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Nearly a quarter of bipolar disorder (BD) patients were misdiagnosed as major depressive disorder (MDD) patients, which cannot be
corrected until mania/hypomania develops. It is important to recognize these obstacles so that the appropriate treatment can be
initiated. Thus, we sought to distinguish patients with BD from MDD, especially to identify misdiagnosed BD before mania/
hypomania, and further explore potential trait features that allow accurate differential diagnosis independent of state matters.
Functional magnetic resonance imaging scans were performed at baseline on 92 MDD patients and 48 BD patients. The MDD
patients were then followed up for more than two years. After follow-up, 23 patients transformed into BD (tBD), and 69 patients
whose diagnoses remained unchanged were eligible for unipolar depression (UD). A support vector machine classifier was trained
on the amygdala-based functional connectivity (FC) of 48 BD and 50 UD patients using a novel region-based feature selection.
Then, the classifier was tested on the dataset, encompassing tBD and the remaining UD. It performed well for known BD and UD
and can also distinguish tBD from UD with an accuracy of 81%, sensitivity of 82.6%, specificity of 79%, and AUC of 74.6%,
respectively. Feature selection results revealed that ten regions within the cortico-limbic neural circuit contributed most to
classification. Furthermore, in the FC comparisons among diseases, BD and tBD shared almost overlapped FC patterns in the
cortico-limbic neural circuit, and both of them presented pronounced differences in most regions within the circuit compared with
UD. The FC values of the most discriminating brain regions had no prominent correlations with the severity of depression, anxiety,
and mania/hypomania (FDR correction). It suggests that BD possesses some trait features in the cortico-limbic neural circuit,
rendering it dichotomized by the classifier based on known-diagnosis data.
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INTRODUCTION
Bipolar disorder (BD) is one of the most serious affective disorders,
which affects about 45 million people in the world [1] and shares
overlapping depressive symptoms with major depressive disorder
(MDD). Typically, a depressive episode precedes the onset of
manic/hypomanic episode and dominates the clinical course of
BD patients [2]. These clinical characteristics add ambiguity to the
categorization of BD and MDD, and thus, misdiagnosis, inap-
propriate treatment, and poor prognosis frequently occur [3, 4].
However, BD and MDD are categorized by the characteristics of
symptomatology rather than the biomarkers, and the discrimina-
tive physiopathology mechanism before manic/hypomanic epi-
sodes is unclear.
Resting-state functional magnetic resonance imaging (rs-fMRI)

technology enables objective neuroimaging markers for the study
of affective disorders by observing the functions of live brains.
Prior studies have shown that rs-fMRI can distinguish the two

affective disorders [5, 6] as well as sensitively detect variations
between subthreshold BD and MDD [7]. Furthermore, by
combining rs-fMRI with follow-up observation, several studies
even distinguished patients who were initially diagnosed with
MDD and transformed into BD after manic/hypomanic appearance
in the subsequent follow-up (tBD) from MDD patients. In these
studies, tBD patients showed specific functional connectivity (FC),
spontaneous neural activity, and gray matter volume in cortical
regions, including the frontal, temporal, occipital, parietal, insular
regions, and limbic system, including the amygdala [8–10]. It has
been postulated that cortico-limbic connectivity is associated with
neuroimaging mechanisms related to BD [11, 12] and MDD
[13, 14]. Amygdala, as one of the major nodes of the cortico-limbic
neural circuit, connects to various regions within the neural circuit
[15]. The disruptive amygdala-based FC within the cortico-limbic
neural circuit may serve as a candidate neuroimaging marker for
distinguishing between BD and MDD [16, 17], as well as
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developing the risk of BD [18]. Nevertheless, the results of such
studies at the group level cannot be implemented for differential
diagnosis at the individual level. The clinical translation of the
research findings is urgently required in order to help clinicians
diagnose and treat BD patients correctly and promptly.
The extensive application of machine learning in the medical

field has lately made it possible to translate scientific results into
clinical practice. Researchers established a model that can
distinguish various diseases at the individual level and applied
the model to the new data for classification or prediction. Support
vector machine (SVM), a supervised machine learning method, is
designed to identify the spatially distributed model of brain
alterations across multiple voxels [19]. It has been used to examine
the brain alterations between patients with MDD and BD on rs-
fMRI data with accuracy ranging from 86% to 90.89%. Further-
more, the regions involving the insular, cerebellar, pallidum,
angular, parietal, frontal, occipital, and temporal cortices con-
tributed to the classification [20, 21]. Regarding the early
identification rs-MRI studies of MDD and BD, one study involving
33 tBD patients, 33 unipolar disorder (UD) patients who remained
depressed for over 5 years, 33 BD patients, and 33 controls trained
a classifier on tBD and UD patients with an accuracy of 78.13%.
The study further explored the functional abnormalities among
the three patient groups, and the differences were primarily in the
somatomotor network, default-mode network, and cognitive
control network [22]. A recent study utilizing clinical features
and functional activities of the reward circuit differentiated
patients with tBD from those with UD with an accuracy of
87.5% [23]. On the clinical side, two recent studies adopted clinical
variables such as demographic information and medical records,
as well as oxidative stress biomarkers, to build prediction models

of BD [24, 25]. As mentioned, the supervised machine learning
methods allow early identification of the two affective disorders
and even the prediction of bipolar conversion.
Mary L. Phillips and Eduard Vieta have pointed out the salient

meaning of the trait markers, which refer to functional dis-
turbances in the neural circuit that may persist through all the
states of BD, in understanding the pathophysiologic mechanisms
of BD [26]. Indeed, numerous functional neuroimaging studies
have supported trait-related deficits in BD across depressive,
manic, hypomanic, and euthymic states [27–31]. These trait
features appear to aid in the early differentiation between MDD
and BD.
Accordingly, we aim to establish a SVM classifier to distinguish

patients with BD from MDD, especially those misdiagnosed with
BD before manic/hypomanic episode. Further, we intend to find
potential trait features by using a novel region-based feature
selection that allows accurate differential diagnosis regardless of
the states of the affective disorders.

METHODS AND MATERIALS
Subjects
Finally, a total of 140 patients from the Department of Psychiatry of the
First Hospital of China Medical University were included in this study.
Figure 1 illustrates the patient grouping process from enrollment to
regrouping after follow-up.
At baseline, 92 patients were diagnosed with MDD and 48 with BD. The

patients were recruited and underwent MRI scans from February 2009 to
July 2019. MDD patients were then followed up every six months on
average from October 2009 to November 2020. The manic/hypomanic
symptom items in the Structured Clinical Interview for DSM-IV, Axis I
Disorders (SCID-I) [32] served as the basis for the follow-up process. The

Patients meet inclusion 

(n=140)

Baseline
MDD (n=92) BD (n=48)

At the time of scan:

• Depression (n=65) 

• Remission (n=3)

• Unclear state  (n=1)

UD (n=69)tBD (n=23)

• Clinical assessment (SCID-I, K-SADS-PL, 

HAMD-17, HAMA, YMRS)

• MRI scan

• Patients were excluded for poor image quality, 

head motion, and loss for follow-up.

Follow-up
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• BD-Ⅱ (n=13)
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        (n=98)

Fig. 1 The grouping flow chart. UD unipolar depression (patients with major depressive disorder whose diagnosis remained unchanged after
follow-up), BD bipolar disorder, tBD patients who initially diagnosed with major depressive disorder transformed into BD during follow‐up,
SCID-I Structured Clinical Interview for DSM-IV Axis I Disorders, K-SADS-PL Schedule for Affective Disorders and Schizophrenia for School-age
Children-present and Lifetime Version, HAMD-17 17-item Hamilton Depression Rating Scale, HAMA Hamilton Anxiety Scale, YMRS Young
Mania Rating Scale.
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process of assessment was completed by at least one researcher who had
passed a consistency test. If a patient exhibited a suspicious manic/
hypomanic episode during the follow-up, we would recommend the
patient visit the outpatient clinic once more. A chief physician would
confirm the diagnosis in a face-to-face interview on the condition that the
patients agreed to return. Otherwise, a chief physician would complete the
confirmation of the diagnosis on a call. By the time of November 2020, 23
patients who were diagnosed with MDD at baseline were eventually
diagnosed with tBD. The diagnosis of the other 69 MDD patients remained
unchanged, and they were assigned to the UD group.
All patients, ranging from 13 to 55 years old, met either MDD or BD

diagnostic criteria by using SCID-I for adult patients or Schedule for
Affective Disorders and Schizophrenia for School-age Children-Present and
Lifetime Version (K-SADS-PL) for minor patients [33]. Additionally, the 17-
item Hamilton Depression Rating Scale (HAMD-17) [34], the Hamilton
Anxiety Scale (HAMA) [35], and the Young Mania Rating Scale (YMRS) [36]
were employed to assess the clinical symptom severity. Professional
psychiatrists carried out clinical evaluations at the psychiatric outpatient
clinic of the First Hospital of China Medical University, and well-trained
researchers who had passed the clinical evaluation consistency test further
validated them at the Brain Function Research Section.
Patients were excluded if they had: (1) any forms of nonpharmacological

treatments before the scan, such as electroconvulsive therapy (ECT) and
transcranial magnetic stimulation (TMS); (2) current or past history of other
DSM-IV Axis I or II disorders; (3) neurological diseases involving epilepsy,
neurodegenerative disease, cerebrovascular disease, brain tumors, and
head trauma with a loss of consciousness over five minutes; (4) serious
somatic diseases, particularly diseases that may cause changes in brain
tissue, such as uncontrolled diabetes and hypertension; (5) claustrophobia;
(6) MRI contraindications; and (7) pregnancy.
Prior to study enrollment, all participants willingly submitted their

written informed consent. If they were under 18, their guardians
additionally provided informed consent on their behalf. This study was
approved by the Medical Science Research Ethics Committee of the First
Hospital of China Medical University.

MRI acquisition
All the MRI scans were conducted at baseline using a GE Signa HDX 3.0 T
scanner with an 8-channel head coil at the Department of Radiology of the
First Hospital of China Medical University. During the scan, patients were
instructed to close their eyes, stay awake, and try not to think. Earplugs and
foam pads were utilized to reduce noise and head motion. The echo-planar
imaging sequence was performed to get the resting-state functional MRI (rs-
fMRI) data with the following parameters: repetition time (TR)= 2000ms, echo
time (TE)= 40ms, field of view (FOV)= 240mm×240mm, image matrix
size= 64 × 64, voxel size= 3.75 × 3.75 × 3mm3, flip angle= 90°, 35 slices with
slice thickness= 3mm, spacing between slices= 3mm, and scan time= 400 s.

MRI preprocessing
Functional image preprocessing was carried out utilizing techniques
implemented in the SPM8-based Data Processing Assistant for Resting-
State fMRI Advanced Edition (DPARSFA) toolbox on the MATLAB 2010b
platform (PC version) [37]. The first ten time points were removed to
minimize equilibration effects that could distort the data. The remaining
images underwent slice-timing correction and motion realignment.
Patients whose head motion exceeded 3mm of translation or 3 degrees
of rotation were excluded. There were no statistical differences in FD
values among UD, tBD, and BD. Then spatial normalization to standard
Montreal Neurological Institute (MNI) space was applied with a resolution
of 3 mm× 3mm× 3mm, followed by spatial smoothing
(6mm× 6mm× 6mm full width at half maximum Gaussian Kernal).
Further preprocessing steps included linear detrending, nuisance regres-
sion with white matter signal, cerebrospinal fluid signal, global signal, and
head motion (Rigid-body 6), as well as temporal bandpass filtering
(0.01–0.08 Hz) before subjecting the images to FC analysis.

FC analysis
Analysis of FC was also performed using the DPABI toolbox. The bilateral
amygdalae, based on the automatic anatomical labeling (AAL) atlas [38],
were chosen as the seeds of FC analysis. The Pearson correlations between
the mean time series of the bilateral amygdala and the remaining whole-
brain voxels (all in gray matter) were calculated. Finally, the correlation
coefficients were transformed into z scores by a Fisher’s z-transformation.

This process yielded a 61 × 73 × 61 FC image, which is the default setting of
DPABI to minimize the differences in voxel numbers before and after
normalization. The image was then transformed into a vectorial feature
space for each individual. Thus, we got 61 × 73 × 61 dimensional features
and used them for subsequent classification analysis.

Statistical analyses
Demographic and clinical characteristics. We performed statistical ana-
lyses using SPSS 24.0 software (SPSS Inc., Chicago, Illinois). For continuous
variables containing age, years of education, duration of illness, symptom
scales (HAMD-17, HAMA, and YMRS), and FD values, comparisons were
conducted by one-way analysis of variance (ANOVA) for normally
distributed variables or the Kruskal-Wallis H test for non-normally
distributed variables. Categorical variables comprising sex, first-episode,
and medication were analyzed by the Chi-square test or Fisher’s exact
probability test. The continuous variables were expressed as median and
interquartile range (IQR) or mean ± standard deviation according to the
data distribution. Statistical significance was set at a p value <0.05 in all
comparisons.

SVM analysis. The SVM algorithm was applied as the classifier due to its
excellent performance in a small sample size [39] by adopting the Python-
based Scikit-learn package (http://scikit-learn.org). The primary steps
consisted of: (i) initial selecting features; (ii) further selecting discriminative
brain regions; (iii) training a classifier; and (iv) evaluating the classifier.
(i) Initial selecting features: Random Forest (RF) is an embedded-type

feature selection method that has been shown to significantly improve
model performance [40–42], is commonly used in data mining [43], and
recognizes important genes [44]. Mean decrease impurity (MDI) is a
method to measure the feature importance in RF model. It is the average
value of the decrease in node impurity (weighted by the probability of
reaching that node) over all trees. In this study, we applied a supervised
learning approach and built an RF model with default parameters on the
training set. The importance score for each voxel was obtained by MDI,
which can retain non-zero features.
Additionally, we used a SHAP analysis to recompute the importance

score of each voxel and validate the reliability of the feature selection by
MDI (Supplementary Table 1).
(ii) Further selecting discriminative brain regions: This process is based

on the preliminary features acquired in the training set, as described
above. For each brain region defined by the AAL atlas, the feature
importance score is the total score of the voxel located in the
corresponding region. Thus, the brain regions can be ranked in descending
order according to their contributions, generating a sorted list of brain
regions. Then, based on the list, we calculated the correlation between the
mean FC and the group label for each brain region using the U test and
selected brain regions until the p value was higher than 0.05. Finally, the
features whose importance score was not equal to 0 in discriminative brain
regions were chosen.
Regarding feature selection, we also tried other methods, such as

univariate analysis (Variance), multivariate analysis (Pearson, ANOVA, Chi-
square), and the L1 regularization penalty term. We present the procedure
and results in Supplementary Tables 2 and 3.
(iii) Training a classifier: The SVM classifier was trained to distinguish

between UD and BD/tBD. We selected the linear function as the kernel
function with the default settings, and then the coefficient of the penalty
term was adjusted by the grid search method. We also selected the
features from the training set that showed differences between the BD and
MDD groups as classification features using the feature selection method
described above.
Additionally, logistic regression classifiers were also adopted as

comparison methods, and details of analyses and results are provided in
Supplementary Tables 4 and 5.
(iv) Evaluating the classifier: To validate and evaluate the performance of

the classifier, eightfold cross-validation was used on the training sample
(50 UD patients and 48 BD patients). In k-fold cross-validation, when the K
value is small, the model is prone to overfitting with low deviation and
high variance; as the K value increases, the deviation increases and the
variance decreases. Therefore, we employed cross-validation with K= 8 to
balance deviation and variance in this study. The average accuracy,
sensitivity, specificity, receiver operating characteristics curve (ROC), and
area under the ROC curve (AUC) of these eight tests were reported as the
main evaluation indicators of the models.
As for the generalization and prediction performance evaluation, the
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established classifier was adopted on an independent testing sample of 19
UD patients and 23 tBD patients. Accuracy, sensitivity, specificity, ROC, and
AUC were also obtained during this test. To test the generalization
performance of the classifier on external data, we also adopted two public
datasets, including MDD and BD patients. The details are shown in
Supplementary Table 6 and Supplementary Fig. 1.
The permutation tests were utilized to evaluate the statistical

significance of classification accuracy. We randomly selected data from
training and testing datasets 1000 times and calculated the classification
accuracy of each iteration with eightfold cross-validation. A p value less
than 0.05 was defined as significant.

Comparisons of FC across the three groups. To further investigate
differences in FC among the three groups in the discriminative brain
regions, we listed 10 brain regions with the highest feature importance
scores and extracted the mean FC value for each of them. ANOVA was
conducted to compare the FC value in each brain region among UD, tBD,
and BD. The post-hoc analyses were performed by Bonferroni or Tamhane
tests according to the homogeneity of variance. A p value < 0.05 was
considered statistically significant.

Correlation analyses between FC and symptom scales. In order to
investigate the potential clinical values of these regions, Pearson’s
correlation analysis was applied to determine the association between
the mean FC value of each brain region and each symptom score (HAMD-
17, HAMA, and YMRS), respectively, including the ten most contribution
brain regions. Results were corrected using the Benjamini–Hochberg false
discovery rate (FDR) (q < 0.05) method.

RESULTS
Demographic and clinical characteristics
No significant differences were found in age, sex, education year,
and FD among the UD, tBD, and BD groups (p > 0.05). However,
illness duration, first episode, medication, and symptom scales
(HAMD-17, HAMA, and YMRS) were statistically different among
these three groups (p < 0.05). The median follow-up time was
54.5 months (IQR: [23.75 months; 79.25 months]) for the UD group
and 23 months (IQR: [2 months; 44 months]) for the tBD group.
Table 1 contains more detailed information on demographic and

clinical characteristics. Supplementary Table 7 contains the
characteristics of the training and testing datasets.

SVM classifier results
In the classification of UD and tBD groups, namely in the testing
dataset, the accuracy, sensitivity, and specificity were 81%, 82.6%,
and 79%, respectively (permutation test, p= 0.004). The ROC
curve with an AUC value of 74.6% is displayed in Fig. 2. In the
classification of the training dataset, the mean accuracy,
sensitivity, and specificity were 73.5%, 75%, and 72%, respectively

Table 1. Clinical characteristics of UD, tBD, and BD.

Variables UD (n= 69) tBD (n= 23) BD (n= 48) F/χ2/H p

Age, year
(Md, IQR)

29.0, 17.5 27.0, 13.0 24.5, 11.5 2.419a 0.298a

Sex (female/male) 43/26 14/9 30/18 0.019c 0.990c

Education year (Md, IQR) 12.0, 6.0 12.0, 6.0 13.0, 5.0 3.245a 0.197a

Illness duration, month (Md, IQR) 9.0, 22.8 9.2, 19.9 33.8, 52.5 19.151a 0.000a *

First-episode (Y/N/unclear) 59/3/7 20/2/1 18/28/2 47.940d 0.000d *

Medication (Y/N) 24/45 8/15 34/14 16.452c 0.000c *

HAMD-17 score (M ± SD) 24.6 ± 8.1 24.3 ± 6.7 15.6 ± 7.3 21.627b 0.000b *

HAMA score
(Md, IQR)

17.0, 11.0 24.0, 13.0 11.5, 9.5 16.841a 0.000a *

YMRS score
(Md, IQR)

0.0, 2.0 0.0, 0.0 2.0, 5.0 9.044a 0.011a *

Follow-up time, month (Md, IQR) 54.5, 55.5 23.0, 42.0 NA NA NA

FD (Md, IQR) 0.089, 0.075 0.097, 0.049 0.100, 0.050 1.503a 0.472a

Md median, IQR interquartile range, M mean, SD standard deviation, HAMD-17 17-item Hamilton Depression Rating Scale, HAMA Hamilton Anxiety Scale, YMRS
Young Mania Rating Scale, FD framewise displacement, UD unipolar depression (patients with major depressive disorder whose diagnosis remains unchanged
after follow-up), BD bipolar disorder, tBD patients who initially diagnosed with major depressive disorder transformed into BD during follow‐up; *p < 0.05 was
considered a statistical difference, NA not available.
aKruskal-Wallis H test.
bANOVA test.
cChi-square test.
dFisher’s exact test.

Fig. 2 The ROC curve of SVM classifier performance in the testing
dataset. ROC receiver operating characteristics, AUC area under the
curve.
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(permutation test, p= 0.029). A mean ROC curve with an AUC
value of 73.5% was also obtained (Supplementary Fig. 2).

Brain regions contributed most to classification
The feature importance scores of the first ten brain regions
contributing most to classification is displayed in Fig. 3a. The
regions in order of importance were the left postcentral gyrus, the
right inferior temporal gyrus, the left middle frontal gyrus, the
right lingual gyrus, the right middle frontal gyrus, the left middle
occipital gyrus, the right middle temporal gyrus, the left precentral
gyrus, the left inferior parietal gyrus, and the left inferior temporal
gyrus (Fig. 3b).

Differences in FC across the three groups
Here, we chose the first ten informative brain regions for
classification to perform the FC comparisons among the UD,
tBD, and BD groups. The results showed that BD and tBD did not
differ in ten regions, while significant differences were observed
between UD and BD (UD < BD; p < 0.05, two-tailed). When it
comes to UD and tBD, differences were also observed in these
regions (UD < tBD; p < 0.05, two-tailed) except in the inferior
temporal gyrus, lingual gyrus, and middle temporal gyrus of the
right cerebrum (p > 0.05, two-tailed) (Table 2, Figs. 3b and 4).

Correlations between FC and symptom scales
The Pearson correlation analysis revealed that there was a
negative correlation between the HAMA total score and the left

postcentral gyrus in patients with BD (r=−0.328, p= 0.023). The
total score of YMRS in tBD had negative correlations with the left
middle frontal gyrus (r=−0.551, p= 0.015) and the left precentral
gyrus (r= 0.517, p= 0.023), but positive correlations with the right
inferior temporal gyrus (r= 0.501, p= 0.029) and the right middle
temporal gyrus (r= 0.467, p= 0.044). However, no significant
correlations survived between FC and symptom scales (HAMD-17,
HAMA, and YMRS) after the FDR correction (Supplementary Table
8).

DISCUSSION
To the best of our knowledge, this is the first study that used
amygdala-based FC to train a classifier based on an innovative
region-based feature selection method to separate BD and MDD,
especially to screen tBD. Besides, the FC comparisons showed that
BD and tBD shared an almost overlapped FC pattern in the
cortico-limbic neural circuit, and both of them presented
pronounced differences in a majority of regions within the circuit
relative to UD. Meanwhile, the most discriminative brain regions
located in the cortico-limbic neural circuit were irrelevant to state
matters, which included the severity of depression, anxiety, and
manic/hypomanic symptoms in the short term. The findings
indicated that the misdiagnosed BD could be dichotomized by the
classifier using FC data from follow-up confirmed affective
disorders. In other words, BD may possess some FC features that
are not related to the state but rather to the nature of the disease.
The findings may contribute to developing a tool to ameliorate
the dilemma of differential diagnosis and could provide a new
perspective for predicting affective disorders.
In the present study, the classifier has a high sensitivity to

identify the misdiagnosed BD patients who were diagnosed with
MDD by experienced psychiatrists before their first manic/
hypomanic episode. Only a limited number of studies generalize
a classifier to external samples or uncertain patients. A two-center
cross-sectional study found that a model with good performance,
which was trained by one center, was able to differentiate the two
disorders from another center [45]. Another study trained a
classifier with high accuracy based on the confirmed diagnoses of
BD, MDD, and healthy control groups. The classifier was then
applied to patients with ambiguous diagnoses and categorized
the majority of patients (91.7%) by referencing medication
response [46]. The evidence implies that a classifier established
by patients with known-diagnosis is available for application to
patients with obscure diagnoses. One of the possible reasons for
the result can be explained by the trait features, which were
inferred from two other findings of the study. Firstly, in the
cortico-limbic neural circuit, tBD patients shared more similar FC
patterns with BD, which is in agreement with the findings of Shao
et al. [22]. In addition, both tBD and BD can be robustly separated
from UD in most regions of the neural circuit. The results fit well
with Jiang et al. [9, 10, 47] and Zhang et al. [48], who reported
discrepant functions between UD and BD/tBD within the cortico-
limbic neural circuit by using different rs-fMRI approaches.
Secondly, the negative correlations between FC and symptom
severity again imply that the FC features within the cortico-limbic
neural circuit may be unaffected by states, which is in line with
several previous studies. For instance, similar functional changes
of the striatal areas and inferior parietal gyrus were observed in
depressive and euthymic BD patients, leading authors to
hypothesize that the functional alterations of cortical-striatal
neural circuits were a trait-like alteration unrelated to mood
states [49]. Both manic and euthymic patients with BD exhibited a
declining gray matter volume trend in the left hippocampus,
parahippocampal gyrus, and amygdala and raised gray matter
volume in the left orbitofrontal cortex. Meanwhile, there were no
prominent distinctions between the mania and euthymia groups
[50]. Additionally, functional abnormalities in the regions of the

Fig. 3 Brain regions contributed most to classification. a The
importance scores of the first ten regions. The X axis represents the
first ten regions contributing most to classification. The Y axis
represents the feature importance score per brain region. b Regions
within the cortico-limbic neural circuit contributed most to classifica-
tion. The color bar represents feature importance score for classifica-
tion. The number corresponds to z-coordinate; L left, R right.
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cortico-limbic neural circuit were seen in both BD patients who
had recently experienced a manic episode and those who had
never experienced manic/hypomanic symptoms [8–10, 51]. Con-
sequently, functional alterations within the cortico-limbic neural
circuit may be the trait neuroimaging markers of patients with BD
who either develop manic/hypomanic symptoms or not. Along
with our findings, we suppose the trait neuroimaging indicators
enable classifiers to distinguish the two affective disorders and
even predict the onset of affective disorders.
Feature selection is considered essential in the context of

neuroimaging data-based classification. We utilized the region-
based feature selection method to capture an optimal subset of
brain regions for BD/tBD-UD discrimination and improve model
interpretability. Jie et al. employed a similar feature selection
method and obtained a preferred classification performance [21].
In addition, the optimal features spreading over the cortico-limbic
neural circuit with the amygdala as a core play a major role in
emotional processing [52]. In the neural circuit, there are extensive
connections between cortices and limbic regions encompassing
the amygdala; cortical regions send signals to limbic regions and
integrate information from the limbic system. Meanwhile, emo-
tions are associated with cognition and behavior via the limbic
system [53]. The present findings and related studies consider the

cortico-limbic brain circuit as a potential neural circuit for
differentiating the two affective disorders [47, 54]. Fung et al.
adopted the morphometry indicators of the cortical regions
comprised of the left precentral, inferior parietal, and right middle
temporal gyri, as well as the bilateral amygdala, as features to
classify patients with BD and UD, and the classification accuracy
was 74.3% [55]. Furthermore, BD and UD could be well separated
through the activities of the frontal and temporal regions, as well
as the amygdala elicited by tasks [56–58]. The two disorders also
showed distinctive patterns such as dynamic FC, cortical thickness,
FC, long-range FC strength, and cortical surface area in the left
postcentral, rostral middle frontal, middle occipital, inferior
parietal, and precentral gyri, as well as the right lingual, middle
frontal, and middle temporal gyri [17, 55, 59–63]. A recently
published study on the classification of tBD and UD found an
accuracy of 70% based on multiple function parameters, i.e., FC,
nodal efficiency, and degree centrality of the reward circuit, and
an even higher accuracy of 87.5% using a combination of
functional and clinical features. Although the feature selection
methods and model-building principles are different, the findings
of this study suggest that incorporating clinical information can
improve the performance of models for early recognition of
affective disorders [23]. In summary, decent feature selection

Table 2. FC differences in the most contribution brain regions among UD, tBD, and BD groups.

The serial number Brain regions Hemisphere F p Post-hoc analysis

Postcentral gyrus 11.272 <0.001 UD < BD (p < 0.001*)

A Left UD < tBD (p= 0.004*)

tBD vs. BD (p= 1.000)

Inferior temporal gyrus 12.437 <0.001 UD < BD (p < 0.001*)

B Right UD vs. tBD (p= 0.227)

tBD vs. BD (p= 0.145)

Middle frontal gyrus 13.333 <0.001 UD < BD (p < 0.001*)

C Left UD < tBD (p= 0.001*)

tBD vs. BD (p= 1.000)

Lingual gyrus 10.998 <0.001 UD < BD (p < 0.001*)

D Right UD vs. tBD (p= 0.097)

tBD vs. BD (p= 0.506)

Middle frontal gyrus 10.418 <0.001 UD < BD (p < 0.001*)

E Right UD < tBD (p= 0.015*)

tBD vs. BD (p= 1.000)

Middle occipital gyrus 14.673 <0.001 UD < BD (p < 0.001*)

F Left UD < tBD (p= 0.005*)

tBD vs. BD (p= 1.000)

Middle temporal gyrus 4.485 0.013 UD < BD (p= 0.010*)

G Right UD vs. tBD (p= 1.000)

tBD vs. BD (p= 0.585)

Precentral gyrus 14.663 <0.001 UD < BD (p < 0.001*)

H Left UD < tBD (p < 0.001*)

tBD vs. BD (p= 1.000)

Inferior parietal gyrus 15.246 <0.001 UD < BD (p < 0.001*)

I Left UD < tBD (p= 0.005*)

tBD vs. BD (p= 1.000)

Inferior temporal gyrus 11.390 <0.001 UD < BD (p < 0.001*)

J Left UD < tBD (p= 0.046*)

tBD vs. BD (p= 0.782)

UD unipolar depression (patients with major depressive disorder whose diagnosis remains unchanged after follow-up), BD bipolar disorder, tBD patients who
initially diagnosed with major depressive disorder transformed into BD during follow-up, vs. versus.
*p < 0.05 was considered a statistical difference.
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methods can yield satisfactory classification results and account
for the neuroimaging mechanism in differential diagnosis at an
early stage.
In conclusion, the amygdala-based FC features within the

cortico-limbic neural circuit may serve as promising trait
neuroimaging markers for classifying BD and MDD, even
predicting BD. Likewise, the features afford underlying neuroima-
ging mechanisms for diagnostic distinctions.
There are several limitations that should be noted. First, the

sample size was insufficiently large. Our team is still working on
increasing the sample size and overcoming the restriction as of

right now. Second, the sample included patients taking medica-
tion. Although the effect of medication on fMRI may have been
limited [64], the results should be interpreted with caution. Finally,
follow-up confirmed affective disorders from multiple centers are
needed to verify the generalizability of the classifier for further
clinical transformation.

DATA AVAILABILITY
The data that supports the findings of this study is available from the corresponding
author upon reasonable request.
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depressive disorder transformed into BD during follow‐up; the X axis refers to the top ten brain regions that contributed most to classifying
BD/tBD and UD: A, the left postcentral gyrus; B, the right inferior temporal gyrus; C, the left middle frontal gyrus; D, the right lingual gyrus; E,
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X. Jiang et al.

7

Translational Psychiatry            (2024) 14:9 



REFERENCES
1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global,

regional, and national incidence, prevalence, and years lived with disability for
354 diseases and injuries for 195 countries and territories, 1990-2017: a sys-
tematic analysis for the global burden of disease study 2017. Lancet.
2018;392:1789–858.

2. O’Donovan C, Alda M. Depression preceding diagnosis of bipolar disorder. Front
Psychiatry. 2020;11:500.

3. Pacchiarotti I, Valenti M, Colom F, Rosa AR, Nivoli AM, Murru A, et al. Differential
outcome of bipolar patients receiving antidepressant monotherapy versus
combination with an antimanic drug. J Affect Disord. 2011;129:321–6.

4. Sussman M, Friedman M, Korn JR, Hassan M, Kim J, Menzin J. The relationship
between use of antidepressants and resource utilization among patients with
manic or mixed bipolar disorder episodes: findings from a managed care setting.
J Affect Disord. 2012;138:425–32.

5. Liu CH, Ma X, Wu X, Zhang Y, Zhou FC, Li F, et al. Regional homogeneity of
resting-state brain abnormalities in bipolar and unipolar depression. Prog Neu-
ropsychopharmacol Biol Psychiatry. 2013;41:52–9.

6. Liu C, Pu W, Wu G, Zhao J, Xue Z. Abnormal resting-state cerebral-limbic func-
tional connectivity in bipolar depression and unipolar depression. BMC Neurosci.
2019;20:30.

7. Yang H, Li L, Peng H, Liu T, Young AH, Angst J, et al. Alterations in regional
homogeneity of resting-state brain activity in patients with major depressive
disorder screening positive on the 32-item hypomania checklist (HCL-32). J Affect
Disord. 2016;203:69–76.

8. Yin Z, Chang M, Wei S, Jiang X, Zhou Y, Cui L, et al. Decreased functional con-
nectivity in insular subregions in depressive episodes of bipolar disorder and
major depressive disorder. Front Neurosci. 2018;12:842.

9. Jiang X, Fu S, Yin Z, Kang J, Wang X, Zhou Y, et al. Common and distinct neural
activities in frontoparietal network in first-episode bipolar disorder and major
depressive disorder: preliminary findings from a follow-up resting state fMRI
study. J Affect Disord. 2020;260:653–9.

10. Jiang X, Wang X, Jia L, Sun T, Kang J, Zhou Y, et al. Structural and functional
alterations in untreated patients with major depressive disorder and bipolar
disorder experiencing first depressive episode: a magnetic resonance imaging
study combined with follow-up. J Affect Disord. 2021;279:324–33.

11. Anticevic A, Brumbaugh MS, Winkler AM, Lombardo LE, Barrett J, Corlett PR, et al.
Global prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with
psychosis history. Biol Psychiatry. 2013;73:565–73.

12. Mullin BC, Perlman SB, Versace A, de Almeida JR, Labarbara EJ, Klein C, et al. An
fMRI study of attentional control in the context of emotional distracters in
euthymic adults with bipolar disorder. Psychiatry Res. 2012;201:196–205.

13. Straub J, Metzger CD, Plener PL, Koelch MG, Groen G, Abler B. Successful group
psychotherapy of depression in adolescents alters fronto-limbic resting-state
connectivity. J Affect Disord. 2017;209:135–9.

14. Pannekoek JN, van der Werff SJ, Meens PH, van den Bulk BG, Jolles DD, Veer IM,
et al. Aberrant resting-state functional connectivity in limbic and salience net-
works in treatment-naive clinically depressed adolescents. J Child Psychol Psy-
chiatry. 2014;55:1317–27.

15. Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharma-
cology. 2010;35:192–216.

16. Ambrosi E, Arciniegas DB, Madan A, Curtis KN, Patriquin MA, Jorge RE, et al. Insula
and amygdala resting-state functional connectivity differentiate bipolar from
unipolar depression. Acta Psychiatr Scand. 2017;136:129–39.

17. Fateh AA, Cui Q, Duan X, Yang Y, Chen Y, Li D, et al. Disrupted dynamic functional
connectivity in right amygdalar subregions differentiates bipolar disorder from
major depressive disorder. Psychiatry Res Neuroimaging. 2020;304:111149.

18. Acuff HE, Versace A, Bertocci MA, Ladouceur CD, Hanford LC, Manelis A, et al.
Association of neuroimaging measures of emotion processing and regulation
neural circuitries with symptoms of bipolar disorder in offspring at risk for bipolar
disorder. JAMA Psychiatry. 2018;75:1241–51.

19. Mahmoudi A, Takerkart S, Regragui F, Boussaoud D, Brovelli A. Multivoxel pattern
analysis for fMRI data: a review. Comput Math Methods Med. 2012;2012:961257.

20. Li M, Das T, Deng W, Wang Q, Li Y, Zhao L, et al. Clinical utility of a short resting-
state MRI scan in differentiating bipolar from unipolar depression. Acta Psychiatr
Scand. 2017;136:288–99.

21. Jie NF, Zhu MH, Ma XY, Osuch EA, Wammes M, Theberge J, et al. Discriminating
bipolar disorder from major depression based on SVM-FoBa: efficient feature
selection with multimodal brain imaging data. IEEE Trans Auton Ment Dev.
2015;7:320–31.

22. Shao J, Dai Z, Zhu R, Wang X, Tao S, Bi K, et al. Early identification of bipolar from
unipolar depression before manic episode: Evidence from dynamic rfMRI. Bipolar
Disord. 2019;21:774–84.

23. Zhang A, Qiao D, Wang Y, Yang C, Wang Y, Sun N, et al. Distinguishing between
bipolar depression and unipolar depression based on the reward circuit activities

and clinical characteristics: a machine learning analysis. J Affect Disord.
2023;327:46–53.

24. Pradier MF, Hughes MC, McCoy TH Jr., Barroilhet SA, Doshi-Velez F, Perlis RH.
Predicting change in diagnosis from major depression to bipolar disorder after
antidepressant initiation. Neuropsychopharmacology. 2021;46:455–61.

25. Niu Z, Wu X, Zhu Y, Yang L, Shi Y, Wang Y, et al. Early diagnosis of bipolar disorder
coming soon: application of an oxidative stress injury biomarker (BIOS) model.
Neurosci Bull. 2022;38:979–91.

26. Phillips ML, Vieta E. Identifying functional neuroimaging biomarkers of bipolar
disorder: toward DSM-V. Schizophr Bull. 2007;33:893–904.

27. Pomarol-Clotet E, Alonso-Lana S, Moro N, Sarro S, Bonnin MC, Goikolea JM, et al.
Brain functional changes across the different phases of bipolar disorder. Br J
Psychiatry. 2015;206:136–44.

28. Yu H, Li ML, Meng Y, Li XJ, Wei W, Li YF, et al. Inferior frontal gyrus seed-based
resting-state functional connectivity and sustained attention across manic/
hypomanic, euthymic and depressive phases of bipolar disorder. J Affect Disord.
2021;282:930–8.

29. Olivito G, Lupo M, Gragnani A, Saettoni M, Siciliano L, Pancheri C, et al. Aberrant
cerebello-cerebral connectivity in remitted bipolar patients 1 and 2: new insight
into understanding the cerebellar role in mania and hypomania. Cerebellum.
2022;21:647–56.

30. Blumberg HP, Leung HC, Skudlarski P, Lacadie CM, Fredericks CA, Harris BC, et al.
A functional magnetic resonance imaging study of bipolar disorder: state- and
trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry.
2003;60:601–9.

31. Ruiz-Veguilla M, Martin-Rodriguez JF, Palomar FJ, Porcacchia P, Alvarez de Toledo P,
Perona-Garcelan S, et al. Trait- and state-dependent cortical inhibitory deficits in
bipolar disorder. Bipolar Disord. 2016;18:261–71.

32. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured clinical interview for
DSM-IV-TR axis I disorders-patient edition (SCID-I/P, 11/2002 revision). New York,
NY: New York State Psychiatric Institute; 2002.

33. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, et al. Schedule for
affective disorders and schizophrenia for school-age children-present and life-
time version (K-SADS-PL): initial reliability and validity data. J Am Acad Child
Adolesc Psychiatry. 1997;36:980–8.

34. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry.
1960;23:56–62.

35. Hamilton M. The assessment of anxiety states by rating. Br J Med Psychol.
1959;32:50–5.

36. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability,
validity and sensitivity. Br J Psychiatry. 1978;133:429–35.

37. Yan CG, Zang YF. DPARSF: a MATLAB toolbox for “pipeline” data analysis of
resting-state fMRI. Front Syst Neurosci. 2010;4:13.

38. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N,
et al. Automated anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain. Neuroimage.
2002;15:273–89.

39. Burges CJ. A tutorial on support vector machines for pattern recognition. Data
Min Knowl Discov. 1998;2:121–67.

40. Genuer R, Michel V, Eger E, Thirion B. Random forests based feature selection for
decoding fMRI data. Proc Compstat 2010;267:1–8.

41. Kursa MB, Rudnicki WR. The all relevant feature selection using random forest.
arXiv. 2011;1106:5112.

42. Chen RC, Dewi C, Huang SW, Caraka RE. Selecting critical features for data clas-
sification based on machine learning methods. J Big Data. 2020;7:52.

43. Hasan M, Nasser M, Ahmad S, Molla K. Feature selection for intrusion detection
using random forest. J Inf Secur. 2016;7:129–40.

44. Wang S, Liu W, Ye Z, Xia X, Guo M. Development of a joint diagnostic model of
thyroid papillary carcinoma with artificial neural network and random forest.
Front Genet. 2022;13:957718.

45. Redlich R, Almeida JJ, Grotegerd D, Opel N, Kugel H, Heindel W, et al. Brain mor-
phometric biomarkers distinguishing unipolar and bipolar depression. A voxel-based
morphometry-pattern classification approach. JAMA Psychiatry. 2014;71:1222–30.

46. Osuch E, Gao S, Wammes M, Theberge J, Willimason P, Neufeld RJ, et al. Complexity in
mood disorder diagnosis: fMRI connectivity networks predicted medication-class of
response in complex patients. Acta Psychiatr Scand. 2018;138:472–82.

47. Jiang X, Dai X, Kale Edmiston E, Zhou Q, Xu K, Zhou Y, et al. Alteration of cortico-
limbic-striatal neural system in major depressive disorder and bipolar disorder. J
Affect Disord. 2017;221:297–303.

48. Zhang K, Liu Z, Cao X, Yang C, Xu Y, Xu T, et al. Amplitude of low-frequency
fluctuations in first-episode, drug-naive depressive patients: a 5-year retro-
spective study. PLoS One. 2017;12:e0174564.

49. Zhang Z, Bo Q, Li F, Zhao L, Wang Y, Liu R, et al. Increased ALFF and functional
connectivity of the right striatum in bipolar disorder patients. Prog Neu-
ropsychopharmacol Biol Psychiatry. 2021;111:110140.

X. Jiang et al.

8

Translational Psychiatry            (2024) 14:9 



50. Xiao Q, Zhong Y, Jiao Q, Lu G, Su Y. Gray matter voxel-based morphometry in
mania and remission states of children with bipolar disorder. J Affect Disord.
2020;268:47–54.

51. Deng W, Zhang B, Zou W, Zhang X, Cheng X, Guan L, et al. Abnormal degree
centrality associated with cognitive dysfunctions in early bipolar disorder. Front
Psychiatry. 2019;10:140.

52. Cardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: the role of
the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev.
2002;26:321–52.

53. Braun K. The prefrontal-limbic system: development, neuroanatomy, function,
and implications for socioemotional development. Clin Perinatol.
2011;38:685–702.

54. Chen L, Wang Y, Niu C, Zhong S, Hu H, Chen P, et al. Common and distinct
abnormal frontal-limbic system structural and functional patterns in patients with
major depression and bipolar disorder. Neuroimage Clin. 2018;20:42–50.

55. Fung G, Deng Y, Zhao Q, Li Z, Qu M, Li K, et al. Distinguishing bipolar and major
depressive disorders by brain structural morphometry: a pilot study. BMC Psy-
chiatry. 2015;15:298.

56. Grotegerd D, Suslow T, Bauer J, Ohrmann P, Arolt V, Stuhrmann A, et al. Dis-
criminating unipolar and bipolar depression by means of fMRI and pattern
classification: a pilot study. Eur Arch Psychiatry Clin Neurosci. 2013;263:119–31.

57. Grotegerd D, Stuhrmann A, Kugel H, Schmidt S, Redlich R, Zwanzger P, et al.
Amygdala excitability to subliminally presented emotional faces distinguishes
unipolar and bipolar depression: an fMRI and pattern classification study. Hum
Brain Mapp. 2014;35:2995–3007.

58. Frangou S, Dima D, Jogia J. Towards person-centered neuroimaging markers for
resilience and vulnerability in bipolar disorder. Neuroimage. 2017;145:230–7.

59. Niu M, Wang Y, Jia Y, Wang J, Zhong S, Lin J, et al. Common and specific
abnormalities in cortical thickness in patients with major depressive and bipolar
disorders. EBioMedicine. 2017;16:162–71.

60. Fateh AA, Long Z, Duan X, Cui Q, Pang Y, Farooq MU, et al. Hippocampal func-
tional connectivity-based discrimination between bipolar and major depressive
disorders. Psychiatry Res Neuroimaging. 2019;284:53–60.

61. Lan MJ, Chhetry BT, Oquendo MA, Sublette ME, Sullivan G, Mann JJ, et al. Cortical
thickness differences between bipolar depression and major depressive disorder.
Bipolar Disord. 2014;16:378–88.

62. Pang Y, Chen H, Wang Y, Long Z, He Z, Zhang H, et al. Transdiagnostic and
diagnosis-specific dynamic functional connectivity anchored in the right anterior
insula in major depressive disorder and bipolar depression. Prog Neuropsycho-
pharmacol Biol Psychiatry. 2018;85:7–15.

63. Wang Y, Wang J, Jia Y, Zhong S, Niu M, Sun Y, et al. Shared and specific intrinsic
functional connectivity patterns in unmedicated bipolar disorder and major
depressive disorder. Sci Rep. 2017;7:3570.

64. Hafeman DM, Chang KD, Garrett AS, Sanders EM, Phillips ML. Effects of medi-
cation on neuroimaging findings in bipolar disorder: an updated review. Bipolar
Disord. 2012;14:375–410.

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Foundation of China
(82201689 to Xiaowei Jiang), the Natural Science Foundation of Liaoning Province
(2020-MS-176 to Xiaowei Jiang), the National Key R&D Program of China (Grant

#2018YFC1311600 and 2016YFC1306900 to Yanqing Tang), the Liaoning Revitaliza-
tion Talents Program (Grant #XLYC1808036 to Yanqing Tang), the National Key R&D
Program “Science and Technology Winter Olympics” (2021YFF0306503 to Feng Wu),
the Joint Fund of National Natural Science Foundation of China (U1808204 to Feng
Wu), and the Natural Science Foundation of Liaoning Province (2019-MS-05 to Feng
Wu).

AUTHOR CONTRIBUTIONS
XJ: conceptualization, data curation, writing-original draft, writing-review & editing,
and funding acquisition. BC: methodology and writing-review & editing. CL:
conceptualization, methodology, and writing-original draft. LJ: data curation, formal
analysis, visualization, and writing-original draft. YJ and WC: formal analysis and
writing-review & editing. WZ and QS: data curation and writing-review & editing. FW
and LK: data curation, funding acquisition, and writing-review & editing. YT:
conceptualization, supervision, funding acquisition, and writing-review & editing.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41398-023-02703-z.

Correspondence and requests for materials should be addressed to Yanqing Tang.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

X. Jiang et al.

9

Translational Psychiatry            (2024) 14:9 

https://doi.org/10.1038/s41398-023-02703-z
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Identifying misdiagnosed bipolar disorder using support vector machine: feature selection based on fMRI of follow-up confirmed affective disorders
	Introduction
	Methods and materials
	Subjects
	MRI acquisition
	MRI preprocessing
	FC analysis
	Statistical analyses
	Demographic and clinical characteristics
	SVM analysis
	Comparisons of FC across the three�groups
	Correlation analyses between FC and symptom�scales


	Results
	Demographic and clinical characteristics
	SVM classifier results
	Brain regions contributed most to classification
	Differences in FC across the three�groups
	Correlations between FC and symptom�scales

	Discussion
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




