by which flunisolide, metformin, clobetasol and tamoxifen may reverse dysglycemia.
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suggested to play a role in glucose regulation in preclinical models
[89–91], which supports the clinical validity of this gene as a
potential predictive biomarker. While it was not possible to apply
the prediction models on the AP-naive FEP datasets due to raw
data unavailability, future studies would benefit from applying
similar prediction models to determine biomarker genes that may
differentiate the presence or absence of a dysglycemic phenotype
in AP-naive FEP patients.
Our findings hold additional significant clinical and translational

value by identifying candidate pharmacological treatments for
intrinsic dysglycemia in PSDs. We found that the pharmacological
agents identified in our iLINCs analysis have gene expression
patterns discordant to the common gene expression signatures of
AP-naive FEP and early dysglycemia in non-psychiatrically ill
individuals. This suggests that these drugs may correct the
common gene expression changes and, in effect, treat intrinsic
dysglycemia in PSDs. Notably, we identified two antidiabetic
medications, chlorpropamide and metformin. The sulfonylurea
chlorpropamide has been withdrawn from the market, and other
sulfonylureas are not recommended as first-line agents due to
adverse events [92]. On the other hand, the identification of
metformin in the iLINCS analysis validates our results since
metformin has independently been identified as a therapeutic
agent for ameliorating PSD-induced metabolic dysfunction. As a
first-line pharmacological treatment for T2D, metformin is also
recommended off-indication in national guidelines to mitigate or
prevent AP-induced weight gain [92, 93]. Accordingly, metformin
treatment improved glycemic parameters across randomized-
controlled trials (RCTs) and meta-analyses in patients with
schizophrenia [42, 44, 45, 94]. Several of these studies specifically
tested metformin in FEP patients, demonstrating the beneficial
effects of early treatment in attenuating AP-induced dysglycemia
[44, 46–48]. Our results suggest that early metformin treatment
could additionally address intrinsic metabolic alterations, dually
addressing two significant factors (intrinsic and APs) that
contribute to metabolic dysfunction in this population.
Some of the iLINCS-identified drugs may impact the pathways

associated with intrinsic dysglycemia in PSDs (Fig. 3). Notably,
metformin reduces microglial activation [95, 96] and improves
mitochondrial function [97], supporting the proposition that
metformin may correct the gene expression signatures of intrinsic
dysglycemia in PSDs. There is also some evidence that tamoxifen
may oppose changes in the identified pathways. Specifically,
tamoxifen alters fatty acid metabolism by reducing fatty acid
synthase in the liver and hypothalamus [98], lowering liver lipid
accumulation, and improving glucose tolerance in preclinical
studies [99]. However, hyperglycemia and increased risk of
diabetes associated with tamoxifen treatment in patients
[100, 101] limit the clinical utility of tamoxifen in treating
dysglycemia in PSDs. Another drug that shows evidence in
potentially reversing the identified pathways is clobetasol. In mice,
clobetasol can lower pro-inflammatory microglial signaling and
reverse markers of mitochondrial dysfunction, such as mitochon-
drial fission [102]. However, there is also evidence showing that
glucocorticoids such as clobetasol can induce hyperglycemia
[103]. Finally, flunisolide may reverse the identified pathways by
diminishing cytotoxic mitochondrial reactive oxygen species [104],
consequently lowering oxidative stress associated with insulin
resistance [105].
Our findings may provide future insight into premorbid

cognitive dysfunction in PSDs. It is well established that PSDs
are characterized by early premorbid cognitive dysfunction [106].
Patients with PSDs also demonstrate glucose dysregulation early
in the illness course. Given associations between T2D and insulin
resistance with worse cognitive impairments in the general
population and in schizophrenia [17, 18], we speculate that the
pathophysiology underlying premorbid cognitive dysfunction and
intrinsic dysglycemia overlap in PSDs. To this point, accumulating

evidence suggests that brain defects in glucose and lactate
utilization as well as mitochondrial dysfunction may be linked to
cognitive dysfunction [38, 53, 107–109]. Thus, we posit that brain
bioenergetic defects could dually explain intrinsic dysglycemia
and premorbid cognitive dysfunction in PSDs. If true, this would
have implications for the identified candidate drug treatments in
this study to potentially target both intrinsic dysglycemia and
cognitive dysfunction in PSDs.
Although our findings build on growing literature supporting

intrinsic metabolic dysfunction in PSDs and identify possible
pathways explaining these associations, some limitations should
be noted. The pathway results demonstrated blood-related
processes that may be less specific or informative to brain
mechanisms, which likely resulted from the high proportion of FEP
studies examining blood-derived tissue. Nonetheless, we observed
glial cell proliferation, a neurobiological process, amongst our
pathway results, which is consistent with the transcriptomic
overlap reported between peripheral blood and the brain [19, 20]
to support our examination of peripheral tissue. Furthermore,
post-mortem brain samples are rare in AP-naive FEP patients, who
tend to be young. Available post-mortem brain samples of
patients with PSDs tend to be confounded by years of AP
exposure and illness-related lifestyle factors and would thus
significantly hinder examination of illness intrinsic gene expres-
sion changes. As an additional limitation to our study, the pathway
and iLINCS analyses are biased towards extensively studied
biological processes. The multiple hits in our iLINCS analysis for
anticancer drugs likely reflect the well-studied nature of cancer.
An additional explanation for the anticancer drugs may be that a
potential link exists between schizophrenia and cancer. Currently,
there is mixed literature on the incidence of cancer among
schizophrenia patients, including increased, decreased, or no
difference in cancer incidence [110]. In support of decreased
incidence of cancer in schizophrenia patients, one theory asserts
that, despite increased risk factors such as smoking and substance
abuse, opposing activities of the adenosine system between
schizophrenia and cancer may drive this dichotomous relationship
[110]. Hypofunction of the adenosine system observed in
schizophrenia may be protective against the increased adenosine
metabolism found in cancer [110]. Additionally, adenosine
signaling also plays a role in glucose metabolism and insulin
secretion [111], which further supports a link between PSDs and
dysglycemia. In contrast, cancer signaling pathways have been
reported to be elevated in schizophrenia patients [112]. This link
may explain the multiple anticancer drugs found in our iLINCS
analysis, however, further research is needed to more clearly
understand the relationship between schizophrenia and cancer.
Nonetheless, the presence of antidiabetic agents in the iLINCS
analysis, which would be expected to correct metabolic abnorm-
alities in PSDs, supports the validity of our results. Furthermore, for
the AP-naive FEP studies, we used reported differential gene
expression results instead of conducting differential expression
analysis on raw expression data; this limitation is due to data
unavailability from the original studies. This may have introduced
variations in the transcriptomic signatures, as the data may not
have been processed and analyzed consistently across the studies.
Additional potential confounders include demographic factors
such as age and sex, as few studies did not report these values
and may not have matched the case and unaffected comparison
groups to these factors.
Collectively, we confirm emerging data supporting shared

intrinsic disease pathways between PSDs and dysglycemia at a
gene expression level. Dysregulations in ER stress and brain
bioenergetics may contribute to the pathophysiology of PSDs and
also contribute to dysglycemia in PSDs. Therefore, dysglycemia
may be intrinsic to PSDs, much like the psychiatric symptoms that
define these illnesses. It would be important to test the
antidiabetic agent metformin as a potential treatment for dually
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mitigating intrinsic and AP-induced dysglycemia in PSDs at least in
a subgroup of individuals. The ability to use our approaches to
both better define subtypes of PSDs, as well as more precisely
target important yet underappreciated metabolic aspects of these
illnesses may have implications on cardiometabolic health and
potentially aspects of psychopathology.
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