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The objective of this study was to evaluate the performances of the propensity score weighted (PSW) methodology in a post-hoc
re-analysis of a failed and a negative RCTs in depressive disorders. The conventional study designs, randomizations, and statistical
approaches do not account for the baseline distribution of major non-specific prognostic and confounding factors such as the
individual propensity to show a placebo effect (PE). Therefore, the conventional analysis approaches implicitly assume that the
baseline PE is the same for all subjects in the trial even if this assumption is not supported by our knowledge on the impact of PE on
the estimated treatment effect (TE). The consequence of this assumption is an inflation of false negative results (type II error) in
presence of a high proportion of subjects with high PE and an inflation of false positive (type I error) in presence of a high
proportion of subjects with low PE value. Differently from conventional approaches, the inverse of the PE probability was used as
weight in the mixed-effects analysis to assess TE in the PSW analysis. The results of this analysis indicated an enhanced signal of
drug response in a failed trial and confirmed the absence of drug effect in a negative trial. This approach can be considered as a
reference prospective or post-hoc analysis approach that minimize the risk of inflating either type I or type II error in contrast to
what happens in the analyses of RCT studies conducted with the conventional statistical methodology.
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INTRODUCTION
The randomized controlled trial (RCT) is considered as the gold
standard methodology for assessing efficacy and safety of new
treatments in depressive disorders (DD). This approach assumes
that randomization prevents systematic and uncontrolled differ-
ences across assigned treatment groups and that the response is
only driven by the treatment administered.
However, the large number of failed RCTs in DD raises serious

concern on the validity of this assumption: the current standard
randomization process seems unable to control the higher than
expected and uncontrolled level of placebo effect affecting the
efficacy assessments. Therefore, the failures of RCTs in DD have
become an increasing unresolved issue that affects the clinical
development of new antidepressant medications.
As previously pointed out [1], one may classify treated patients in

an DD clinical trial based on each participant’s propensity to respond
to a given type of treatment. The “D− P− ” population comprises
patients who are not responsive to either active treatment (D) and
inactive, placebo treatment (P). In DD trials in nonresistant
populations, the D− P− group typically represents 30–50% of the
populations. The “D+ P+ ” population comprises patients who are
responsive to either active (D) or placebo (P) treatments and
represents the intrinsic placebo response rate of the population
under investigation. The D+ P+ group is typically over 40% in DD
trials, making rather small the third population (“D+ P-”), which

comprises patients who are responsive to active treatment but not to
placebo and therefore represents the most informative group of
patients. It is therefore not surprising that several meta-analyses
indicated that the level of placebo response has a critical prognostic
relevance in the assessment of treatment effect (TE defined as the
baseline corrected change from placebo in MADRS or HAMD-17 total
score) at end of study (EOS) in RCTs conducted in major depressive
disorders (MDD) [2–10]. Furthermore, a meta-analysis conducted on
169 antidepressant monotherapy studies and 35 adjunctive poly-
pharmacy studies conducted in MDD, showed that a higher placebo
response rate statistically significantly correlates with a low-risk ratio
of responding to antidepressant versus placebo [11]. In this
framework, TE can be considered as the resultant of a treatment
specific and a treatment non-specific response and the individual
propensity to respond to any treatment (i.e., the placebo effect
usually referred as PE) can be considered as a relevant prognostic
factor. The larger is the propensity to respond to non-specific
treatment, the lower will be the chance to detect any treatment-
specific effect [11, 12].
In this context, new methodological approaches for design-

ing, conducting, and analyzing RCTs are needed for controlling
and mitigating the increasing confounding effect of placebo
response. The propensity score weighting (PSW) is a novel
statistical inference methodology recently proposed for analyz-
ing RCTs in MDD [13, 14]. The aim of PSW is to control for the
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confounder effect of the intrinsic PE within a given population
by achieving balance in PE distribution between exposed and
unexposed arms. By accounting for any differences in measured
baseline characteristics, the PSW methodology aims to approx-
imate what would have been achieved through a randomiza-
tion appropriate for insuring a balanced allocation of subjects in
the different treatment arms with respect to the PE values at
baseline.
The PSW methodology is based on the calculation of propensity,

which is the individuals’ probability of showing PE given observations
of individual items of the selected clinical scale used for assessing
disease severity (i.e., HAMD-17 or MADRS) evaluated between two
pre-randomization time points at screening and baseline. The
predicted probability was estimated using artificial intelligence (AI)
methodologies based on artificial neural network (ANN) approach.
In the present paper, we are presenting a re-analysis of a

reportedly failed and a reportedly negative RCTs conducted in DD
using the PSW methodology. The individual propensity to PE
estimated using an artificial intelligence approach will be used as
weight of the individual observations in the mixed-effect model
for repeated measures (MMRM) conducted to assess TE.
The objective of the analysis will be to compare the

performances of the PSW methodology with the conventional
statistical methodology.

METHODS
Data
The data of two RCTs were re-analyzed used using the propensity weighted
approach. The first trial (Study SEP360-029) was a randomized, placebo-
controlled, double-dummy, multicenter study of the safety, efficacy, and
tolerability of dasotraline, a serotonin-norepinephrine-dopamine reuptake
inhibitor, in male and female subjects with DD (ClinicalTrials.gov Identifier:
NCT00584974). According to the main criteria for inclusion, male and female
subjects between the ages of 18 and 55 years at the time of informed consent
who met the DSM-IV criteria for MDD and confirmed by the Mini International
Neuropsychiatric Interview (MINI) were included in the trial. Subject meeting
criteria for Atypical or Melancholic Features were eligible. The duration of the
current episode of MDD was at least 1month but not longer than 12months.
Subject had at least 1 previous, diagnosed episode of MDD in the past 5 years.
MDD was the condition that was chiefly responsible for motivating the
subject to seek treatment. The subject had a clinical global impression of
severity (CGI-S) score greater than or equal to 4 at screening and baseline. The
subject was deemed appropriate by the investigator for medical treatment
with venlafaxine for depression.
The study consisted of a screening period, which may have lasted up to

2 weeks; an 8-week (56 days) double-blind treatment period; a 2-week
(14 days) wash-out period; and a 1 week (7 days) follow up period. Total
subject participation was 13 weeks (91 days). The treatments were 0.5 mg
or 2.0 mg dasotraline, 150mg of venlafaxine, and placebo. Venlafaxine was
titrated from 75mg to 150mg after 2 weeks. Safety, efficacy, and
tolerability were evaluated using clinical observations as well as clinician-
rated scales, and subject-administered rating scales. In-clinic visits occurred
at Weeks 1, 2, 4, 6, 8, 9, and 11.
A total of 472 subjects (118 per treatment group) were planned to be

randomized to complete 400 subjects (100 subjects per treatment
group). Subjects were randomized in a 1:1:1:1 ratio to treatment with
either 0.5 mg, or 2.0 mg dasotraline, 150 mg venlafaxine, or placebo.
This sample size was based on the ability to detect a 3 point
improvement in change from baseline in HAM-D-17 for either dasotra-
line arm compared to placebo, assuming a common standard deviation
of 7.5, with 80% power using a 2-sided test at the 0.05 significance level.
A total of 514 subjects were randomized to 1 of 4 treatment groups for
11 weeks of treatment including 8 weeks double blind treatment and
3 weeks washout. This study was considered as a negative study as no
signal of a clinically meaningful or statistically significant treatment
effects for the primary endpoint (i.e., the HAMD-17 total score at week 8)
was detected.
The second trial (Study SEP380-201) was a randomized, double-blind,

placebo-controlled, parallel-group, fixed-dose study designed to evaluate
the efficacy, safety, and tolerability of treatment with non-racemic
amisulpride (SEP-4199) monotherapy given as 200 mg/day or 400 mg/day

compared with placebo for the treatment of major depressive episode
associated with bipolar disorder (ClinicalTrials.gov Identifier:
NCT03543410). According to the inclusion criteria, this multi-regional
study enrolled outpatients 18–65 years of age who met DSM-5 criteria for
bipolar I disorder and were currently experiencing a major depressive
episode (≥4 weeks and <1 year duration), without psychotic features, but
with rapid cycling permitted (<8 episodes in the past year). Diagnosis was
confirmed by the Structured Clinical Interview for DSM-5, Clinical Trials
Version SCID-5-CT. A Montgomery-Åsberg Depression Rating Scale
score ≥ 22 and a Young Mania Rating Scale score ≤12 were required at
both screening and baseline. Females were enrolled who were unable to
become pregnant (postmenopausal or surgically sterile), or who were
using a highly effective form of birth control for at least 28 days prior to
administration of the first dose of study drug. Patients with type 2
diabetes were eligible for study inclusion if their screening glucose was
<200 mg/dL, and if their hemoglobin A1c (HbA1c) was ≤7.0%. Patients
could be enrolled who were on stable doses (for at least 30 days prior to
Baseline) of an oral hypoglycemic, an antihypertensive agent, or thyroid
replacement medication. A total of 289 subjects were included in the
analysis. The primary efficacy endpoint was the change from placebo in
the baseline adjusted Montgomery-Asberg Depression Rating Scale
(MADRS) at Week 6 between each non-racemic amisulpride treatment
group and the placebo treatment group in the ITT population on subjects
who participated in sites located in the US and Europe. A total sample
size of 279 evaluable subjects (93 per treatment group: SEP-4199 200
mg/day, SEP-4199 400 mg/day, and placebo) with a 2-sided global alpha
of 0.05 was estimated in a power analysis to have about 90% power to
reject at least 1 truly significant comparison and about 75% power to
reject both truly significant comparisons using the truncated Hochberg
(γ= 0.9) procedure, assuming treatment effect sizes of 0.44 for both
doses of SEP-4199.
Statistically non-significant improvement in depressive symptoms

assessed by the MADRS total score was observed (vs. placebo) for both
the 200mg/day and 400mg/day dose groups at 6-week study endpoint. In
the analysis of the primary endpoint, in patients with bipolar I depression,
non-racemic amisulpride showed numerical improvement in the MADRS
total score compared to placebo after 6 weeks of treatment. While the
study did not meet its primary endpoint, a relatively large improvement in
MADRS total score was observed in the placebo group, which may have
contributed to the trend level findings of the primary analysis [15]. For this
reason, this study was considered as a failed study.

Placebo response definition
The placebo response was defined as a clinically relevant percent change
from baseline (i.e., 50% or more) in the MADRS (study SEP380-201) or
HAMD-17 (study SEP360-029) total score in the placebo treated subjects
at the study endpoint (EOS=week 6 for SEP380-201 or week 8 for
SEP360-029).

Propensity weighted analysis
The propensity weighted analysis was conducted using a 5-step approach
for each study:

1. Selection of the pre-randomization (i.e., screening and baseline) and
EOS primary outcome data in subjects randomized to placebo

2. Development of an ANN model using the 10 individual MADRS
items (study SEP380-201) or the 17 individual HAMD-17 items (study
SEP360-029) change from screening to baseline in subjects assigned
to placebo to estimate the probability to be placebo responder at
study end.

3. Validation of the ANN model by comparing the model-predicted
probability to the observed placebo response.

4. Prediction of the individual probability to have a PE using the pre-
randomization data of all subjects randomized in the study
(i.e., subjects in the different treatment arms) using the ANN model.

5. Use the inverse individual probability as a weighting factor in the
MMRM analysis conducted on the longitudinal clinical scores to
estimate the TE.

The original data were randomly split into three datasets for model
development and validation:

1. The training set for the ANN model development including 75% of
the data in the placebo arm.

R. Gomeni et al.

2

Translational Psychiatry          (2023) 13:388 



2. The validation set for the ANN model including 25% data in the
placebo arm not used for model development. The model validation
was conducted by comparing the model predictions and data
observed in the validation dataset.

3. The working dataset, with the full data set with all subject data in
the 3-arms. This dataset was used to provide the individual estimate
of the propensity probability applying the validated ANN model to
the pre-randomization data of each subject in the 3-arms.

A binary score was associated to each subject: 0 or 1 for absence or
presence of placebo response at EOS. The individual MADRS or HAMD-
17 items collected at two pre-randomization time points (i.e., at
screening and baseline) were used to predict the placebo response at
EOS using an ANN methodology [16]. A grid search was conducted for
identifying the optimal number of layers and nodes in the ANN model.
The optimality criteria were based on the best predictive performance
of the model. A bootstrap analysis was applied for estimating the
predictive performance and the robustness of the model by computing
the area under the receiver operating characteristic (ROC) curve, and
the associated 95% confidence interval. The ANN analysis was
conducted using the ‘neuralnet’ library in R [17].
The individual estimate of the propensity probability of PE was finally

estimated by applying the ANN model to the pre-randomization data of
each subject enrolled in the trials. The inverse of the estimated probability
was included as weight in MMRM model used to analyze the longitudinal
MADRS or HAMD-17 total scores and to estimate the TE. The MMRM
models were implemented in SAS (PROC MIXED, Version 9.4, SAS Institute,
Carry, NC, USA), using the change from baseline of the MADRS or HAMD-17
total score. In the MMRM analysis a random effect model was used on the
change from baseline value, using an unstructured covariance matrix, time
as a classification variable, and baseline measurement as a covariate,
baseline x time interaction, and treatment x time interaction. The TE was
calculated as the least squares means (LS means) difference at EOS. Based
on the MMRM analysis outcomes, between-group effect size at EOS was
computed as the absolute value of the LS mean difference from placebo
divided by the model estimate of the pooled SD deviation. The reported
p-values were adjusted for multiplicity using the Tukey methodology.
Two ITT analyses were conducted: the first one (reference) was the

conventional analysis (without propensity weight) and the second analysis
was the propensity weighted analysis.

RESULTS
ANN analysis
The results of the grid search are presented in Table 1 and the
final neural network layouts for the ANN analyses are presented in
Fig. 1 (panel A for the SEP360-029 study and panel B for SEP380-

201 study). In these plots, the first column represents the change
from screening to baseline of the individual 10 MADRS or 17
HAMD-17 items considered as predictors of the placebo response
(‘resp’), the second column represents the combined items
characterizing the first layer, the third column represents the
combined items defining the second layer, and the third column
represents the item defining the final layer. The lines connecting
the nodes are color-coded by sign (black increasing, and gray
decreasing effect). The size of the connecting lines in the network
is proportional to the relative importance of the information
associated to the nodes. A null weight will be associated to
variables not relevant for predictions.
The values of the ROC AUCs for the two studies were statistically

greater than the noninformative threshold of 0.5, as indicated by the
boundaries of the 95% confidence intervals of the ROC AUC. These
results indicated that the two ANN models were able to provide a
reliable estimate of the probability to show a non-specific response
to a treatment using the individual item score of the MADRS or
HAMD-17 scale assessed on two pre-randomization time points.
The ANN models were then used to predict the individual

propensity to respond to placebo in each subject included in the
three arms of the two studies. The percentage of subjects with
estimated propensity to respond to non-specific TEs in the
intervals <0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and >0.8 is presented in Fig. 2.
The distribution of the propensity probability in the two studies

indicates that a large majority of the subjects enrolled in the trials
have a high (p > 0.8) probability to inflate the response due to a non-
specific response to a treatment. Therefore, the size of the TE is
expected to be larger when the weighting factor is included in the
mixed-effect analysis to account for this unbalance. The descriptive
statistics of the HAMD-17 and the MADRS total scores longitudinal
changes from baseline in the total population and in the subjects
with propensity probability >0.5 and <0.5 is presented in Fig. 3.
The descriptive statistics on the longitudinal changes from

baseline of HAMD-17 and MADRS total scores to respond to
placebo indicate that the expected detectable signal of a TE is
highly reduced in the subjects with high propensity probability to
a non-specific response to a treatment (p > 0.5).

MMRM Analysis
The results of the non-weighted and weighted MMRM analyses
with the estimation of the effect sizes are presented in Fig. 4 and
in Table 2.

Table 1. Results of the grid search and of the ANN models for the SEP360-029 study and for the SEP380-201 study.

Study Nb Layers Nb Nodes/Layer ROC 95% CI

1 2 3 AUC Lower Upper

SEP360-029 3 3 7 3 0.92 0.81 1

SEP380-201 3 7 3 1 0.89 0.73 1
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Fig. 1 Neural network layout. Final layouts of the ANN models for the analysis conducted using the changes from screening to baseline of
the individual items of the MADRS and HAMD-17 clinical scales used as potential predictors of the response (resp= response to placebo) for
the SEP360-029 study (A) and for the SEP380-201 study (B).
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The comparison of the TE estimated in the two analyses
conducted with the SEP360-029 data indicated the absence of any
signal of dasotraline efficacy. Despite the improvement in signal
detection, the propensity weighted analysis confirmed the
inefficacy of dasotraline at 0.5 mg and 2mg dose for the
treatment of MDD.
Differently from the outcomes of study SEP360-029, the results

of the analyses conducted with the study SEP380-201 indicated a
strong signal of drug response in the propensity weighted
analysis. In this case the TEs and the effect-sizes in the two
treatment arms were ~twice larger than the values estimated in
the reference (non-weighted) analysis.

DISCUSSION
The primary objective of this study was to evaluate the
performance of the PSW methodology applied to RCTs presenting

negative of border-line results and to verify that the PSW
methodology was not inflating the type I or type II error.
In the PSW approach all subjects randomized in the trial were

included in the analysis consistently with the intention-to-treat
(ITT) paradigm. Therefore, PSW cannot be considered as an
enrichment strategy as no data of any subject were excluded from
the analysis in the attempt remove subjects who have large PE.
The large number of meta-analyses conducted on many RCTs in

MDD strongly support the assumption that the estimated TE value
is highly correlated with the distribution of the treatment not-
specific response (PE): the higher the PE, the lower will be the
estimated TE value [11].
The conventional statistical model based on a liner mixed-effect

longitudinal analysis approach (without any individual weight),
does not account for the baseline distribution of PE as a
prognostic factor. Therefore, the statistical model implicitly
assumes that the baseline PE is the same for all subjects enrolled
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Fig. 2 Distribution of the propensity probability to a placebo effect by treatment for the SEP360-029 study (left panel) and for the SEP380-201
study (right panel).

Fig. 3 Descriptive statistics (mean ± standard error) on the longitudinal HAMD-17 (study SEP360-029—top panel) and MADRS (study SEP380-
201 – bottom panel) changes from baseline in the subjects with propensity probability < 0.5 (left panels), all subjects (central panel), and >0.5
(right panels).
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in the trial even if this assumption is not supported by our
knowledge on the impact of PE on the estimated TE. There is a
clear evidence of variability in the proportion of P+ D+ subjects
within an MDD trial and this may clearly confound the results. In
the case of study SEP380-201, for example, the MADRS change of
almost 15 points reflects an extraordinarily high rate of placebo
response. Therefore, the consequence of the conventional
statistical model’s assumption is an inflation of false negative
results (type II error) in presence of a high proportion of subjects
with high PE, as in the case of study SEP380-201. Conversely, the

conventional statistical model can lead to an inflation of false
positive results (type I error) in presence of a higher proportion of
subjects with low PE value.
The PSW methodology currently used in epidemiological and

social science studies has been proposed as a novel approach to
better control the potential negative effect of unbalanced
distribution of PE in the assessment of the TE and the effect size
in RCTs. Recently, it was adopted in a regulatory setting by the
FDA, where it was used in observational studies to support
marketing applications for medical devices [18–21].

Fig. 4 Least Squares Mean (±standard error) of the longitudinal HAMD-17 total score changes from baseline (study SEP360-029 – top panel)
and MADRS total score (study SEP380-201—bottom panel) estimated using the propensity weighed (left panel) and non-weighted analyses
(right panel).

Table 2. Treatment effect and effect size in the HAMD-17 and MADRS total score estimated using the propensity weighed and non-weighted
analyses.

Study SEP360-029 Comparison TE StdErr P* SD Effect_size

Reference Pbo vs. Dasotr. 0.5 mg 0.236 0.985 1.000 7.818 0.030

Pbo vs. Dasotr. 2.0 mg −0.466 0.981 1.000 7.849 0.059

Pbo vs. Venlafax. 150mg 4.104 1.015 0.0094 7.990 0.514

Propensity Pbo vs. Dasotr. 0.5 mg 3.008 0.916 0.115 7.273 0.414

Analysis Pbo vs. Dasotr. 2.0 mg 2.718 0.953 0.324 7.620 0.357

Pbo vs. Venlafax. 150mg 6.928 0.958 <0.0001 7.543 0.918

Study SEP380-201 Comparison TE StdErr p* SD Effect_size

Reference Pbo vs. Amisulp. 200mg 3.411 1.619 0.6188 11.336 0.301

Pbo vs. Amisulp. 400mg 3.280 1.592 0.6513 11.170 0.294

Propensity Pbo vs. Amisulp. 200mg 6.504 1.315 <0.0001 9.208 0.706

Analysis Pbo vs. Amisulp. 400mg 7.151 1.325 <0.0001 9.295 0.769

TE treatment effect, StdErr standard error, P probability, SD standard deviation.
*P-value adjusted for multiplicity.
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An important question concerning the potential inflation of the
type II error (the risk of false negative results) associated with the
outcomes of the PSW methodology must be addressed. When
applied to randomized controlled trials, PSW ensures balance
between groups at the time of randomization, accounts for
chance imbalances in observed randomization, and generalizes
target results to target populations [22]. Therefore, the use of PSW
can be considered as a reference approach that minimizes the risk
of inflating either type I or type II error at variance to what
happens in the analyses of RCT studies conducted with the
conventional statistical methodology.
There is great flexibility in how the propensity scores

methodology can be implemented. For example, different criteria
can be used for identifying placebo responders in the ANN
modeling, and each different criterion can lead to a different
estimate of individual probability of PE. This flexibility can lead to a
multiple testing approach in the attempt to identify the analysis
option providing the smallest p-value and such a strategy must
inevitably inflate type I error rates. Hence, the prospective
definition of any statistical modeling details of the statistical
treatment of propensity scores has to be prospectively defined in
the statistical analysis plan in order to avoid risk of very serious
over-inflation of type I error rates [23, 24].
The re-analysis of the data using the PSW methodology

increased substantially the separation of active drug from placebo
in study SEP380-201, indicating that the results initially found
using an unadjusted analysis were mainly driven by the
excessively high percent of subjects with high PE values (i.e.,
>50% as reported in Fig. 2).
The estimated TE and effect size derived using the current

statistical methodologies represent only a working estimate of
these values. This estimate is strongly correlated with the level of
imbalance in the individual propensity distribution consistently
with the expected effect of low/high placebo response on TE [11].
The re-analysis of the data of study SEP360-029 confirmed the

results initially found using an unadjusted analysis despite the
high percent of subjects with high PE values comparable to the %
of subjects in the study SEP380-201. Despite the adjustment of
potential unbalance in PE and consistently with the descriptive
analysis on the longitudinal HAMD-17 total score in study SEP360-
029 did not reveal any separation between placebo and any dose
of dasotraline (0.5 mg and 2mg), while confirming the efficacy of
the active comparator (venlafaxine). These findings indicate that
the PSW methodology did not artefactually detect a treatment
effect signal when this signal was not present.
In the present analyses, the change in the individual MADRS or

HAMD scores from screening to baseline have been used as
potential predictors of placebo response. Many additional or
alternative potential pre-randomization parameters can be also
considered such as the demographic data, the habits and quality
of life, or the disease-related information, etc. in the attempt to
improve the overall predictive performance of the ANN model. For
simplicity, we decided to limit our exploration to the individual
items of the HAMD and MADRS scale as these items are assumed
to capture specific and independent symptoms of depression,
and, more important, the total score of these clinical scales is used
to estimate the clinical response at study end.
The PSW methodology can be prospectively applied to any RCT

designed and conducted using conventional methodologies
when: (i) the RCT was designed to collect screening and baseline
data, (ii) the criteria for assessing the clinical response to placebo
were pre-specified in the analysis plan, (iii) the criteria for
implementing and qualifying the predictive performance of the
ANN model were defined in the analysis plan.
As discussed in [14], the individual propensity weighted scores

estimated in one RCT cannot be generalized and prospectively
applied to the data of other RCTs even if the other RCTs have
similar designs. This because, the individual propensity to respond

to placebo is associated with the individual expectations. This
varies from individual to individual as it is associated with study
specific implementation and conduction factors. For this reason
the ANN model for the PSW estimation has to be conducted,
qualified and validated with the data of each trial.
In conclusion, the PSW methodology aims to hit a so far elusive

sweet spot by decreasing type II error (fewer false negative
studies) while not enhancing false positive studies (type I error).
Additional re-analyses of different studies are needed to under-
stand the potential of the PSW methodology better, considering
also the risk of publication bias in post-hoc analysis. However, this
work provides a new analysis tool towards mitigating the known
challenges posed by MDD clinical trials nicely benchmarked by
Freeman and colleagues [25].
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