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Alzheimer disease (AD) is a common neurodegenerative disease with a late onset. It is critical to identify novel blood-based DNA
methylation biomarkers to better understand the extent of the molecular pathways affected in AD. Two sets of blood DNA
methylation genetic prediction models developed using different reference panels and modelling strategies were leveraged to
evaluate associations of genetically predicted DNA methylation levels with AD risk in 111,326 (46,828 proxy) cases and 677,663
controls. A total of 1,168 cytosine-phosphate-guanine (CpG) sites showed a significant association with AD risk at a false discovery
rate (FDR) < 0.05. Methylation levels of 196 CpG sites were correlated with expression levels of 130 adjacent genes in blood. Overall,
52 CpG sites of 32 genes showed consistent association directions for the methylation-gene expression-AD risk, including nine
genes (CNIH4, THUMPD3, SERPINB9, MTUS1, CISD1, FRAT2, CCDC88B, FES, and SSH2) firstly reported as AD risk genes. Nine of 32
genes were enriched in dementia and AD disease categories (P values ranged from 1.85 × 10-4 to 7.46 × 10-6), and 19 genes in a
neurological disease network (score = 54) were also observed. Our findings improve the understanding of genetics and etiology
for AD.
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INTRODUCTION
As the most common form of neurodegenerative illness,
Alzheimer’s disease (AD) remains the sixth leading cause of death
in the United States and the fifth leading cause of death among
Americans age ≥ 65 years [1]. AD is a slowly progressing
neurodegenerative disorder, which can start 20-30 years before
the appearance of the first clinical symptoms [2]. An improved
understanding of AD etiology is critical to reduce the public health
burden of this common disease.
Epidemiological studies provide strong support for a genetic

predisposition to AD [3]. To date, genome-wide association studies
(GWAS) have identified more than 56 gene loci [4] and
transcriptome wide association studies (TWAS) [5–14] and splicing
TWAS [15] have identified 29 genomic loci and over 280 genes
associated with AD risk. However, together these variants and
genes explain only a proportion of the familial relative risk of AD
[16, 17]. One potential explanation is that for AD, some risk
associated single nucleotide polymorphisms (SNPs) may regulate
the expression of their target genes through influencing DNA
methylation levels. As the most extensively investigated epigenetic

marker, DNA methylation represents one kind of molecular
regulatory mechanisms affecting gene expression that could further
influence the risk of phenotypes [18]. It has been reported that
changes of specific aberrant DNA methylation trigger alterations on
the transcriptional levels of genes involved in the pathogenesis of
AD [19]. Indeed, previous work reported that lower DNA methyla-
tion levels at TREM2 intron 1 increased the AD risk because the
lower methylation caused the higher TREM2 mRNA expression in
the leukocytes of AD patients than in healthy controls [20]. DNA
methylation at SORL1, SIRT1, UQCRC1, ABCA7, CNP, and DPYSL2
[21–24] have also been reported to influence AD through similar
mechanisms. However, a comprehensive study to assess methyla-
tion markers that potentially influence AD risk through the DNA
methylation-gene expression-AD risk pathway is largely lacking.
Herein, in this study, we leveraged two sets of DNA methylation

prediction models built using large reference methylation datasets
in blood (Framingham Heart Study (FHS) and Biobank-based
integrative omics study (BIOS); up to 4008) with different modelling
strategies [25–27], to evaluate the associations of genetically
predicted DNA methylation levels with AD risk. For the association
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analyses with AD risk, we used the latest data from the AD GWAS
involving 111,326 (46,828 proxy) cases and 677,663 controls of
European ancestry from ten consortia/datasets, including the
European Alzheimer & Dementia Biobank (EADB) datasets, the
Genomic Research at Ace study (GR@ACE), the European Alzhei-
mer’s Disease Initiative Consortium (EADI), Genetic and Environ-
mental Risk in AD/Defining Genetic, Polygenic and Environmental
Risk for Alzheimer’s Disease Consortium (GERAD/PERADES), the
Norwegian DemGene Network (DemGene), Bonn Studies (Bonn),
the Rotterdam study, the Copenhagen City Heart Study (CCHS), the
Neocodex–Murcia study (NxC) and the UK Biobank (UKBB) [28].

MATERIALS AND METHODS
DNA methylation genetic prediction models
DNA methylation genetic prediction models. Two sets of DNA methylation
prediction models established using different modelling strategies, FHS
[25, 26] and BIOS [27], were used in the current study.

FHS models. The detailed information for FHS models has been described
in previous studies [25, 26, 29, 30]. In brief, the individual level genome-
wide genotyping and white blood cell DNA methylation data were
obtained from the FHS Offspring Cohort (dbGaP accession numbers:
phs000342 and phs000724) [25]. A total of 1595 genetically unrelated
subjects of European descent with genetic and DNA methylation data
were used to build FHS DNA methylation prediction models. Genomic DNA
was genotyped using the Affymetrix 500 K array, and DNA methylation was
measured using the Illumina HumanMethylation450 BeadChip. The
genotype data were imputed to the Haplotype Reference Consortium
reference panel [31]. SNPs meeting the following conditions were used to
build DNA methylation prediction models: (1) high imputation quality
(R2 ≥ 0.8), (2) minor allele frequency ≥0.05, included in the HapMap Phase 2
version, and (3) not strand ambiguous. For DNA methylation data, quality
control and normalization were performed using the “minfi” package [32].
The quality control steps include: removing low-quality samples, excluding
low-quality methylation probes, estimating cell-type composition, and
calculating methylation beta values. The same scale methylation profile of
each sample was first acquired using quantile normalization. A standard
normal distribution of methylation values of each cytosine-phosphate-
guanine (CpG) site was further obtained using rank normalization. The
DNA methylation data was adjusted for age, sex, cell type composition
variables, and top 10 principal components (PCs). DNA methylation level of
each CpG site was predicted using the elastic net method as implemented
in the “glmnet” package of R, with α= 0.5 [26, 33]. In short, we estimated
the genetically regulated component of methylation levels for each CpG
by including variants within a 2 MB window flanking the CpG site,
inclusive. The square of the correlation between predicted and observed
levels (R2) were generated to estimate the prediction performance of each
of the CpG prediction models established.

BIOS models. BIOS DNA methylation prediction models were built using
whole-blood methylation data from the BIOS Consortium involving
4008 samples (Illumina 450 K arrays). The detailed information of the
model building has been described elsewhere [27, 34]. Briefly, in total,
881,977 unambiguous HapMap SNPs in the genetic data meeting the
following criteria were retained: (1) minor allele frequency >5%, (2) minor
allele count >10, and (3) imputation info score >0.8. The genotype data
were also imputed to the Haplotype Reference Consortium reference panel
[31]. For methylation quantitative trait loci (meQTL) analysis, linear
regression on each SNP-CpG site pair closer than 250 kb was performed.
At a false discovery rate (FDR) of 5% (P < 9.3 × 10−5), there were 151,729
CpG sites with a significant meQTL. For each CpG with a significant meQTL,
a prediction model of methylation was established based on local SNPs
within 250 kb using glmnet, which is a weighted linear combination of
SNPs. We derived the unstandardized prediction models leveraging the
original standardized models and standard deviation of variants in
European populations of the 1000 Genomes Project data.

Associations between predicted methylation levels and
AD risk
Associations between genetically predicted DNA methylation levels and
AD risk were analyzed using S-PrediXcan [33] by applying FHS and BIOS
DNA methylation prediction models to summary statistics of AD GWAS.

These summary data were generated from 111,326 (46,828 proxy) cases
and 677,663 controls of European ancestry from ten consortia/datasets,
including EADB, GR@ACE, EADI, GERAD/PERADES, DemGene, Bonn, the
Rotterdam study, the CCHS study, NxC and the UKBB [28]. Instead of using
the conventional approach of including clinically diagnosed AD alone, in
this dataset both clinically confirmed and parental diagnoses based by-
proxy phenotypes were included, which has been demonstrated to confer
great value in substantially increasing statistical power [35]. It has been
found that AD-by-proxy, based on parental diagnoses, shows quite strong
genetic correlation with AD (rg = 0.81) [35]. Detailed information on study
participants, genotyping, and imputation methods have been included in
the original GWAS paper [28]. In our association analysis, the FDR-corrected
P value threshold of ≤ 0.05 was used to determine significant associations
between genetically predicted DNA methylation levels and AD risk.
To further pinpoint the putative causal CpG sites for AD risk, fine-

mapping of causal gene sets (FOCUS), as described elsewhere, was applied
[36]. The two sets of blood methylation prediction models and results of
main association analyses were used as inputs, and for each independent
LD Block defined by LDetect [37], the posterior probability for each CpG
site in the LD Block was outputted. For the FOCUS, putative causal CpG
sites were prioritized by the default 90% credible CpG sites set.

Functional annotation of AD-associated CpG sites
Functional annotation of the identified AD-associated CpG sites were
conducted using ANNOVAR [38]. The CpG sites were annotated into one of
13 functional categories, including exonic, intronic, intergenic, upstream,
3′-UTR, 5′-UTR, ncRNA intronic, ncRNA exonic, splicing, downstream,
upstream/ downstream, 5′UTR/3′-UTR, and exonic/splicing. We evaluated
whether the identified AD-associated CpG sites were enriched in DNase I
hypersensitive sites (DHSs) and loci overlapping with various histone
modification types, including H3K27me3, H3K36me3, H3K4me3, H3K9me3,
and H3K4me1 across different tissues and cell lines available in data of the
Roadmap Epigenomics Project, the Encyclopedia of DNA Elements
(ENCODE), and the BLUPRINT Epigenome, by using eFORGE v2.0 (https://
eforge.altiusinstitute.org/) [39, 40]. The detail information for eFORGE has
been described elsewhere [26].

Correlations of AD-associated CpG sites with their
nearby genes
For the AD-associated CpG sites, correlation analysis of their methylation
and expression levels of their nearby genes was performed using data of
1367 unrelated European individuals from the FHS Offspring Cohort
(dbGaP accession number: phs000363 and phs000724). We were not able
to use the BIOS Consortium data due to a lack of access to the individual-
level data. The detailed information about such DNA methylation and gene
expression data has been described elsewhere [25, 26, 29, 30]. After
adjusting for age, sex, cell type composition variables and top principal
components (PCs), the correlation of the normalized methylation levels
and expression levels of genes nearby the AD-associated CpG sites were
calculated.

Associations of potential target genes of CpG sites with
AD risk
For identified putative target genes of AD-associated CpG sites, we further
assessed associations of their predicted expression in blood with AD risk.
Here two sets of gene expression prediction models were used, one
established using a modified unified test for molecular signatures
(UTMOST) strategy for the Genotype-Tissue Expression Project (GTEx) v8
dataset, and the other developed using LASSO strategy for the BIOS
dataset. For the UTMOST models, transcriptome and genome data from
the GTEx v8 were used to develop genetic imputation models for genes
expressed in whole blood (N= 670). The cross-tissue UTMOST framework
was used to build models [8]. SNPs within 1 Mb upstream and downstream
of each gene of interest were considered as candidate predictors. It was
shown that there is no significant difference in prediction quality from
applying linkage disequilibrium (LD) pruning [41]. Therefore, LD-pruning
(r2= 0.9) was performed before model training to reduce the computa-
tional burden. In the joint-tissue prediction model, the effect sizes were
estimated by minimizing the loss function with a logistic least absolute
shrinkage and selection operator (LASSO) penalty on the columns (within-
tissue effects) and a group-LASSO penalty on the rows (cross-tissue
effects). The group penalty term implemented sharing of the information
from SNP selection across all the tissues. Two hyperparameters, λ1 and λ2,

Y. Sun et al.

2

Translational Psychiatry          (2023) 13:387 

https://eforge.altiusinstitute.org/
https://eforge.altiusinstitute.org/


for the within-tissue and cross-tissue penalization, were used as model
optimization. For hyperparameter tuning, five-fold cross-validation was
performed. A reliable estimate of the imputation performance was
obtained by the modified model training approach. The original model
training [8] was modified by unifying the hyperparameter pairs to avoid
the overestimation of the prediction performance [42]. For the BIOS gene
expression prediction models, a reference transcriptome dataset involving
3344 subjects was used. The detailed information for the establishment of
this set of models has been described elsewhere [27]. For each of the
13,870 genes with a significant expression quantitative trait locus (eQTL), a
prediction model was fitted in R with glmnet, to assess the potential
predictive value of SNPs within 250 kb of the gene for gene expression. We
used such sets of gene expression prediction models to estimate the
associations between genetically predicted gene expression levels in blood
and AD risk, by using the same AD GWAS data, involving 111,326 (46,828
proxy) cases and 677,663 controls as described above [43].

Consistent direction of effect for the DNA methylation-gene
expression-AD risk
To assess the possibility that the genetically predicted DNA methylation
might putatively influence AD risk through regulating the expression of
nearby target genes, associations showing consistent direction of effect for
the DNA methylation-gene expression-AD risk were determined by
assessing the associations between genetically predicted DNA methylation
levels in blood and AD risk, associations between DNA methylation and
gene expression in blood, and the associations between genetically
predicted gene expression in blood and AD risk.

Functional enrichment analysis
For the genes showing consistent directions of associations across DNA
methylation, gene expression and AD risk, their top canonical pathways,
disease and biological functions categories and networks were performed
using Ingenuity pathway analysis (IPA) software (Qiagen Redwood City,
Redwood City, USA, version summer release, July 2023).

RESULTS
DNA methylation prediction models
FHS models. Of a total of 223,592 CpG sites for which we were
able to develop DNA methylation prediction models using the FHS
dataset, 81,360 showed a prediction performance (R2) of at least
0.01 (≥10% correlation between predicted and measured DNA
methylation levels). Considering that DNA methylation measure-
ment for the probe-binding sites tends to be unbiased [26, 42], we
focused on 72,848 of those CpG sites for which there were no
SNPs located within the probe-binding site. Such models were
used for the association analyses between their predicted DNA
methylation levels and AD risk.

BIOS models. As described elsewhere [27], leveraging the BIOS
data, DNA methylation prediction models for 151,729 CpG sites
were established, of which 103,354 showed a prediction
performance (R2) of at least 0.01. For 93,442 of those CpG sites,
there were no SNPs residing within the binding site. These models
were also used for the association analyses.
Overall, models for a total of 104,102 unique CpG sites (either

the FHS or BIOS models) were used in our association analyses for
AD risk. Of them, for 62,188 CpG sites both sets of models were
used; for 10,660 CpG sites only FHS models were used; and for the
remaining 31,254 CpG sites only BIOS models were used
(Supplementary Fig. S1).

Association between genetically predicted methylation levels
and AD risk
Of the 104,102 CpG sites, genetically predicted DNA methylation of
1168 were associated with AD risk at the false discovery rate
significance threshold (FDR ≤ 0.05), including 123 sites that met the
more stringent Bonferroni correction threshold (P < 3.01 × 10-7,
0.05/166,290) (Supplementary Tables S1, S2 and Manhattan plot in
Fig. 1), after removing 253 CpG sites in LD regions. Of the 1168

associated CpG sites, 750 showed significant associations using the
FHS methylation prediction models and 827 showed associations
using the BIOS prediction models. There were 409 CpG sites
showing significant associations using both sets of prediction
models (Supplementary Fig. S2). Reassuringly, the CpG sites
showed the same association directions with AD risk for using
the two sets of models (Supplementary Tables S1 and S2). Of those
1168 CpG sites associated with AD risk, 509 sites were located at
more than 500 kb away from any known AD risk variants from
GWAS studies (Supplementary Table S1). Of these 509 CpG sites, a
positive association between predicted DNA methylation levels
and AD risk was observed for 266 sites; conversely, an inverse
association with AD risk was observed for 243 CpG sites. The
remaining 659 CpG sites were located at known AD risk loci
(Supplementary Table S2).
Based on analyses of the FOCUS, 26 CpG sites of 27 associations

were further prioritized as putatively causal CpG sties for AD risk
(Table 1). Of them, four CpG sites (cg09323728, cg18059933,
cg26140475, and cg20555462) were located at more than 500 kb
away from any known AD risk variants (Supplementary Table S1),
involving genes NDUFAF6, TRIB1, LINC00861, and UBASH3B.
Through the annotation using ANNOVAR [38], we compared the

regional locations of the 1421 AD-associated CpG sites (including
253 CpG sites in LD regions) with the overall tested 104,102 CpG
sites. We found that there were substantial inflation of the
“exonic” and “ncRNA intronic” regions for the identified 1,421 AD-
associated CpG sites (chi-square tests: 11.82% versus 7.53%,
P= 1.74 × 10-9; 5.91% versus 7.57%, P= 4.31 ×10-5) (Supplemen-
tary Table S3). Conversely, there was deflation of the “intergenic”
region (chi-square test: 17.52% versus 24.56%, P= 1.07 ×10-9)
(Supplementary Table S3).
Based on annotation using eFORGE v2.0 (https://

eforge.altiusinstitute.org/) [39, 40], positions of the 509 novel
AD-associated CpG sites were overlapped with regions containing
lysine 4 mono-methylated H3 histone (H3K4me1) markers across
36 of 39 cell types in the consolidated Roadmap Epigenomics
Project, including blood (primary T cells from cord blood and
peripheral blood, primary B cells, natural killer cells and monocytes
from peripheral blood, and primary hematopoietic stem cells G-
CSF-mobili) (Supplementary Fig. S3). These results indicated that
our identified CpG sites associated with AD risk might be enriched
in enhancers and transcriptional activation, further confirming the
potential functional significance of our findings.

Potential target genes of associated CpG sites
Whether DNA methylation of the associated CpG sites could
influence flanking gene expression was investigated by analyzing
the FHS data. Of 1168 AD-associated CpG sites, correlation
analyses were performed for 1038 pairs of 892 CpG sites and
their 485 flanking genes. Two hundred and five CpG site-gene
pairs were observed to have statistically significant correlations at
FDR P-value < 0.05, including 196 CpG sites and 130 genes
(Supplementary Table S4). Of these 205 significant correlations,
131 were negative and 74 were positive. The associations between
genetically predicted expression of these 130 genes in blood and
AD risk were further evaluated using the same summary statistics
of AD GWAS which consisted of 71,880 (proxy) cases and 383,378
(proxy) controls of European ancestry. Of these 130 genes,
46 showed an association with AD risk at FDR P-value < 0.05
(Supplementary Table S5).
To explore whether DNA methylation at associated CpG sites

and their flanking genes have consistent effects on AD risk, we
further compared directions of two-way associations of DNA
methylation, gene expression and AD risk. We observed 52
consistent directions of associations across 51 CpG sites, 32 genes,
and AD risk (Table 2). Taking the CpG sites cg09070378 and
cg07356342 located at 3’ untranslated region (UTR3) of NDUFS2 as
an example, their DNA methylation levels were both positively
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associated with the expression of NDUFS2 (coefficient= -0.10,
P= 1.77 × 10-3, and coefficient= -0.07, P= 4.41 × 10-2, respec-
tively); the genetically predicted DNA methylation of cg09070378
and cg07356342 were associated with an increased AD risk
(OR= 1.10, P= 9.02 × 10-7, and OR= 1.10, P= 5.17 × 10-8 in BIOS
model, respectively); and the predicted expression of NDUFS2 was
inversely associated with AD risk (OR= 0.85, P= 1.19 × 10-3 in
BIOS model). The consistent DNA methylation-gene expression-AD
associations observed for those 52 CpG sites suggested a potential
mediating role of their neighboring gene expression on the
associations between DNA methylation and AD risk. These 52 CpG
sites and their 32 neighboring genes may affect AD risk, including
previous GWAS [28, 35, 44–52] and/or TWAS studies [6–9]
identified genes (NDUFS2, FCER1G, BIN1, CD2AP, EPHA1, TP53INP1,
CCDC6, TSPAN14, PLEKHA1, MS4A6A, CHRNE, SLC24A4, TBX6, YPEL3,
TMEM106B, STX4, and CNN2), six genes located within 500 kb of
known AD susceptibility variants [28, 35, 45, 49] (LRRFIP2, GAL3ST4,
EPHX2, MAPK3, COASY, and MPO) and nine novel genes reported in
this study (CNIH4, THUMPD3, SERPINB9, MTUS1, CISD1, FRAT2,
CCDC88B, FES, and SSH2).
It’s worth noting that for 14 genes, namely, DGKQ, CR1, CPSF3,

INPP5D, SERPINB1, MAFK, TMEM184 A, PARP10, RNF43, UBASH3B,
BCKDK, PVR, NKPD1, and CASS4, there were inconsistent directions
of associations for the DNA methylation-gene expression-AD risk
pathway (Supplementary Table S5). Future work is needed to
better understand their exact relationships.

Functional enrichment analysis results
The top canonical pathways, disease and biological functions
categories, and networks of the 32 genes that showed consistent
directions of associations across DNA methylation, gene expres-
sion and AD risk were analyzed by IPA software. Ten genes,
including MPO, FES, MAPK3, CNN2, FCER1G, TSPAN14, COASY, CISD1,

EPHA1 and STX4, were enriched in ten top canonical pathways
(Supplementary Table S6). A total of 17 genes were enriched in
ten top disease and biological functions categories (Supplemen-
tary Table S7). Nine of them (TMEM106B, EPHA1, CD2AP, CHRNE,
MPO, BIN1, MS4A6A, EPHX2, and MAPK3) were enriched in
neurological disease categories including four dementia and AD
categories (P values ranged from 4.94 × 10-2 to 7.25 × 10-5). Thirty-
two genes were enriched in two networks (Supplementary Fig. S4
and Supplementary Table S8). Nineteen genes (BIN1, CCDC6,
CD2AP, CNIH4, CNN2, COASY, EPHA1, EPHX2, FCER1G, FES, MAPK3,
MS4A6A, MTUS1, PLEKHA1, STX4, TBX6, TMEM106B, TP53INP1, and
YPEL3) were in the top network related to neurological disease
(Supplementary Fig. S4A and Supplementary Table S8). Some
genes, such as CD2AP, FCER1G, MAPK3, and EPHX2, were in nodes
or core nodes of this neurological disease network, indicating that
the CpG sites and these target genes may influence AD
development.

DISCUSSION
This is the first large-scale study to comprehensively evaluate
associations of genetically predicted DNA methylation levels in
blood with AD risk. Using two sets of DNA methylation prediction
models developed using different reference datasets and model-
ling strategies, we identified 1186 CpG sites with predicted DNA
methylation levels in blood to be associated with AD risk,
including 509 located at novel loci. Through additional analyses
involving gene expression, 52 CpG sites and their 32 nearby
putative target genes have consistent effects influencing AD risk.
Our study provided substantial information to improve the
understanding of genetics and etiology for AD.
Previous work has supported that specific DNA methylation

biomarkers could potentially be useful for AD risk assessment

Fig. 1 A Manhattan plot of the association results from the Alzheimer’s disease methylome-wide association study. The x axis represents
the genomic position of the corresponding CpG site, and the y axis represents -log10-tansformed P value of the associations. Each dot
represents the genetically predicted DNA methylation of one specific CpG site. The red line represents P= 5.55 × 10-4 for the false discovery
rate significance threshold and blue line represents P= 3.01 × 10-7 for the Bonferroni correction threshold (0.05/166,290). The name of top five
CpG sites and their nearby genes on four chromosomes were annotated.
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[18, 53]. For example, methylation at COASY, BDNF, BER, HOXB6
and BIN1 had been reported to be potentially associated with AD
risk [18, 54–57]. However, some of the findings have not been
entirely consistent [58], potential due to several limitations in
conventional epidemiological studies, including selection bias,
uncontrolled confounding, and reverse causation [26]. One
strategy to reduce some of these biases is to use genetic
instruments to assess the association between DNA methylation
levels and AD risk. Similar to a design of transcriptome-wide
association study (TWAS) [41], a genetically determined propor-
tion of DNA methylation levels is expected to be less susceptible
to selection bias and reverse causation. We have conducted
several such methylome-wide association studies (MWAS) and
identified multiple candidate DNA methylation biomarkers for the
risk of several diseases [25, 26, 29].
In our study, we used two sets of DNA methylation genetic

prediction models to estimate the genetically predicted DNA
methylation levels in blood. The fact that the identified associated
CpG sites were suggested by both sets of models when available
provided further assurance for the robustness of the associated
methylation markers. Importantly, our design of using compre-
hensive methylation prediction models as instruments is more
powerful than studies based on the single-meQTL approach
[25, 26]. Our analyses leveraging large number of available cases
and controls also provide substantial higher power than studies
evaluating directly measured methylation levels in relatively

smaller samples. As a comparison, for example, a previous study
for AD risk evaluating directly measured methylation levels in 120
LOAD patients and 115 controls only had an a priori power to
detect differences of about 5% in mean methylation levels for the
six genes under investigation, and there were no significant
findings probably due to the low statistical power [58].
Several potential limitations need to be considered for appro-

priate interpretation of our findings. Similar to results from TWAS,
the associations observed in our analyses focusing on CpG sites are
also vulnerable to confounding due to pleiotropy and co-localization
of genetic signals [26]. Correlated total methylation levels across
CpG sites, correlated predicted DNA methylation across CpG sites, as
well as shared genetic variants between DNA methylation genetic
prediction models, could all lead to spurious associations in our
analyses [26, 59]. When faced with two correlated predictors,
regularized regression models will randomly down weight one of
them, which may be the true causal variant [26].
Despite these potential limitations, our study has several

potential implications. Frist, our study can help fill the gap for
systematic methylation analysis of AD risk which can provide
insights in the etiology of AD [60]. DNA methylation (of CpG sites)
can be inherited [61] and plays a key role in regulating gene
expression in a wide range of diseases and biological processes
[62]. For AD, it has been shown that blood DNA methylation levels
of specific CpG sites were changed in AD patients compared with
controls [63, 64] and they could be associated with AD risk [65]. In

Table 1. Twenty-six putatively causal CpG sites for AD risk prioritized by FOCUS.

CpGa Chr Position Classification Closest gene Model TWAS P value after FDRb FOCUS

cg22376361 2 127,815,133 exonic BIN1 FHS 1.19 × 10-7 0.99

cg24750513 2 127,819,455 intronic BIN1 BIOS 3.42 × 10-14 1.00

cg00436254 2 127,862,614 intronic BIN1 FHS 7.49 × 10-5 0.99

cg14012546 2 233,981,788 intronic INPP5D BIOS 4.02 × 10-11 1.00

cg17634650 4 10,966,220 intergenic CLNK, MIR572 BIOS 5.40 × 10-6 0.95

cg11284959 5 86,205,515 intergenic LINC02059, MIR4280 BIOS 7.94 × 10-8 1.00

cg02130027 6 47,444,894 upstream CD2AP FHS 1.94 × 10-8 0.98

cg05908241 7 143,109,367 ncRNA_intronic EPHA1-AS1 BIOS 2.53 × 10-10 1.00

cg13879655 8 27,450,777 intergenic EPHX2, CLU FHS 3.14 × 10-10 1.00

cg16292768 8 27,467,783 intronic CLU BIOS 1.16 × 10-30 1.00

cg09323728 8 95,962,352 intronic NDUFAF6 FHS 1.96 × 10-5 1.00

cg18059933 8 95,962,463 intronic NDUFAF6 FHS 2.22 × 10-5 1.00

cg26140475 8 126,525,558 intergenic TRIB1, LINC00861 BIOS 8.31 × 10-6 1.00

cg14313833 9 107,666,037 UTR5 ABCA1 BIOS 6.80 × 10-5 0.99

cg24949488 10 98,064,362 exonic DNTT FHS 2.89 × 10-4 0.97

cg07180834 11 85,838,833 intergenic PICALM, EED BIOS 5.00 × 10-15 1.00

cg04895225 11 85,862,822 intergenic PICALM, EED BIOS 5.41 × 10-9 0.99

cg20555462 11 122,535,518 intronic UBASH3B BIOS 7.62 × 10-4 1.00

cg18696900 14 53,419,080 intergenic FERMT2, DDHD1 BIOS 6.11 × 10-5 0.99

cg08898775 15 59,042,684 upstream ADAM10 BIOS 2.11 × 10-8 1.00

FHS 1.44 × 10-8 1.00

cg20401945 16 29,912,460 exonic ASPHD1 FHS 4.61 × 10-5 0.99

cg10426084 17 1,640,472 intronic WDR81 FHS 8.73 × 10-5 0.96

cg16837973 17 5,138,634 ncRNA_exonic LOC100130950 FHS 9.11 × 10-11 1.00

cg27455331 17 47,338,178 intergenic FLJ40194, MIR6129 BIOS 1.57 × 10-4 0.98

cg21657705 17 61,574,500 exonic ACE BIOS 3.40 × 10-8 1.00

cg20157577 17 61,780,203 UTR3 STRADA BIOS 1.62 × 10-4 1.00
aBIOS Biobank-based Integrative Omics Studies, Chr chromosome, CpG CpG sites, FHS Framingham Heart Study, kb kilobase, ncRNA noncoding RNA, UTR
untranslated region.
bTWAS associations with FDR-corrected P value < 0.05 considered significant.
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our study, we identified 1186 CpG sites and 485 nearby target
genes in blood tissue for AD, which may substantially improve our
understanding of etiology of this disease.
Especially, we identified 52 CpG sites and their 32 nearby genes

consistent associations of DNA methylation-gene expression-AD
risk through integrating the methylation, gene expression and AD
data. Most of these CpG sites target genes were known AD risk
genes, such as FCER1G, BIN1, and MS4A6A. FCER1G encodes a high
affinity IgE receptor that is involved in the innate immunity. A
recent study showed that higher expression of this protein in
microglia was related with pathologic inflammatory responses in
brain as amyloid accumulation increased [66]. For blood tissue,
previous research showed that FCER1G was down-regulated
(Log2fold change =-0.02, FDR-adjusted P= 3.63 × 10-3) in AD
(n= 49) patients compared with controls (n= 67) (GEO:
GSE63060) [67]. In our study, we also detected an inverse
association between predicted expression of FCER1G and AD risk
(OR= 0.97, FDR-adjusted P= 7.57 × 10-5). These results are
intriguing and warrant further investigation. BIN1 encodes
bridging integrator 1 and is a key susceptibility gene for LOAD
[68]. The lower methylation levels of BIN1 promoter in peripheral
blood for Chinese subjective cognitive declining participants with
significant AD biological characteristics were found when
compared with controls based on analyses of the Chinese
Alzheimer’s Biomarker and LifestylE (CABLE) database [68].
Another study showed that decreased methylation levels of three
CpG sites in BIN1 3’ intergenic region were observed in 50 LOAD
cases compared with 50 age and sex-matched controls [57]. In our
study, higher predicted expression levels of BIN1 and methylation
levels of its’ intergenic or exonic region CpG sites (cg08563189,
cg19153828, cg19590598 and cg22376361) were associated with
increased AD risk. MS4A6A, a member of the membrane-spanning
4A gene family, encodes membrane-spanning 4-domains A6A.
Previous studies have revealed that MS4A6A was a risk gene for AD
[69–71]. Previous investigation has also reported that MS4A6A
transcripts were increased in blood tissue of AD patients
compared with that of controls [71], which is consistent with
findings of the present study. Moreover, we identified novel AD
risk-associated CpG sites and their target genes (CNIH4, THUMPD3,
SERPINB9, MTUS1, CISD1, FRAT2, CCDC88B, FES, and SSH2). Three
target genes (CNIH4, MTUS1, and FES) were enriched in
neurological disease-related network. The remaining six genes
(THUMPD3, SERPINB9, CISD1, FRAT2, CCDC88B, and SSH2) were
enriched in inflammatory response-related network, which was
known as one of the pathological features of AD [72]. In the future,
functional studies focusing on the implicated CpG sites and target
genes are needed to better understand their exact roles in AD
development. In the current work we focused on blood for DNA
methylation prediction models. It is known that DNA methylation
could be tissue-specific. It is unclear whether the DNA methylation
markers identified in this study are also associated with AD risk
when focusing on more relevant brain tissues. Future research in
this area would be needed to identify brain-specific methylation
markers relevant to AD risk.
In summary, in an integrative multi-omics study, we identified

multiple CpG sites associated with AD risk and that 52 CpG sites
might affect AD risk through regulating the expression of putative
target genes. Our findings provide new insights into the etiology
of AD risk.

DATA AVAILABILITY
The datasets of FHS used in this study are obtained from publicly available through
dbGaP (www.ncbi.nlm.nih.gov/gap): dbGaP Study Accession: phs000342 and
phs000724. The summary statistics of AD GWAS by Bellenguez et al. [35] can be
downloaded from the European Bioinformatics Institute GWAS Catalog (https://
www.ebi.ac.uk/gwas/) under accession no. GCST90027158. The analysis code used for
data analysis is available on reasonable request from the corresponding author.
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