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Metabolic signature of the pathogenic 22q11.2 deletion
identifies carriers and provides insight into systemic
dysregulation
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Large deletions at chromosome 22q11.2 are known to cause severe clinical conditions collectively known as 22q11.2 deletion
syndrome. Notwithstanding the pathogenicity of these deletions, affected individuals are typically diagnosed in late childhood or
early adolescence, and little is known of the molecular signaling cascades and biological consequences immediately downstream of
the deleted genes. Here, we used targeted metabolomics to compare neonatal dried blood spot samples from 203 individuals
clinically identified as carriers of a deletion at chromosome 22q11.2 with 203 unaffected individuals. A total of 173 metabolites were
successfully identified and used to inform on systemic dysregulation caused by the genomic lesion and to discriminate carriers
from non-carriers. We found 84 metabolites to be differentially abundant between carriers and non-carriers of the 22q11.2 deletion.
A predictive model based on all 173 metabolites achieved high Accuracy (89%), Area Under the Curve (93%), F1 (88%), Positive
Predictive Value (94%), and Negative Predictive Value (84%) with tyrosine and proline having the highest individual contributions to
the model as well as the highest interaction strength. Targeted metabolomics provides insight into the molecular consequences
possibly contributing to the pathology underlying the clinical manifestations of the 22q11 deletion and is an easily applicable
approach to first-pass screening for carrier status of the 22q11 to prompt subsequent verification of the genomic diagnosis.
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INTRODUCTION
22q11.2 deletion syndrome (22q11.2DS) was first reported in 1965
by Dr Angelo DiGeorge and correspondingly named DiGeorge
syndrome [1]. It is the most common chromosomal microdeletion
syndrome, with an estimated incidence of 1 over 3672 live births
[2]. Deletions of various sizes are gathered under the 22q11.2DS
name, but the most common is a 3MB deletion in between two
low copy repeats (LCRs) zones (LCR22A and LCR22D).
Irrespective of deletion size, 22q11.2DS comes with hetero-

geneous clinical presentation, including several very severe
conditions [3]. None of the clinical presentations are specific to
22q11.2DS, and far from all carriers are clinically ascertained. In
fact, a considerable proportion of 22q11.2DS (~10%) is inherited,
typically from clinically un-affected or non-recognized parents
carrying the deletion [3], and has been reported to be more
severely affected than de-novo cases. Among the clinical
presentations detected in utero or at birth, congenital heart

defects are the most frequent, followed by velopharyngeal
insufficiency, cleft palate, or dysmorphic craniofacial features.
Many disorders will only be detectable or develop later in life, such
as hypocalcemia due to primary hypoparathyroidism [4], as well as
developmental disabilities, mental disorders [5, 6], and life-
threatening severe chronic immune deficiency [7]. While the
syndrome is not curable, many of the clinical manifestations can
be improved if treated in a timely manner.
On average, 22q11.2DS is diagnosed at 9–13 years, and children

with 22q11.2DS often go through a diagnostic odyssey before
receiving diagnosis and appropriate care [3, 6]. In fact, due to the
heterogeneous clinical presentation of 22q11.2DS, patients meet,
on average, seven experts, including psychiatrists, pediatricians,
surgeons, general practitioners, psychologists, and clinical geneti-
cists, before being oriented toward molecular diagnostics [8].
As the diagnosis of 22q11.2DS can only be confirmed

genetically, developing techniques for early clinical diagnosis of
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22q11.2DS that can be integrated into existing screening
programs is essential. While it has been suggested that
22q11.2DS could be detected during neonatal metabolic screen-
ing, which is standard in most countries [9], such assays are not
yet available. Consequently, finding biomarkers specific to this
syndrome that are reliably detectable in neonatal dried blood
spots (DBS) could greatly help the diagnosis process, leading to
earlier appropriate care. In fact, PRODH, the gene encoding for
proline dehydrogenase and among the genes deleted in
22q11.2DS, has been reported to result in hyperprolinaemia
[10–12], suggesting that patients with hyperprolinaemia should be
screened for 22q11.2DS [11].
In this work, we investigate for the first time a large cohort of

individuals with the 22q11.2 deletion using targeted metabolo-
mics of neonatal DBS to inform on the molecular consequence of
a large genomic lesion and to probe metabolomics screening as a
diagnostic tool for the early identification of individuals carrying
the 22q11.2 deletion.

MATERIALS AND METHODS
Materials
Methanol (MeOH), acetonitrile (ACN), isopropanol (IPA), water (H2O), and
formic acid (FA) were of Optima™ LCMS-grade and were purchased from
Thermo Fisher Scientific (Waltham, MA, USA).

Study cohort
We acquired metabolic profiles of residual dried blood spots (DBS) from
406 children born between 1983 and 2012 (median 2000) collected at a
median age of 5 days after birth (range [2–40] days) and stored at the
Danish National Biobank at −20 °C [13]. Cases were identified through the
Danish Cytogenetic Central Registry (DCCR) as children later diagnosed
with 22q11.2DS (102 females, 101 males). Controls were selected at
random from the collection of population-wide neonatal dried blood spots
stored at the Danish National Biobank and matched based on sex and date
of birth. Most individuals were carriers of the 3MB deletion (n= 166) versus
11 and 5 individuals being carriers of the 1.5MB and 1MB deletions,
respectively. An overview of the study cohort is shown in Table 1.

Data acquisition
We measured absolute concentrations of a total of 408 compounds in the
DBS using the AbsoluteIDQ p400 kit (Biocrates Life Science Ag., Innsbruck,
Austria) following the manufacturer’s instructions. Metabolites from DBS
were extracted according to the standard operation procedure specific to
DBS provided by Biocrates. All instrumentation and preprocessing software
were from Thermo Scientific (Waltham, MA, USA). Our liquid
chromatography-tandem mass spectrometry (LC–MS/MS) platform con-
sisted of an autosampler CTC Combi PAL HTS TMO (two injectors), an LC
system (LX-2 with two Ultimate 3000 Dionex RS pumps and a Transcend II
Valve Interface Module) and a Q-Exactive Orbitrap mass spectrometer with
a HESI-II probe. Case and control sample pairs were randomized into six 96-
well analytical plates, and data was acquired from May to June 2018 with
no more than 2–5 days between each plate. Each sample was injected four
times as instructed: two times for LC–MS and two times for flow injection
analysis (FIA) data acquisition. LC–MS and FIA-based data were acquired on

a dedicated injector and pump to limit technical variation. Each plate
included a solvent blank, three paper blanks (blank filter paper on which
dried blood spots are collected), a 7-point calibration curve (injected for
LC–MS data acquisition only), and quality control (QC) samples provided
by Biocrates (three concentration levels QC1–3). QC1 and QC3 were
injected once, while QC2 was injected five times across the plate among
the experimental samples. Four case–control pairs had to be replicated on
the last plate as technical difficulties occurred during extraction; we,
therefore, kept only the results from the second analysis on plate 6.

Quality control and data processing
LC–MS-based data were preprocessed as instructed by Biocrates using
Xcalibur (v4.1.31.9) for peak integration and after thorough optimization
and manual check. The exported feature table was then imported into
MetIDQ Carbon-2793 (Biocrates) along with FIA-based raw data for plate
validation and concentration calculation. Concentrations were normalized
based on QC2 target values in MetIDQ to reduce the batch effect. All
measurements were then exported along with their individual status
computed by MetIDQ (e.g., “Valid”). For further quality control and
preprocessing, we used the MeTaQuaC R package v0.1.32.9001 [14]. All
measurements with a MetIDQ status other than “Valid” were replaced by
missing values, and only compounds detected in at least 30% of the
Biocrates’ QC level 2 samples were kept in the analysis. Furthermore,
compounds with 100% missing values in experimental samples and
compounds that had >80% missing values in both case and control
samples were removed. Finally, we normalized the absolute concentrations
of the batch through centering by subtracting the column means (omitting
NAs) of each batch and scaling by the standard deviation. The final data
table consisted of 173 compounds (33 out of 42 and 140 out of 366 for the
LC and FIA injections, respectively, Supplementary Fig. 1) and 406 samples
(203 cases and controls, respectively).

Statistical analyses
To initially contrast quantities of the analyzed metabolites between
22q11.2 carriers and controls, we performed a differential abundance
analysis by applying a paired Wilcoxon signed-rank test using the R
function Wilcox.test from the stats R package [15]. Subsequently, we used
the function p.adjust (from the stats R package) to calculate the False
Discovery Rate (FDR) adjusted p-values. Metabolites having FDR-adjusted
p-value < 0.05 were considered differentially abundant.
Predictive models and feature importance were built by training an

eXtreme Gradient Boosting (XGBoost) model using the R packages xgboost
(version 1.4.1.1) [16] and caret (version 6.0–88) [17]. We divided the dataset
into train and test sets (80% train and 20% test). Firstly, we performed an
analysis including all the 173 metabolites, without tuning and using the
following recommended parameters: nrounds = 500, max_depth = 6,
colsample_bytree = 1, eta = 0.3, subsample = 1, gamma = 0, min_child_-
weight = 1. Secondly, we improved the performance of the model with all
the 173 metabolites by applying a tenfold cross-validation. The final model
fitted the following tuned parameters on the full training set: nrounds =
1400, max_depth = 4, eta = 0.025, gamma = 0.5, colsample_bytree = 0.8,
min_child_weight = 1, subsample = 0.5. Prediction on the test set and
evaluation of performance was performed, and the R package pROC (version
1.18.0) [18] was used to calculate the area under the curve (AUC) and plot the
receiver operating characteristic (ROC) curve. In addition to AUC and
accuracy, we provide F1, positive, and negative predictive values calculated
using the caret function confusionMatrix.

Table 1. Characteristics of the study cohort.

Cases (n= 203) Controls (n= 203)

median range NA median range NA

Age at sampling (days) 5 [2–40] 19 5 [2–30] 19

Birth weight (g) 3130 [1200–5550] 9 3400 [830–5115] 7

Gestational age (weeks) 39 [32–42] 106 39 [33–42] 96

Month of birth* 7 [1–12] 0 7 [1–12] 0

Age of mothers at birth (years) 29.6 [18.0–42.4] 29.5 [16.6–41.3]

NA not available data.
*January= 1 and December= 12.
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To discover which metabolites contributed most to the prediction of
22q11.2DS, we computed feature importance using the caret function
varImp. To further validate the importance of features, we performed
additional analyses. We measured how important each feature was for the
predictions by applying the R function FeatureImp (iml package, version
0.10.1 [19]), which implements the method described by Fisher and
coworkers [20]. The method works by shuffling each feature and
measuring how much the performance drops according to the prediction
loss/error (in our case, the classification error). The prediction error is
measured before and after shuffling the values of the feature and the
larger the increase of the error is, the more important the feature. This
process was repeated 1000 times (n.repetitions parameter set to 1000),
since the higher the number of repetitions, the more stable and accurate
the results become.
We then explored how strongly features interact with each other in the

prediction model by applying the R function Interaction from the iml
package, which measures interactions through Friedman’s H-statistic [21].
The interaction measure shows how much of the variance of each feature
is explained by the interaction, with values ranging from 0 (no
interaction) to 1.
To evaluate the predictive value of the most important selected

metabolites, we compared the results of four XGBoost models without
tuning the models’ parameters (using default/recommended settings for
all models). The first model included the top two most important
metabolites (tyrosine and proline), the second model only the first most
important metabolite (tyrosine), and the third model only the second most
important metabolite (proline).
All statistical analyses were performed in R [15] (v4.1.1), and scripts and

Jupyter notebooks are publicly available at: https://github.com/SSI-
Metabolomics/22q11_SupplementaryMaterial/.

RESULTS
To investigate the potential of targeted metabolomics as a
diagnostic tool for 22q11.2DS in neonatal screening, we
performed broad metabolic profiling using a validated commercial
kit (see “Methods” for details) of neonatal blood spots from 203
individuals identified as carriers of a deletion at chr. 22q11.2 and
203 age- and sex-matched individuals without the deletion. After
quality control, data on 173 compounds were obtained and used
for subsequent analyses (see Methods for details). As our focus
was on assessing whether a metabolic marker of 22q11.2DS could
be found in a potential clinical setting, we only included
compounds that passed stringent quality control measures as

defined by Biocrates. Many acylcarnitines, but also some
cholesterol esters glycerides, glycerophospholipids, and sphingo-
lipids, fell below the lower limit of quantification. However, despite
these limitations, we still achieved reasonable coverage of most
metabolite classes (Supplementary Fig. 1).
To initially contrast quantities of the analyzed metabolites

between 22q11.2 carriers and controls, we performed a differential
abundance analysis of the 173 metabolites that passed QC (see
“Methods” for details) by applying a paired Wilcoxon signed-rank
test. In total, 84 metabolites were differentially abundant (FDR-
adjusted p-value < 0.05). Differentially abundant metabolites were
found in all measured compound classes, most predominantly
across amino acids, sphingolipids, biogenic amines, and glycer-
ophospholipids (Supplementary Fig. 1). A majority of metabolites
were decreased in 22q11.2 carriers when compared to controls
(Supplementary Fig. 2). All cholesterol esters and glycerides were
decreased in 22q11.2 carriers and also a majority of amino acids,
glycerophospholipids, sphingolipids, and biogenic amines, with
the exception of one amino acid (proline), one biogenic amine
(creatinine), five glycerophospholipids (LPC(16:0), PC(32:1), PC-
O(36:2), PC-O(34:1), PC-O(34:0)) and four sphingolipids (SM(40:1),
Cer(42:2), Cer(42:1), Cer(40:1)). Interestingly all measured acylcar-
nitines (hexadecanoylcarnitine, AC(16:0); octadecanoylcarnitine,
AC(18:0)) were increased in 22q11.2 carriers when compared to
controls (Supplementary Fig. 2). Tyrosine was the most significant
differentially abundant metabolite (FDR-adjusted p-value= 7.53e
−15; Fig. 1) with a highly significant lower abundance in cases
versus controls. Also, proline showed a significant difference in
abundance (FDR-adjusted p-value= 2.25e−03) with a slightly
higher abundance in cases compared to controls. The full list of
significant differentially abundant metabolites can be found in
Supplementary Data 1 and stratified by compound class in
Supplementary Fig. 2.
To further investigate the metabolic signature of individuals

carrying the 22q11.2 deletion, we first determined the combined
ability of the 173 analyzed metabolites to classify the 406 22q11.2
case–control individuals in a predictive model and next deter-
mined the individual contributions of each metabolite to the
resulting model. As shown in Fig. 2 and Table 2, the model
achieved high Accuracy (89%), AUC (93%), F1 (88%), Positive
predictive value (94%) and Negative predictive value (84%). The
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Fig. 1 Differential abundance of tyrosine and proline. Using the Wilcoxon signed-rank test showing the comparison of cases versus controls
for tyrosine (left) and proline (right). Box plots including V-statistics (V value) and FDR-adjusted p-value.
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individual contributions to the final model of the top 20
metabolites are shown in Fig. 3, with tyrosine and proline ranked
as first and second. This finding was confirmed in a subsequent
analysis, estimating the loss of performance, i.e., the classification
error, as a function of shuffling measurements between metabo-
lites [22].
Next, we examined overall interactions between the analyzed

metabolites and found tyrosine and proline to be the two
metabolites with the highest interaction with other metabolites
based on Friedman’s H-statistic [21]. Furthermore, tyrosine and
proline were among the strongest interactors of each other, as
shown in the interaction network of proline (Fig. 4).
To contrast the individual and combined predictive values of

proline and tyrosine with all the other metabolites combined, we
compared the results of four XGBoost models (see “Methods” for
details), considering (1) all 173 metabolites, (2) proline and
tyrosine, (3) only tyrosine, and (4) only proline. As detailed in Table
2, these analyses show that (i) tyrosine outperforms proline on all
five metrics relative to the prediction of 22q11.2 status, (ii)
combining tyrosine and proline improves prediction somewhat
relative to tyrosine alone, while (iii) all metabolites combined
increases prediction even further (Table 2).

DISCUSSION
In this work, we explored the potential of targeted metabolomics
to inform on molecular consequences of the pathogenic deletion
at chromosome 22q11.2 and to serve as a neonatal diagnostic
screening tool to identify individuals carrying the copy number
variant. We found that 22q11.2 deletion was associated with
significant alterations in levels of metabolites in whole blood at
the time of birth, which may reflect metabolic alterations in other
organ systems, such as the brain. Furthermore, we used machine
learning techniques and differential abundance analysis to
document that the metabolite profiles discriminate 22q11.2
deletion carriers from non-carriers and identify the amino acids
tyrosine and proline as the most dysregulated metabolites.
The increased levels of proline observed in this study is

consistent with decreased proline-to-glutamate conversion due to
hemizygosity of proline dehydrogenase 1 (PRODH) in 22q11.2
deletion carriers and generalized case reports on individuals with
the 22q11.2 deletion [10–12, 23, 24]. Notably, glutamate, along
with another 14 amino acids, was found significantly decreased in
22q11.2 deletion carriers (Supplementary Fig. 2). Increased levels
of proline in carriers of the 22q11.2 deletion have also been
reported in previous metabolomics studies in plasma and dried
blood spots of older children carrying the 22q11.2 deletion as well
as studies reporting on hyperprolineamia in patients with
22q11.2DS [10, 11, 23, 24]. In contrast, the observation of reduced
levels of tyrosine is novel and may derive from feedback inhibition
of phenylalanine hydroxylase mediated conversion of dietary
phenylalanine into tyrosine. Such feedback inhibition could be
due to accumulating levels of catecholamines resulting from
hemizygosity of the catechol-O-methyltransferase encoding
COMT-gene in 22q11.2 deletion carriers [25].
Our results largely corroborate with findings from two previous

studies describing significantly altered metabolomic profiles in
plasma and dried blood spots of children carrying the 22q11.2
deletion versus controls [23, 24]. Our study includes the largest
sample size up to date and is the first study to report significantly
altered metabolomic profiles in prediagnostic samples collected a
few days after birth. We found differentially abundant metabolites
across all measured compound classes, most predominantly
across amino acids, sphingolipids, biogenic amines, and glycer-
ophospholipids (Supplementary Fig. 1). Sphingolipids have pre-
viously been reported to be significantly altered in brain tissue
from Df(16)A ±mice, a model of the 22q11.2 deletion syndrome
[26] and acylcarnitines and glycerides were previously found
among metabolites that distinguish children with 22q11.2DS from
controls [24]. Five amino acids (proline, histidine, tryptophan,
threonine, and serine) and one biogenic amine (methionine
sulfoxide) were previously found differentially abundant across
plasma from children (age 8–15 years) carrying the 22q11.2
deletion versus age- and sex-matched typically developing
controls [23]. In contrast to our findings, however, Napoli and
collaborators [23] found that histidine, tryptophan, threonine,
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Fig. 2 ROC curve for the predictive model. Receiver operating
characteristic (ROC) curve shows the performance of the final
classification model, including a total of 173 metabolites (tenfold CV).

Table 2. Performance comparison across models.

All metabolites Tyrosine and Proline Tyrosine Proline All metabolites

No tuning No tuning No tuning No tuning Parameter tuning

Positive predictive value 0.865 0.707 0.727 0.429 0.943

Negative predictive value 0.814 0.718 0.66 0.444 0.844

F1 0.831 0.716 0.657 0.400 0.853

Accuracy 0.837 0.712 0.687 0.437 0.887

AUC 0.897 0.753 0.732 0.509 0.927

We built five models with (1) all 173 metabolites, (2) only tyrosine and proline, (3) only tyrosine, and (4) only proline. Additionally, we show the results of the
tuned parameters (tenfold CV).
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serine, and methionine sulfoxide were more highly abundant in
carriers of the deletion versus controls.
As demonstrated in this study, the capacity of targeted

metabolomics to discriminate between individuals carrying the
22q11.2 deletion from non-carriers points to great potential for the
clinical applicability of this approach in neonatal screening, which
would ensure early identification and corresponding timely and
proper healthcare provision and socio-educational support. Recent
findings based on population-representative studies in Denmark
documented that a considerable fraction of 22q11.2 deletion carriers
go unnoticed in the healthcare system, even when this is public and
egalitarian [2], a shortcoming that also affects a significant proportion
of carriers with other pathogenic copy-number-variants [27].
The potential benefits and shortcomings of neonatal screening

for 22q11.2 deletions have been considered in the past primarily
in relation to prenatal genetic testing [28]. Advantages include
early intervention to cardiac defects, hypocalcemia-induced
seizures, and severe immune deficiency, while concern of causing
vulnerable child syndrome through national 22q11.2 screening
programs has been raised given the less-than-full penetrance of
the genomic aberration [28]. Importantly, these concerns contrast
with ambitions to eliminate the ‘diagnostic odyssey’ and intervene
against failure to thrive and early, prodromal manifestations of
mental disorders; complications that are often not considered
when deciding on clinical screening programs.

STRENGTHS AND LIMITATIONS
The strength of this study stems from the nationwide biobank
from where the samples were obtained, is representative of the

population as a whole, and rests on decades of national neonatal
screening for severe congenital disorders originally prompted by
analyses for phenylketonuria. Importantly, the neonatal blood
spots used in our study conveniently provide genomic DNA for
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Fig. 4 Pairwise interactions for proline. Top ten metabolites
interacting most strongly with proline are shown. Edges are colored
according to Friedman’s H-statistic, with the strongest interaction in
black and the weakest interaction in light grey. The black node
indicates proline, while the grey nodes are its interactors. Tyrosine
shows the strongest interaction.
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accuracy brought by a feature to the branches it is on). The higher the value is, the more important the feature is.
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efficient follow-up genotype- or sequence-based verification to
eliminate false positive findings, which in the case of national
routine screening will be a concern. In light of the ease of targeted
genomic follow-up analyses, future refinement of the metabolic
analyses to reduce false negative findings should be expected.
Our study exhibits a number of limitations warranting further
research. Although we identified metabolites dysregulated in
22q11.2 with relatively high predictive power, our study cohort is
small. Results can, therefore, not be directly applied in the clinic.
Instead, our study provides the first evidence that metabolic
markers at birth may be used to identify carriers of the 22q11.2
deletion. This finding needs to be confirmed in a larger cohort,
which should also include information on phenotypes and
22q11.2 deletion sizes to assess metabolic differences among
carriers. In addition, such a study should also include a comparison
to other diseases, such as hyperprolinaemia, to assess the
specificity of the diagnostic method. As most individuals of our
study cohort were carriers of the 3MB deletion we cannot
conclude on metabolic subtypes within 22q11.2DS.

CONCLUSION
In conclusion, we identified metabolites dysregulated in 22q11.2,
in particular tyrosine and proline, and document that careful
metabolic profiling leveraging existing clinical screening programs
could allow for the identification of individuals carrying the
22q11.2 deletion, although we emphasize that clinical perfor-
mance and applicability awaits further studies.
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