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A significant minority of individuals develop trauma- and stressor-related disorders (TSRD) after surviving sepsis, a life-threatening
immune response to infections. Accurate prediction of risk for TSRD can facilitate targeted early intervention strategies, but many
existing models rely on research measures that are impractical to incorporate to standard emergency department workflows. To
increase the feasibility of implementation, we developed models that predict TSRD in the year after survival from sepsis using only
electronic health records from the hospitalization (n= 217,122 hospitalizations from 2012-2015). The optimal model was evaluated
in a temporally independent prospective test sample (n= 128,783 hospitalizations from 2016-2017), where patients in the highest-
risk decile accounted for nearly one-third of TSRD cases. Our approach demonstrates that risk for TSRD after sepsis can be stratified
without additional assessment burden on clinicians and patients, which increases the likelihood of model implementation in
hospital settings.
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Every year millions of patients develop sepsis, a life-threatening,
dysregulated immune response to infection [1]. Advances in sepsis
care over the prior two decades have improved survival rates, thus
requiring an increased focus on the prevention of adverse long-
term mental health outcomes, including posttraumatic stress
disorder (PTSD) and other trauma-related psychiatric outcomes
[1]. A systematic review [2] documented a wide range of PTSD
prevalence among survivors of sepsis and other conditions treated
at intensive care units (8% to 51%). Accurate and efficient
prediction of PTSD risk may facilitate targeted screening and
delivery of preventive and early interventions after hospital
discharge [3]. While prior PTSD research typically focused on the
identification of key risk factors [4], machine learning models aim
to increase predictive accuracy by incorporating a large set of
individually weak predictors and complex interactions [3]. Among
individuals treated at intensive care units, systematic reviews
document several predictors of PTSD, including pre-existing
psychopathology, benzodiazepine administration, female sex,
age, sedation, and trait anxiety [2, 5]. However, machine learning
models that could potentially incorporate these and other
variables to predict trauma-related psychiatric outcomes, includ-
ing PTSD after survival from sepsis have not been developed.
Recent reviews summarize research on machine learning

models to predict PTSD after a variety of potentially traumatic
experiences, including military combat, natural disasters, trans-
portation accidents, physical and sexual assault, and concussion
[3, 6]. Some of these studies demonstrated that machine learning
models could accurately identify the emergency department (ED)

admits at high risk for PTSD after a variety of injuries resulting
from motor vehicle accidents, falls, work-related accidents,
physical and sexual assault, gunshot wounds, and terrorist attacks
[7–12]. However, several limitations may impede real-world
implementation. Most of the existing models have been devel-
oped from extensive research assessment batteries that are not
part of standard ED workflows. Although some of these models
included information that can be found in patient charts,
including patient characteristics (e.g., age, sex, body mass index),
injury characteristics, vital signs, lab results, medications, and pre-
existing diagnoses, many of the most important predictors were
from study surveys that assessed acute psychological responses,
social support, and resilience [7–12]. Another limitation of past
studies is that models were developed with relatively small
samples ranging from 152 to 1003 participants [7–12]. Moreover,
many of the samples were substantially reduced as a result of
stringent inclusion/exclusion criteria, which may limit the general-
izability of models to patient populations that meet similar
research criteria. Finally, most studies relied on self-reported
symptom measures to assess PTSD outcomes and did not consider
other trauma- and stressor-related disorders. Our aim was to
overcome these limitations by developing and validating a
predictive model that relied solely on electronic health records
(EHR) data collected at the time of hospitalization to predict
clinician-diagnosed trauma- and stressor-related disorders (TSRD)
in the year post-discharge from hospitalization for sepsis in a
large, multi-site sample that included all survivors.
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METHODS
We used the Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) guidelines (https://
www.equator-network.org/reporting-guidelines/tripod-statement/). The
TRIPOD Checklist for Prediction Model Development and Validation is
provided in the Supplementary Information (Appendix 1). This study was
approved by the Kaiser Permanente Northern California Institutional
Review Board. The data from this study cannot be shared publicly as we do
not have permission from patients to share their data outside of the Kaiser
Permanente Northern California healthcare system.

Study Sample
Inclusion criteria were hospitalizations for sepsis or suspected infection
that were admitted through emergency departments across 21 hospitals
within the Kaiser Permanente Northern California integrated healthcare
delivery system between January 1, 2012, and December 31, 2017 (Fig. 1).
This resulted in the inclusion of 364,964 hospitalizations for sepsis or
suspected infection (221,358 unique patients). We excluded 19,059 cases
(5.2%) in which the patient died during the hospitalization. No other
exclusion criteria were applied, resulting in a final sample of 345,905
hospitalizations (210,946 unique patients).

Predictors
To extract predictors, we used EHR data collected during the hospitaliza-
tion, including the types of variables that have been used in prior studies
that developed predictive models of psychiatric outcomes after hospita-
lization (e.g., patient characteristics, vital signs, lab results, medications,
and pre-existing psychiatric diagnoses) [7–12]. Additional variables were
selected based on clinical considerations of sepsis-related factors that
could potentially contribute to long-term medical outcomes, including
cardiovascular disease [13–15]. We also used natural language processing
to extract predictors from clinician notes. Across all data types, one-hot
encoding was applied to categorical variables (i.e., each category was
converted to a binary indicator where 1 = present, 0 = absent), and
variables with near-zero variance were excluded. This resulted in a final set
of 607 predictors, including medications, clinician notes, laboratory values,
mental status assessments, admission and hospitalization information, vital
signs, demographics, and mental health diagnoses; data preparation
procedures for each of these data types are described below.
Two-hundred and forty-six of the predictors (40.5%) were derived from

medications that were administered during hospitalizations. For each
medication, several indicators were created that varied in their level of
specificity: 1) therapeutic class, 2) pharmaceutical class, 3) pharmaceutical
subclass, and 4) National Drug Code (NDC; the Food and Drug
Administration’s drug identifier). For example, the administration of
olanzapine resulted in indicators for 1) psychotherapeutic drugs

(therapeutic class), 2) atypical antipsychotic, dopamine-serotonin antago-
nist (pharmaceutical class), 3) thienobenzodiazepine (pharmaceutical
subclass), and 4) 00002411633 (NDC). Each of the medication variables
captured the number of times a patient received each class of (or specific)
medication during the hospitalization. For example, a value of 3 for the
variable “00002411633 (NDC)” would indicate that the specific medication
Olanzapine (the drug that corresponds with the NDC code 00002411633)
was administered 3 times during the hospitalization, a value of 12 for the
variable “Psychotherapeutic medication class” would indicate psychother-
apeutic medications (which is a class that includes many specific
medications) were administered 12 times, and so on.
Ninety-eight of the predictors (16.1%) were presenting symptoms from

clinician notes in the first 24 hours of hospitalization. The rationale for focusing
on notes from the first 24 hours of hospitalization was to capture disease
severity at the onset. The I2E natural language processing (NLP) software
(Linguamatics I2E 5.4.1R13, Cambridge, UK) was used to identify and process
presenting symptoms from raw text based on existing medical ontologies
[16]. The most frequent terms were grouped into categories based on
similarity and binary variables were created for each category to indicate the
presence/absence of a symptom for each hospitalization. Additional details
about these NLP-derived variables are published elsewhere [16].
Seventy-five of the predictors (12.4%) were derived from laboratory

values for creatinine, hematocrit, total white blood cell count, glucose,
sodium, bicarbonate, blood urea nitrogen, albumin, anion gap, troponin,
total serum bilirubin, lactate, arterial PaCO2, arterial PaO2, and pH. Since
laboratory analyses could be repeated during a hospitalization, variables
were created to indicate the first, last, minimum, maximum, and mean of
each lab value.
Seventy-five of the predictors (12.4%) were derived from assessments

indicating mental status, level of consciousness (e.g., alert, awake, lethargic,
stuporous), orientation (e.g., person, place, time, unable to assess), Schmid
assessment (e.g., periodic confusion, comatose/unresponsive), speech (e.g.,
clear, slurred, rambling, no verbal response), pupil response, and Glasgow
Coma Scale (GCS) total. For each of these, variables were created to
indicate the first and last assessment values; means, minimums, and
maximums were also created for the GCS total.
Forty-six of the predictors (7.6%) were derived from admission and

hospitalization information, including the admission category; Charlson
Comorbidity Index; Comorbidity Point Score (COPS2); Laboratory-based
Acute Physiology Score (LAPS2); height, weight, and body mass index;
whether the patient was admitted to the intensive care unit (direct, late, or
otherwise) and if so the length of stay; whether the patient was
transported in; whether the patient was an observation-only admission;
time to antibiotic administration; the principal diagnosis; and the unit for
the first inpatient stay.
Thirty of the predictors (4.9%) were derived from vital signs indicating

heart rate, oxygen saturation, respiratory rate, temperature, and blood
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364,964 visits (221,358 unique patients) with sepsis 
or suspected infection admitted to one of 21 
hospitals within the Kaiser Permanente Northern 
California integrated healthcare delivery system 
between January 1, 2012 and December 31, 2017. 

Included in the study: n = 345,905 visits
● Sepsis: n = 181,150 (52.4%)
● Suspected infection: n =  164,755 (47.6%)

Excluded:
● 19,059 deceased during 

hospitalization 

Development sample: n = 217,122 
● visits from 2012 - 2015
● Missing follow-up: n = 68,741
● Included in analysis: n = 217,122 

(missing data accounted with IPW)

Validation sample: n = 128,783 
● visits from 2016 - 2017
● Missing follow-up: n = 43,345
● Included in analysis: n = 128,783 

(missing data accounted with IPW)

Fig. 1 Study data flow. IPW = inverse probability weighting.
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pressure. Variables were created to indicate the first, last, minimum,
maximum, and mean of each vital sign value.
Twenty-five of the predictors (4.1%) were derived from demographic

information such as age, race, ethnicity, and sex.
Twelve of the predictors (2.0%) were derived from psychiatric diagnostic

codes recorded during the hospitalization (indicating that the patient
received services related to this diagnosis during the hospitalization) or
present in the patient’s problem list (indicating that the pre-existing
diagnosis may be a prominent concern in the patient’s ongoing health
care): mood disorder, alcohol use disorder, substance use disorder, anxiety
disorder, major depressive affective disorder (single episode unspecified,
recurrent episode unspecified, or recurrent episode in full remission),
alcohol abuse, depressive disorder not elsewhere classified, anxiety state
unspecified, and trauma- and stressor-related disorder (see Outcome
section below).

Outcome
The target outcome was defined as the presence of a diagnostic code for a
trauma- and stressor-related disorder (TSRD) in at least one encounter of
any type (e.g., inpatient or outpatient) within 12 months postdischarge
from the sepsis hospitalization. This outcome definition is based on the
DSM-5 [17], which created TSRD as a distinct cluster that includes the
diagnoses post-traumatic stress disorder (PTSD), acute stress disorder,
adjustment disorder, other specified trauma- and stressor-related disorder,
and unspecified trauma- and stressor-related disorder due to overlapping
etiologies and symptoms [18]. Although the clinical impairment associated
with acute stress disorder and adjustment disorder may be milder than
what is typically observed in PTSD, meta-analyses suggest that it is not
uncommon for these diagnoses to precede more severe mental health
outcomes, including PTSD [19, 20]. Therefore, predicting risk for any of
these disorders may facilitate the development and evaluation of
preventive and early interventions, including targeted screening. Given
systematic reviews and meta-analyses found long-term rates of prevalence
of psychiatric outcomes among critical-illness survivors [2, 21, 22], a 12-
month follow-up window was selected to capture cases that may have
delayed emergence (or reporting) of symptoms. Supplementary Table 1
includes the full list of International Classification of Diseases (ICD) codes
that were included in the outcome.
Among the 345,905 hospitalizations that were included in this study,

112,086 (32.4%) had censored (unobserved) outcomes in the one-year
follow-up window due to either death (n= 11,940; 3.5%) or to lapses in
health insurance coverage (n= 100,146; 29.0%). Previous prediction
models excluded cases from the model development and evaluation if
the outcome was missing [7, 9, 10, 12, 23, 24]. This is problematic because
complete case analyses are only valid when data are missing completely at
random (MCAR) [25], which is an unrealistically strong assumption that
ignores the potential for attrition bias and can result in inaccurate
performance estimates. Consistent with more recent prediction models
[11, 26], we accounted for these encounters by using inverse probability of
censoring weights, a robust approach for including cases when outcomes
are missing at random (MAR; a less stringent assumption than MCAR); this
approach leads to less biased performance estimates compared to
complete-case approaches [27]. A stacked ensemble of ML algorithms
(i.e., the approach used for the TSRD outcome model described in
Statistical Analyses) was used to estimate the probability of having an
observed outcome using all the pre-discharge predictors, and the inverse
of these probabilities were used as weights in the TSRD prediction models.
This non-parametric approach can capture complex high-dimension
interactions among variables and does not make distributional assump-
tions about relations among variables and missingness. These weights
were used across all analyses so that missing outcome data were always
taken into account.

Statistical analysis
All analyses were conducted with the open-source statistical software R
(version 4.1.1) [28]. Supplementary Figure 1 provides a schematic of the
modeling pipeline, which is described in detail below. To protect against
overfitting, ML models are often developed on a random subset of the
data (i.e., training or development sample) and tested on the held-out
portion (i.e., test sample). However, random subsampling may also lead to
inaccurate estimates of performance given that the development dataset
may contain participants whose data were collected after participants used
to validate the model. In the real world, models need to generalize to
future cases. To get closer to this ideal we used a prospective validation

approach that is designed to assess how the prediction model may
perform in future cases. All data used to develop and compare candidate
models were from hospitalizations with discharge dates between 2012 and
2015 (n= 217,122). The remaining data (discharge dates between 2016-
2017; n= 128,783) were used to test the best-performing model selected
in the development phase.
In real-world healthcare settings, predictive models can be embedded

within EHR systems to make predictions at the encounter level; therefore,
models are typically developed and tested using encounter-level data
[29–31]. In large samples that cover a wide span of time, it is common for
some patients to have multiple encounters. To reduce the influence of
patients with multiple encounters in the model development phase, cross-
validation folds were stratified such that encounters from the same patient
were all contained within the same fold. The performance of the final
model was evaluated in the temporally independent prospective test
sample, which could contain new encounters from patients who also had
encounters in the development sample; therefore, sensitivity analyses
were conducted to examine the performance of the model on the sample
of encounters from new patients only.
Models were developed with the h2o machine learning platform [32]

using approaches with varying levels of complexity. The least complex
model was logistic regression with elastic net regularization, which can
yield a model with fewer predictors because some predictor coefficients
may be reduced to zero. Next in order of complexity was a core-predictor
gradient boosting machine (GBM) model, which is a non-parametric
decision tree approach that can capture complex high-dimensional
interactions among predictors. An information-theoretic approach [33]
was used to identify a set of core predictors using 20% of the development
sample and the remaining 80% of the sample was used to develop a GBM
model to predict TSRD using only core predictors. The most complex
model was a stacked ensemble of various decision-tree algorithms,
including GBM, XGBoost, distributed random forests, and extremely
randomized trees [34]. In this approach, predictions from these base-
learners were integrated by a meta-learner to generate a final prediction.
Across all approaches, cross-validation was used to train models by
optimizing log-loss, which captures the discrepancy between predicted
probabilities and true outcomes.
To select a final model, we considered log-loss (lower is better) and area

under the receiver operating characteristics (ROC) curve (AUC; higher is
better, and an AUC of 0.50 indicates random or chance-level performance);
these performance metrics were estimated in the development sample
using 10-fold cross-validation (8 folds for the core-predictor GBM since two
of the folds were used to identify core predictors). Consistent with prior
prediction models, patients who had a pre-existing trauma- and stressor-
related psychiatric diagnoses were not excluded from the sample
[11, 12, 24, 26]. Instead, a univariate generalized linear model that used
pre-existing TSRD diagnosis as the sole predictor of TSRD in the follow-up
phase served as an informative benchmark: Yi= β0+ β×(pre-existing
PTSD)i+ εi The purpose of testing whether models outperformed this
benchmark is two-fold. First, it is a more rigorous benchmark than
prediction better than chance [35]. Second, this benchmark model
captures how much of the predictive accuracy is driven by pre-existing
diagnosis. Similar benchmarks have been used in other predictive models
of psychiatric outcomes after trauma exposure [11, 12, 24, 26]. Given that
simpler models may be easier to implement, we also took predictor
parsimony into account such that a model with fewer predictors and
comparable performance would be favored.
Once an optimal model was selected, it was applied to the independent

test dataset. We assessed model discrimination with an ROC curve and
AUC statistic, and model calibration with a logistic calibration curve and
expected calibration error (ECE). We also measured sensitivity, specificity,
and positive and negative predictive value in the test sample across deciles
based on the predicted risk distribution in the development sample. The
mean of each performance metric was estimated with 95% confidence
intervals (CI) using weighted bootstrapping (1000 replications).
In addition to these performance metrics, we examined the relative

importance of predictors in the optimal model with the Shapley Additive
Explanations (SHAP) approach [36]. This method produces a plot that
summarizes each predictor’s impact on model predictions across values of
the predictor. As such, it provides information about the predictor’s relative
importance (the magnitude of its impact on the final model prediction)
and potential directionality (whether high or low values of the predictor
are associated with increased or decreased probability of TSRD). Another
advantage of this approach is that it is model-agnostic, which means it can
be applied to any model (e.g., elastic net, GBM, or stacked ensemble).
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These analyses used the development sample to provide insight into what
the optimal model learned. Although these analyses should not be causally
interpreted, they may indicate which variables were most useful for
predicting the outcome.
Finally, we examined whether model implementation may potentially

lead to unfair outcomes across sociodemographic categories. Algorithmic
fairness is a highly active area of research and there is currently no
consensus on the optimal criteria to assess fairness [37]. We estimated ROC
curves and AUC statistics across the self-reported categories of race,
Hispanic/Latino ethnicity, and sex. ROC curves can reveal threshold regions
where differences in sensitivity and specificity may exist across subgroups,
and the AUC statistic can indicate whether there may be differences in
overall discrimination across all thresholds. These analyses used the test
sample because their purpose is to assess whether implementation of the
final model could potentially lead to unfair outcomes.

RESULTS
Table 1 displays basic demographic characteristics of the sample; no
meaningful differences were observed across the development and
test samples. The prevalence of TSRD in the year post-discharge was
7.1% (6.8% in the development sample and 7.4% in the test sample).
This was considerably higher than the prevalence of pre-existing
TSRD in the medical charts at the time of hospitalization (1.5% in the
development sample and 1.6% in the test sample).
Model performance in the development phase was best for a

stacked ensemble of decision-tree algorithms (log-loss = 0.219,
AUC= 0.73, 607 predictors), followed by a gradient-boosted
machine (GBM) model with core predictors (log-loss = 0.219,
AUC= 0.71, 29 predictors), and an elastic net model (log-loss =
0.221, AUC= 0.71, 487 predictors). All models outperformed a
benchmark model that used pre-existing TSRD diagnosis as the
sole predictor of TSRD in the follow-up phase (log-loss = 0.229,
AUC= 0.56). Moreover, the benchmark model results suggest that
simply predicting follow-up TSRD on the basis of pre-existing
TSRD is only slightly better than chance prediction, whereas
incorporating predictors from the hospitalization resulted in
meaningful increases in predictive performance. Specifically, when
compared to the benchmark model, the other models showed a
27-30% increase in AUC, and a 3.5-4.4% reduction in log-loss.
We selected the GBM for validation because it achieved

comparable performance to the stacked ensemble and elastic
net using only 29 predictors (as opposed to hundreds). In the
temporally independent prospective test sample, the GBM had
similar classification performance, AUC= 0.72, 95% CI [0.71, 0.72],
and low expected calibration error, ECE = 0.009, 95% CI [0.008,
0.011], suggesting good generalization (Fig. 2). Sensitivity analyses
showed that results were similar after removing encounters in the
test dataset from patients who also had encounters in the

development dataset (AUC= 0.72, 95% CI [0.71, 0.73], ECE =
0.009, 95% CI [0.007, 0.011]; Supplementary Fig. 2). Table 2
provides the threshold-dependent metrics of the GBM model in
the test sample across deciles based on the predicted risk
distribution in the development sample. The 8.7% of patients
whose predicted risk for TSRD fell in the highest risk decile
accounted for nearly one third of the TSRD cases (Table 2).
Fig. 2C illustrates the relative importance of the 29 core predictors

included in the final GBM arranged in order of the magnitude of their
total contribution to predictions. Each point in the SHAP plot
represents the impact of that predictor on an individual’s prediction,
with positive and negative values denoting increases and decreases
in the probability of TSRD, respectively. A key finding from the SHAP
analyses is that while pre-existing TSRD made the strongest
contribution to increased probability of TSRD, it did not make the
strongest contribution overall. This is because only a small fraction of
the development sample (1.5%) had a pre-existing TSRD diagnosis;
for the remaining 98.5% that did not, this predictor was not very
informative. This is consistent with the results of the benchmark
model that used pre-existing TSRD as the sole predictor, which
performed poorly (AUC= 0.56). This suggests that all variables in the
model were weak as individual predictors, and that the final model’s
predictive power arised from the collective contribution of variables
and their interactions. The SHAP plot also provides information about
the potential directionality of impact on predictions (note that the
GBM is a nonparametric model that can capture non-linear relations).
For most predictors, higher values (indicated in blue) were associated
with higher predicted probability of TSRD, whereas lower values
(indicated in yellow) were associated with a lower predicted
probability of TSRD. Two clear exceptions to this pattern were age
and heart rate. Table 3 contains a complete list of core predictors
which cut across nine domains, including pre-existing TSRD
diagnosis, other mental health diagnoses, patient characteristics,
medications, lab values, vital signs, medical comorbidity, mental
status, and admissions data. Weighted descriptive statistics are
provided for the development and test samples, including the
median and interquartile range (IQR) of each continuous predictor
and proportions for the binary predictors. The standardized total- and
net-predictive values from the core predictor analysis are also
provided; these reflect the strength of each predictor’s association
with the outcome, and its unique contribution to the prediction of
the outcome, respectively.
Fifteen predictors (51.7%) had missing data. Arterial PaO2 and

lactate are lab values that are not necessarily collected for every
patient. Accordingly, 84.6% of the development sample (86.0% in
the test sample) did not have Arterial PaO2 data, and 30.6% of
both the development and test sample did not have lactate data.
The remaining lab and vital sign values (bicarbonate, creatinine,

Table 1. Demographic characteristics of the development and test samples.

Full Sample, N= 345,905 Development Sample, N= 217,122 Test Sample, N= 128,783

Age, Mean (SD) 67.9 (17.7) 68.0 (17.7) 67.8 (17.7)

Women, N (%) 185,258 (53.6%) 117,334 (54.0%) 67,924 (52.7%)

Hispanic or Latino, N (%) 53,116 (15.4%) 32,213 (14.8%) 20,903 (16.2%)

Race, N (%)

American Indian or Alaska Native 2068 (0.6%) 1265 (0.6%) 803 (0.6%)

Asian 36,213 (10.5%) 21,961 (10.1%) 14,252 (11.1%)

Black or African American 34,597 (10.0%) 21,190 (9.8%) 13,407 (10.4%)

Multiracial 25,440 (7.4%) 16,807 (7.7%) 8633 (6.7%)

Native Hawaiian or Pacific Islander 1983 (0.6%) 1140 (0.5%) 843 (0.7%)

Unknown 40,145 (11.6%) 24,022 (11.1%) 16,123 (12.5%)

White 205,459 (59.4%) 130,737 (60.2%) 74,722 (58.0%)

Note. Sex, ethnicity, and race were self-reported.
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Fig. 2 Model performance and variable importance. a Receiver operating characteristics (ROC) curve illustrating the tradeoff between model
sensitivity and specificity based on mode-predicted probabilities of TSRD in the independent test sample. b Logistic calibration curve
illustrating the correspondence between model-predicted probabilities and observed prevalence of TSRD in the independent test sample.
c Shapley Additive Explanations (SHAP) plot illustrating the impact of each predictor on model predictions in the development sample.
Predictors are arranged on the y-axis in order of absolute mean contribution, with exact values provided next to each predictor. Positive or
negative SHAP values on the x-axis indicate higher or lower predicted probability of TSRD, respectively. In the plot, each point represents a
participant in the development sample, and the color represents the value of the predictors. For example, higher values of age (blue) yielded
lower predicted probabilities of TSRD, and vice versa.
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white blood cell count, temperature, systolic blood pressure,
hematocrit, diastolic blood pressure, heart rate, oxygen satura-
tion), and mental status (alert and oriented X 3) were missing for
5.3–5.9% of the development sample and 9.7–10.1% of the test
sample. The only remaining variable with missing data was height
(0.5% in the development sample, and 0.4% in the test sample).
These were missing due to the application of preprocessing steps
in the data extraction that remove typos and clinically unrealistic
values (e.g., negative values, extreme values). As noted in the
Methods, all of the modeling approaches dealt with missing
predictor data so that all hospitalizations could be included in the
analysis. ROC curves and corresponding AUC statistics were nearly
identical in the subsample of participants who had or did not have
missing predictor data related to typos or clinically unrealistic
values (Supplementary Fig. 3).
Model performance in the independent test sample was also

examined across the self-reported demographic characteristics of
ethnicity, race, and sex. Across these subgroups, TSRD prevalence
ranged from 4.8% among the Asian subgroup to 10.1% among the
Black or African American subgroup. Mean classification perfor-
mance across subgroups, indexed by AUC, ranged from 0.70 to
0.76 (Supplementary Table 2). Figure 3 displays the ROC curves for
subgroups across ethnicity, race, and sex, which showed
considerable overlap in sensitivity across different levels of
specificity. This suggests that model performance (in terms of
sensitivity and specificity) is comparable across subgroups at a
wide range of potential thresholds.

DISCUSSION
Our study makes several contributions to the literature on
prediction models of trauma-related psychiatric outcomes devel-
oped in hospital settings. This is the first study to focus on the life-
threatening trauma of sepsis, a leading cause of death among
hospitalized individuals [1]. Our sample size is over 300 times
larger than the largest prior study [11]; this facilitated the
comparison of model performance across sociodemographic
subgroups, which is a critical step in ensuring that models can
be implemented fairly across diverse patients. Our only exclusion
criterion was death during the hospitalization, which may increase
generalizability by ensuring that the model development and
validation process included patients with conditions that often
form part of exclusion criteria in the prior studies. In contrast to
the use of a random sample for model validation, we used a more
rigorous temporal validation approach which is more closely
aligned to the goal of estimating model performance in future

cases. While the AUC of our model (0.72) was in the lower end of
the range of performance measured in previous models (AUC
range 0.71 to 0.89) [7–12], our model is the first to solely rely on
data from the electronic health records for predictors and
outcomes. This increases the feasibility of model implementation
because our model does not add any assessment burden to
clinicians or patients. Together, this highlights the clinical
significance of our results, which suggest that risk for TSRD after
survival from sepsis can be stratified by our model. These findings
are relevant to real-world clinicians because they indicate
potential for a tool that may augment decision-making around
prevention and early intervention for TSRD without increasing
assessment burden during the hospitalization.
Variable importance analyses should not be causally inter-

preted, but they provide several insights about the prediction
model. First, it is not surprising that the final set of predictors cut
across a wide range of domains given that the core predictors
approach is designed to identify variables that make unique
contributions to the prediction. In fact, the only category of
predictors that was not used by the optimal model was the
clinician note variables. Although it is plausible the type and
severity of presenting symptoms captured in the clinician notes
are useful predictors of TSRD, this information may have been also
captured by other variables that are associated with sepsis
severity, including labs, vital signs, and medications administered.
It is also possible that the NLP-identified symptoms were less
consistent as predictors due to clinician variability in recording
practices. Second, despite its status as one of the strongest
predictors, pre-existing TSRD diagnosis on its own was a poor
predictor of post-discharge TSRD. This highlights a strength of the
GBM algorithm, which can make good predictions from individu-
ally weak predictors by capturing complex, high-dimensional
interactions.
Our use of real-world EHR data resulted in a pool of predictors

that have not been examined in previous predictive models of
trauma-related psychiatric outcomes after hospitalization. Never-
theless, 10 of the 29 predictors in our model overlap with key
predictors in previous studies. For example, all of the previous
studies we reviewed (which mostly focused on PTSD outcomes)
found that a measure of PTSD sequelae in the hospital (e.g., pre-
existing condition, symptom levels from previous trauma, acute
PTSD symptoms in the ED) was a strong predictor of PTSD in the
follow-up phase [7–12]. Moreover, the studies that tested bench-
mark models similar to ours also found poorer performance
relative to complex models with more predictors, with most AUCs
in the 0.56 to 0.66 range [8–11], and one smaller study finding an

Table 2. Threshold-dependent metrics of the GBM model in the test sample across deciles based on the predicted risk distribution in the
development sample.

Risk
Decile

Encounters
within decile, %
[95% CI]

Cumulative
encounters, %
[95% CI]

Cumulative
Sensitivity, mean
[95% CI]

Cumulative
Specificity, mean
[95% CI]

Cumulative PPV,
mean [95% CI]

Cumulative NPV,
mean [95% CI]

1 8.7 [8.5, 8.8] 8.7 [8.5, 8.8] 31.2 [30.1, 32.3] 93.1 [93.0, 93.3] 26.7 [25.7, 27.7] 94.4 [94.2, 94.6]

2 9.0 [8.8, 9.2] 17.6 [17.4, 17.9] 45.3 [44.0, 46.5] 84.6 [84.3, 84.8] 19.1 [18.5, 19.7] 95.1 [94.9, 95.2]

3 9.6 [9.4, 9.8] 27.2 [26.9, 27.5] 55.8 [54.5, 57.1] 75.1 [74.8, 75.4] 15.2 [14.8, 15.7] 95.5 [95.3, 95.7]

4 9.1 [8.9, 9.3] 36.4 [36.0, 36.7] 64.3 [63.1, 65.6] 65.9 [65.6, 66.2] 13.1 [12.8, 13.5] 95.8 [95.7, 96.0]

5 10 [9.8, 10.2] 46.3 [46.0, 46.7] 72.6 [71.6, 73.8] 55.8 [55.4, 56.1] 11.6 [11.3, 11.9] 96.2 [96.0, 96.4]

6 9.7 [9.5, 9.9] 56 [55.7, 56.4] 79.7 [78.6, 80.7] 45.9 [45.5, 46.2] 10.6 [10.3, 10.8] 96.6 [96.4, 96.8]

7 10.3 [10.1, 10.5] 66.3 [66.0, 66.6] 86.1 [85.2, 86.9] 35.2 [34.9, 35.6] 9.6 [9.4, 9.9] 96.9 [96.7, 97.1]

8 10.4 [10.2, 10.7] 76.8 [76.5, 77.0] 91.7 [91.0, 92.4] 24.4 [24.1, 24.7] 8.9 [8.6, 9.1] 97.4 [97.1, 97.6]

9 10.9 [10.7, 11.1] 87.6 [87.4, 87.9] 96.5 [96.0, 96.9] 13.1 [12.8, 13.3] 8.2 [8.0, 8.4] 97.9 [97.6, 98.1]

10 12.3 [12.1, 12.6] 100 [100, 100] 100 [100, 100] 0 [0, 0] 7.4 [7.3, 7.6] NA

Note. PPV positive predictive value, NPV negative predictive value.
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AUC in the good range (0.78) [12]. Most of the reviewed studies
also found age to be a key predictor [7–10, 12]; however, the
direction of the association has been mixed, which highlights the
need for caution when interpreting results at the level of
individual predictors. The remaining predictors in our model that
overlap with predictors identified in other studies were pre-
existing mood disorder [8, 9, 11, 12], heart rate [7, 9, 11, 12],
systolic blood pressure [7, 8], mental status [10, 12], length of stay
[10, 12], pre-existing anxiety disorder [12], creatinine [8], and
hematocrit [8]. Together this suggests that the predictive power of
our model, as well as prior models, arises from a combination of
information related to mental health (e.g., pre-existing diagnoses,
psychiatric medications) alongside variables that capture the
severity of the acute trauma (e.g., lab values, length of stay,
administration of analgesics). Although none of these predictive
models were designed to test causal hypotheses, our study
replicated the predictive value of the aforementioned variables
and also identified novel predictors, which is an important
contribution to improving predictive models for trauma-related
psychiatric outcomes. Future studies that include patients with
other conditions in addition to sepsis can determine whether
some of the predictors we found are unique to sepsis patients.
We note several limitations. We performed an exhaustive search

for TSRD diagnostic codes across all healthcare system encounters in
the year post-discharge; however, it is possible that some patients
did not report symptoms to their providers and were therefore not
assessed for TSRD. Although several algorithms have been
developed and tested within VA healthcare systems to identify
PTSD cases using a combination of diagnostic codes and other EHR
data [38, 39], future research is necessary to improve the
identification of TSRDs in civilian healthcare systems. This may
improve the identification of cases that may otherwise go
undetected, including individuals with subthreshold symptoms of
PTSD, which have been linked to clinically significant distress and
impairment [40]. Additionally, future studies based on real-world
data would benefit from large-scale implementation of self-report
assessments of TSRD symptoms in order to improve the identifica-
tion of positive (and negative) cases, given that there are differences
in access to care across patients, and diagnostic practices across
clinicians. This would also provide an avenue to assess whether
other trauma besides (or in addition to) the sepsis hospitalization
played a role in the diagnosis. To our knowledge, this is the first
prediction model for TSRD that incorporated natural language
predictors from clinician notes. Nevertheless, a limitation is that we
focused on clinician notes from the first 24 hours of hospitalization
in order to capture signs and symptoms of the presenting illness.
Future studies can incorporate notes from the complete

hospitalization period, and apply recent advances in natural
language processing to extract information. Although we found
comparable classification performance across sociodemographic
subgroups, algorithmic fairness is a highly active area of research
and there is currently no consensus on the optimal criteria to assess
fairness [37]. Moreover, we selected the sociodemographic char-
acteristics that are most commonly examined and that are well
characterized in the EHR; future research can examine additional
factors, including social determinants of health, which are increas-
ingly integrated into EHR. Although we used inverse probability
weighting to reduce the potential for attrition bias in performance
estimates, unmeasured confounding is a possibility. Predictive
models are not designed to test causal hypotheses; therefore, the
core predictors identified during the model development phase
should not be interpreted as causal factors [41]. Additionally,
predictors that were not selected by the core-predictor analysis
should not be assumed to be unrelated to the outcome. Finally, a
key strength of this study is the minimal exclusion criteria; although
we excluded individuals with lapses in health insurance coverage,
we did not impose criteria related to the number of encounters with
the healthcare system during the follow-up window, which may
have associations with the presence of TSRD diagnosis in the EHR.

CONCLUSIONS
The predictive model we developed demonstrates that risk for a
TSRD diagnosis in the year after survival from sepsis can be
stratified without additional assessment burden on clinicians and
patients because it relies on a parsimonious set of predictors that
are a standard part of hospital workflows. Future research is
needed to clarify whether our model attains a level of accuracy
needed for cost-effective implementation of targeted prevention
and early intervention strategies.
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