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Narrative reviews have described various resting-state EEG power differences in autism across all five canonical frequency bands,
with increased power for low and high frequencies and reduced power for middle frequencies. However, these differences have yet
to be quantified using effect sizes and probed robustly for consistency, which are critical next steps for clinical translation.
Following PRISMA guidelines, we conducted a systematic review of published and gray literature on resting-state EEG power in
autism. We performed 10 meta-analyses to synthesize and quantify differences in absolute and relative resting-state delta, theta,
alpha, beta, and gamma EEG power in autism. We also conducted moderator analyses to determine whether demographic
characteristics, methodological details, and risk-of-bias indicators might account for heterogeneous study effect sizes. Our literature
search and study selection processes yielded 41 studies involving 1,246 autistic and 1,455 neurotypical individuals. Meta-analytic
models of 135 effect sizes demonstrated that autistic individuals exhibited reduced relative alpha (g = −0.35) and increased
gamma (absolute: g= 0.37, relative: g= 1.06) power, but similar delta (absolute: g= 0.06, relative: g= 0.10), theta (absolute:
g= −0.03, relative: g= −0.15), absolute alpha (g= −0.17), and beta (absolute: g= 0.01, relative: g= 0.08) power. Substantial
heterogeneity in effect sizes was observed across all absolute (I2: 36.1–81.9%) and relative (I2: 64.6–84.4%) frequency bands.
Moderator analyses revealed that age, biological sex, IQ, referencing scheme, epoch duration, and use of gold-standard autism
diagnostic instruments did not moderate study effect sizes. In contrast, resting-state paradigm type (eyes-closed versus eyes-open)
moderated absolute beta, relative delta, and relative alpha power effect sizes, and resting-state recording duration moderated
relative alpha power effect sizes. These findings support further investigation of resting-state alpha and gamma power as potential
biomarkers for autism.
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INTRODUCTION
Autism spectrum disorder (ASD) is characterized by persistent and
pervasive deficits in social communication and interactions as well
as restricted and repetitive patterns of behaviors, interests, or
activities [1]. Although many autistic individuals live fulfilling lives,
ASD diagnoses are associated with impaired quality of life and
significant socioeconomic costs [2–4]. Early intervention can help
reduce these psychosocial costs and ASD may be reliably diagnosed
as early as 14 months of age [5]. However, epidemiological and
meta-analytic studies suggest that ASD is more typically diagnosed
between 43 and 50 months of age [6, 7]. This discrepancy between
potential and actual ASD diagnostic ages stems from multiple
clinical challenges, including long wait times between initial
concerns and diagnostic evaluations, sociocultural and geographi-
cal barriers in accessing diagnostic services, resource-intensive
diagnostic processes that require highly trained clinicians and
behavioral observations over extended periods of time, and
complex differential diagnoses at young ages [8–13]. Alternate,
complementary approaches are therefore needed to facilitate
earlier diagnosis of ASD, with recent work focusing on potential
biomarkers and digital phenotyping that could be implemented
prior to the full expression of ASD symptoms [14, 15]. Notably, a

multi-tiered assessment approach that incorporates diagnostic
biomarkers, which are sequentially administered as needed for
positively screened cases and those with diagnostic uncertainty, has
recently been shown to have the potential for increasing diagnostic
efficiency and decreasing lifetime costs associated with ASD [16]. To
successfully implement such approaches, it is crucial to identify
multiple scalable biomarkers that effectively differentiate between
autistic and neurotypical individuals. Quantifying the diagnostic
properties of these biomarkers (e.g., effect size, sensitivity, and
specificity) will further optimize their deployment in tiered
assessment services.
Neural biomarkers hold particular promise to enhance early

ASD diagnosis given ASD is theorized to be rooted in structural
differences in neural systems and disruptions to neural
information processing [17, 18]. Indeed, systematic reviews
and meta-analyses of neuroimaging and event-related potential
studies have found significant anatomical and functional
differences in ASD [19–22]. Resting-state electroencephalogra-
phy (EEG) may also serve as an ASD biomarker for several
reasons. First, similar to other neural-based measures, resting-
state EEG yields objective metrics that may be more sensitive in
detecting subtle neurophysiological changes that precede
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behavioral manifestations of ASD. Second, EEG is more cost-
effective, non-invasive, or portable than other neuroimaging
methodologies. Third, resting-state EEG data may be collected
from individuals with a wide range of developmental and
functioning levels, including young children, which is of
paramount importance for early diagnosis of ASD [23]. Further,
while some autistic individuals with sensory sensitivities may
find it challenging to tolerate wearing EEG caps, desensitization
procedures have been successfully implemented to improve
compliance in EEG data acquisition [24]. Finally, relative to
event-related potential techniques, resting-state EEG paradigms
are typically more accessible with fewer participation demands
and technological requirements. In fact, given that clinical EEG
protocols routinely use resting-state paradigms, existing health-
care infrastructure (e.g., EEG recording facilities, data processing
pipelines, and specialized technicians) may be leveraged when
using resting-state EEG to aid in diagnosing ASD [25].
While several metrics may be used to quantify resting-state EEG

signals, power spectral analysis has been the dominant approach and
can be traced back to the very first human EEG study by Hans Berger
[26]. Neural oscillations are typically broken down into five canonical
EEG frequency bands during power spectral analyses: delta (<4 Hz),
theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (>30Hz)
bands [27]. These frequency bands have been posited to map onto
various affective and cognitive processes. To illustrate, delta
oscillations are prominent during processing of motivational and
salient stimuli [28, 29]; theta oscillations are associated with emotion
regulation and memory encoding [28–30]; alpha oscillations largely
reflect regulatory processes for inhibiting task-irrelevant cortical areas
[28–30]; beta oscillations are involved in attentional activation and
sensorimotor integration [28]; and gamma oscillations are related to
binding of perceptual features, maintenance of memory contents,
and representation of objects [28, 30, 31]. Additionally, EEG power
spectral analyses may be conducted for both absolute power (i.e.,
integral of all EEG power values within a frequency band) and relative
power (i.e., the ratio of absolute power for a frequency band to total
absolute power across all frequency bands). These two EEG power
measures therefore offer complementary insights, with absolute
power ideal for characterizing the magnitude of neural oscillations
and relative power helpful for understanding relationships across
frequency bands.
An emerging literature suggests that absolute and relative

resting-state power may be different in ASD across all five
canonical frequency bands, though findings are mixed. To our
knowledge, five narrative reviews have examined resting-state
EEG power in ASD and are summarized in Supplementary Table 1
[32–36]. Collectively, study findings suggest a potential U-shaped
profile of resting-state EEG power differences in ASD [36];
increased EEG power is observed for low and high frequencies
(i.e., delta, theta, beta, and gamma bands), whereas EEG power is
reduced for middle frequencies (i.e., alpha band). The reasons for
these suspected differences remain unknown but possibly relate
to neurofunctional differences in gamma-aminobutryic acid
(GABA) neural systems between autistic and neurotypical indivi-
duals [36]. Importantly, EEG power spectral differences in ASD also
appear to track with severity of clinical ASD features. For example,
lower levels of resting-state alpha power are associated with
preferential attention to details [37] and resting-state gamma
power and social reciprocity are significantly related in ASD [38].
Although preliminary, these studies highlight the potential value
of resting-state EEG power in delineating ASD clinical phenotypes.
Despite the promise of resting-state EEG power as a potential

neural biomarker for ASD, three major gaps remain. First, existing
reviews are narrative in nature and no meta-analysis has been
conducted. While narrative reviews are valuable for summarizing
prior literature, meta-analyses offer a statistical approach to
synthesize study findings by determining pooled effect sizes,
resolve potential discrepancies in past studies, and provide

estimates of potential biases in the literature. Importantly, meta-
analyses of EEG power have been successfully conducted in other
neurodevelopmental disorders (e.g., attention-deficit/hyperactivity
disorder), supporting similar approaches for ASD [39].
Second, existing narrative reviews on resting-state EEG power in

ASD have highlighted how varied demographic characteristics and
methodological decisions across studies may have contributed to
differential findings, potentially influencing interpretations and
translational applications of resting-state EEG power differences.
For example, ASD and intellectual disability cooccur at high rates and
resting-state EEG power is known to be associated with IQ [40, 41]; it
is therefore possible that resting-state EEG power differences
between autistic and neurotypical individuals may be confounded
by group differences in intellectual abilities. Meta-analyses are well
suited to systematically examine these potential moderators and
quantify their influences on the heterogeneity in study findings.
Additionally, meta-analyses may identify which methodological
procedures are critical for detecting resting-state EEG power
differences in ASD. For example, eyes-open paradigms may be
particularly useful for differentiating between autistic and neuroty-
pical individuals in some frequency bands, whereas eyes-closed
paradigms may be more optimal for other frequency bands.
Understanding the impact of both demographic and methodological
differences is a critical preliminary step in determining the utility of
resting-state EEG power as an ASD biomarker.‘
Finally, existing reviews on resting-state EEG power in ASD have

not fully complied with field-standard Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines
[42]. For example, some of these reviews did not specify search
sources and strategies, used a single information source, and did
not consider gray literature. Further, since the publication of
existing narrative reviews, multiple new studies have examined
resting-state EEG power in ASD and are in need of integration with
past literature bases. Thus, a comprehensive systematic review
and meta-analysis that adheres to PRISMA guidelines is needed to
provide an updated synthesis and quantification of resting-state
EEG power differences in ASD.
This systematic review and meta-analysis has two key objectives.

Our primary objective is to systematically review both published and
gray literature on resting-state EEG power in ASD and synthesize
effect sizes of differences in absolute and relative power between
autistic and neurotypical individuals across all five canonical EEG
frequency bands. Consistent with prior narrative reviews, we
predicted that ASD would be broadly characterized by significantly
greater EEG power (i.e., positive effect sizes) for delta, theta, beta,
and gamma bands and significantly reduced EEG power
(i.e., negative effect sizes) for the alpha band. Our secondary aim
is to quantify heterogeneity in effect sizes across individual studies
and evaluate potential sources that may account for heterogeneous
study findings. We expected key demographic characteristics,
methodological details, and risk-of-bias indicators to moderate
effect sizes of resting-state EEG power differences in ASD.

METHODS
We conducted this systematic review and meta-analysis in
accordance with PRISMA guidelines [42]. We preregistered the
present study on Open Science Framework (OSF; https://osf.io/
p3m9y) and adhered to our preregistered plans unless
otherwise noted.

Literature search
Information sources. We conducted comprehensive literature
searches in APA PsycInfo (EBSCO), Cochrane Library, MEDLINE
(PubMed), Scopus, and Web of Science Core Collection. To identify
additional gray literature, we searched ClinicalTrials.gov and
ProQuest Dissertations and Theses. Each electronic database was
searched from its inception to December 31, 2021, providing a
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contemporary synthesis of the literature and facilitating future
updating efforts. We also searched electronically available
conference proceedings of the International Society for Autism
Research (2004–2021), Society for Neuroscience (2006–2021), and
Society for Psychophysiological Research (2001–2021). Studies
cited in existing narrative reviews on resting-state EEG in ASD and
psychiatric disorders were examined [32–36]. For each included
study, we performed backward and forward citation searches, with
the latter being conducted in both Scopus and Web of Science
Core Collection citation databases.

Search strategies. We searched study titles, abstracts, and
keywords using a combination of two search terms. The search
term to identify ASD studies is (ASD OR PDD OR autis* OR
“pervasive development*” OR Asperger*). The search term to
identify resting-state EEG studies is ((rest* OR baseline OR oscillat*
OR quantitative OR spontaneous) AND (EEG OR qEEG OR
electroencephal* OR electrophysio*)). We also included index
terms unique to individual electronic databases, such as “autism
spectrum disorders” as a specific descriptor in APA PsycInfo and
“electroencephalography” as a specific medical subject heading in
MEDLINE. Full line-by-line search strategies for individual informa-
tion sources are detailed in Supplementary Materials.

Study selection
Eligibility criteria. To be eligible, studies identified from literature
searches had to meet all of the following inclusion criteria:
(1) contained original research; (2) included a sample of autistic
individuals with a clinical diagnosis of ASD, based on either the
Diagnostic and Statistical Manual of Mental Disorders (DSM) or
the International Classification of Diseases (ICD) diagnostic
classification system; (3) included a sample of neurotypical
individuals; (4) recorded resting-state EEG using an eyes-closed
paradigm and/or an eyes-open paradigm, with the constraint that
only simple visual stimuli (i.e., fixation cross, bubbles, or geometric
shapes), if any, were used; (5) compared absolute and/or relative
power between autistic and neurotypical individuals for at least
one canonical EEG frequency band; (6) reported sufficient
statistical information to compute at least one effect size; and
(7) published in English before December 31, 2021.
Additionally, we applied the following exclusion criteria. Studies

that exclusively focused on syndromic ASD (e.g., fragile X
syndrome) and thus did not include separate samples of
individuals with idiopathic autism were excluded due to different
developmental trajectories between syndromic and idiopathic
ASD [43]. Studies that focused on sleep EEG were excluded due to
different patterns of neural oscillations during the waking state
and various sleep stages [44]. Studies that focused on EEG spectral
measures that were derived from absolute or relative power
(e.g., coherence, power asymmetry, and power ratio) were
excluded if original EEG power data were not also reported. While
not explicitly indicated in our preregistration, for clarity, studies
that focused on young children with high likelihood of receiving a
clinical diagnosis of ASD (e.g., infant siblings of autistic individuals)
and did not report ASD outcomes data were excluded; however, in
cases where ASD outcomes data were reported, findings from
high-likelihood children receiving a clinical diagnosis of ASD
(i.e., autistic children) and low-likelihood children not receiving a
clinical diagnosis of ASD (i.e., neurotypical children) were included.

Selection process. Studies identified from literature searches were
selected for inclusion through a four-stage process. First, we removed
duplicate study records based on unique study identifiers (e.g., digital
object identifiers). Second, for each study record, two coders
independently screened its title and abstract against inclusion and
exclusion criteria. Disagreements were resolved by discussion. Third,
we downloaded full-text articles, each of which was independently
screened by two coders against inclusion and exclusion criteria.

Disagreements were also resolved by discussion. Finally, we assessed
whether different studies used overlapping samples (e.g., conference
poster subsequently published as a journal article) by juxtaposing
study authors, sample characteristics, and EEG methodological
details. If multiple studies used overlapping samples, we prioritized
published studies and those with larger sample sizes for inclusion.

Data collection
For each included study, two coders independently extracted
study metadata, sample characteristics, EEG recording, preproces-
sing, and spectral analysis parameters, and EEG power metrics.
Discrepancies were resolved by discussion. Definitions for
individual data items are described in Supplementary Materials,
with the full dataset available on OSF (https://osf.io/uk92c). Here,
we specifically highlight details for data items central to our study
objectives, including potential moderators and study outcomes.

Potential moderators. Demographic Characteristics: We focused
on three key demographic characteristics known to moderate
resting-state EEG power: biological sex, age, and IQ [41, 45–48].
These demographic characteristics were coded separately for the
autistic and neurotypical groups. We coded biological sex as
the percentage of individuals who were male. We coded age as
the mean age in years. We coded IQ as the mean overall,
nonverbal, and/or verbal IQ. For analytic purposes, we calculated
weighted percentages and means to represent the demographic
characteristics of the full sample in each included study.
Methodological Details: We examined three key study methodolo-

gical differences informed by prior narrative reviews: resting-state
paradigm, referencing scheme, and epoch duration [36]. We coded
resting-state paradigm as either eyes-closed or eyes-open paradigm.
We coded referencing scheme as the re-referencing electrode or
scheme if offline re-referencing was conducted (e.g., mastoids) and as
the online reference electrode or scheme if offline re-referencing was
not conducted (e.g., electrode Cz). We coded epoch duration as the
duration of individual epochs used for analyzing EEG power in
seconds. Moreover, we investigated an additional study methodolo-
gical parameter not included in our preregistration: resting-state EEG
recording duration, which served as a proxy for the number of artifact-
free epochs used in EEG power analyses, given that the latter had not
been consistently reported in published studies. We coded recording
duration as the total duration of the resting-state paradigm in minutes.
Risk-of-Bias Indicators: We assessed two potential sources of bias

that might limit interpretations of resting-state EEG power differ-
ences between autistic and neurotypical groups: use of gold-
standard ASD diagnostic instruments and matched group design. For
use of gold-standard ASD diagnostic instruments, we coded whether
studies used the Autism Diagnostic Observation Schedule, Second
Edition (ADOS-2) or Autism Diagnostic Interview-Revised (ADI-R) or
earlier editions to determine the presence or absence of ASD [49, 50].
For matched group design, we coded whether autistic and
neurotypical groups were explicitly matched or assessed to be
statistically equivalent on biological sex, age, and IQ separately.

Study Outcomes. We were interested in 10 study outcomes:
absolute and relative power across delta, theta, alpha, beta, and
gamma frequency bands. For each included study, we extracted data
for all reported study outcomes. Specifically, for each study outcome,
we coded frequency band limits and regions of interest. We coded
frequency band limits as the frequencies used to define the lower
and upper limits of the canonical frequency band in Hz (e.g., 8 and
12 Hz for alpha band). We coded all reported regions of interest, with
each region of interest coded as one of the following topographical
regions: global, frontal, central, parietal, temporal, or occipital. For
studies that analyzed EEG power using individual electrodes, we
assigned individual electrodes to regions of interest based on their
topographical locations (e.g., electrode Fz assigned to frontal region).
For studies that analyzed EEG power using non-predefined regions of
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interest, we recoded them whenever possible (e.g., left frontal region
recoded to frontal region, posterior region consisting only of parietal
electrodes recoded to parietal region, and left and right hemispheric
regions recoded to global region); if recoding to predefined regions
of interest was not possible (e.g., posterior region consisting of
parietal, temporal, and occipital electrodes), we excluded them to
maintain consistency across studies.
For each study outcome and region of interest, we coded

descriptive or inferential statistics related to EEG power, in the
following order of preference: (1) mean and standard deviation
values of EEG power for both autistic and neurotypical groups;
(2) effect sizes (e.g., Cohen’s d) of EEG power differences between the
two groups; and (3) test statistics (e.g., t-values and F-values) and
(4) p-values associated with statistical tests of EEG power differences
between the two groups. We coded exact p-values if available. To be
conservative, we assumed a p-value of .05 if a significance test was
only reported as being statistically significant; we assumed a p-value
of 1.00 if a significance test was only reported as being non-
statistically significant, corresponding to a null effect size. For studies
that did not report any of these descriptive or inferential statistics, we
contacted study authors to obtain relevant data. Additionally, for
studies that graphically presented EEG power differences between
autistic and neurotypical groups, we adopted a conservative
approach in assuming p-values of .05 and 1.00 for non-overlapping
and overlapping confidence intervals, respectively.

Data analytic plan
We performed data analyses in R using metafor [51] and meta [52]
packages. Analysis data and scripts are available on OSF (https://
osf.io/uk92c).

Effect measures. To quantify effect sizes of EEG power differences
between autistic and neurotypical groups for each study outcome
and region of interest, we computed Hedges’ g using the in-built
escalc function in metafor. Positive (negative) effect sizes indicated
greater (smaller) absolute or relative power in autistic individuals
than neurotypical individuals. Following expanded rules of thumb
for interpreting effect sizes [53], effect sizes of 0.01, 0.2, 0.5, 0.8,
1.2, and 2.0 were considered very small, small, medium, large, very
large, and huge, respectively.
To ensure independence of effect sizes within each study outcome,

we adopted the following procedures to deal with multiple effect
sizes in an included study. Studies that analyzed EEG power using
individual electrodes would have multiple effect sizes for a region of
interest (e.g., three effect sizes for electrodes F3, Fz, and F4 that were
all assigned to frontal region). For such cases, we averaged effect sizes
and corresponding variances given the close spatial proximity of
individual electrodes within a region of interest. Similarly, studies that
analyzed EEG power using multiple regions of interest would yield
multiple effect sizes (e.g., five effect sizes for frontal, central, parietal,
temporal, and occipital regions of interest). For such cases, we
aggregated effect sizes into a single effect size, broadly representing
global EEG power differences, using the in-built aggregate.escalc
function in metafor. Specifically, the variance-covariance matrix of
sampling errors was assumed to have a compound symmetric
structure with a medium-sized correlation of .3.1

Study synthesis. We conducted 10 primary study syntheses that
corresponded to the 10 study outcomes (i.e., absolute delta, theta,

alpha, beta, and gamma power, and relative delta, theta, alpha,
beta, and gamma power). For each study synthesis, we conducted
preliminary analyses to identify outlier effect sizes; this step was
not specified in our preregistration but was determined to be
necessary for accurately synthesizing prior study findings. Speci-
fically, studies with externally standardized residuals that exceeded
±1.96 were considered outliers and excluded from subsequent
analyses [54]. Thereafter, we used a forest plot to visually depict
and tabulate individual and pooled study effect sizes and
confidence intervals. We also performed a meta-analysis by fitting
a random-effects model with inverse-variance weights, given that
effect sizes were likely to vary across studies due to phenotypic
heterogeneity in ASD as well as differences in sample character-
istics and EEG methodological decisions. We used the restricted
maximum likelihood estimator, which provides approximately
unbiased estimates of between-study heterogeneity variance
[55]. We used the Hartung-Knapp-Sidik-Jonkman method for
inferential tests of model coefficients and confidence intervals,
which applies an adjustment to standard errors of estimated
coefficients to account for uncertainty in residual heterogeneity
estimates [56, 57]. To statistically evaluate between-study hetero-
geneity, we used Cochran’s Q tests of heterogeneity [58], with
p-values less than .05 indicative of heterogeneity. We further
quantified between-study heterogeneity using Higgins and
Thompson’s I2 [59], with values of 25%, 50%, and 75% representing
low, moderate, and high heterogeneity, respectively [60].
We explored possible causes of between-study heterogeneity by

conducting moderator analyses for primary meta-analytic models
with at least moderate heterogeneity. For categorical moderators,
we conducted subgroup analyses with dummy coding. For
continuous moderators, we conducted meta-regression analyses.
Specifically, for each moderator, we extended the primary meta-
analytic model by including the moderator, resulting in a mixed-
effects model. To ensure reasonable statistical power, we restricted
subgroup analyses by including only subgroups with at least five
studies; similarly, we restricted meta-regression analyses by
requiring at least five studies [61].

RESULTS
Search and selection results
Figure 1 depicts the results of our literature search and study
selection processes. Briefly, we identified 2,187 study records from
literature searches across electronic databases, conference pro-
ceedings, and citation searches. Title and abstract screening
was completed for 1,215 study records. Full-text screening was
completed for 112 study reports. After excluding 71 studies,
this systematic review and meta-analysis included a total
of 41 studies (i.e., 34 journal articles, 3 conference posters/
presentations, 3 theses/dissertations, and 1 book chapter) that
were published between 1986 and 2021 [37, 38, 62–100].

Descriptive analyses
Sample characteristics. Key study sample characteristics are
summarized in Table 1. Across studies, there were 2,701 participants
(76.1% male) with a mean age of 9.9 years (range: 4.2–35.6) and
mean IQ of 104.7 (range: 80.8–118.1). For the 1,246 autistic
participants, 82.3% was male, mean age was 9.8 years (range:
4.3–35.5), and mean IQ was 87.0 (range: 37.5–115.7). For the 1,455
neurotypical participants, 70.7% was male, mean age was 9.8 years
(range: 4.1–35.7), and mean IQ was 111.8 (range: 98.0–120.6). The
percentage of studies with matched biological sex, age, and IQ was
84.2%, 97.3%, and 63.6%, respectively, suggesting that the autistic
and neurotypical groups were well matched on key demographic
characteristics for most studies. Clinical diagnosis of ASD was
determined using DSM-5 (k= 9, 22.0%), DSM-IV-TR (k= 8, 19.5%),
DSM-IV (k= 18, 43.9%), DSM-III-R (k= 2, 4.9%), DSM-III (k= 1, 2.4%),
and ICD-10 (k= 10, 24.4%), reflecting the substantial period of time

1Given that EEG power differences may be specific to topographical
regions, we conducted supplemental analyses that did not aggregate
effect sizes across regions of interest (Supplementary Table 2). To
ensure robustness, we also conducted two sensitivity analyses that
assumed small-sized and large-sized correlations of .1 and .5,
respectively, in the compound symmetric variance-covariance matrix
(Supplementary Table 3).
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covered by the included studies. Fourteen (34.1%) studies used
gold-standard ASD diagnostic instruments.

EEG Parameters. Key EEG study parameters are summarized in
Table 2. In terms of resting-state paradigm, 13 (31.7%) studies
employed an eyes-closed paradigm and 27 (65.9%) studies
employed an eyes-open paradigm. Most studies either used the
mastoids (k= 23, 56.1%) or average (k= 13, 31.7%) referencing
scheme. Across studies, the mean duration of individual epochs used
in EEG power spectral analyses was 6.1 s (SD= 14.2, range: 1.0–60.0)
and the mean recording duration was 5.8minutes (SD= 4.6, range:
1.5–25.0). On average, the delta frequency band was defined as
1.2–3.6 Hz, theta as 3.9–7.4 Hz, alpha as 7.6–12.2 Hz, beta as
13.0–25.3 Hz, and gamma as 29.9–49.8 Hz, indicating that adjacent
canonical frequency bands had minimal overlap across studies and
could be considered as relatively distinct frequency bands.

Effect sizes. After ensuring independence of effect sizes, the 41
included studies yielded 147 effect sizes, of which 86 and 61 were
for absolute and relative EEG power, respectively. Preliminary
analyses identified 12 outlier effect sizes with absolute values of
externally standardized residuals ranging from 2.12 to 6.93
(M= 3.57, SD= 1.47). These outliers were distributed across study
outcomes (i.e., at most two outliers for any study outcome).
Notably, three studies [66, 85, 89] contributed to the majority
(75.%) of these outlier effect sizes, possibly due to substantially
different sample characteristics and methodological decisions. For
example, Lucas [85] included only two autistic individuals in the
eyes-closed paradigm and was one of two studies that used a
vertex referencing scheme; similarly, Chan and Leung [66] was the
only study that used a single electrode to record resting-state EEG
and was one of two studies that used an epoch duration of 60 s in
EEG power spectral analyses. We excluded all 12 outlier effect sizes
from subsequent analyses.2

Meta-Analyses
Pooled Effect Sizes. Figures 2 and 3 show individual forest plots
for absolute and relative EEG power, respectively. As expected,
absolute gamma power differed between autistic and neurotypi-
cal individuals, with autistic individuals exhibiting greater power
that resulted in a medium effect size, g= 0.37, 95% CI [0.00, 0.75],
p= 0.049. Contrary to predictions, absolute power was similar
between autistic and neurotypical individuals for the remaining
frequency bands, yielding very small to small effect sizes that were
nonsignificant (delta: g= 0.06, 95% CI [−0.23, 0.34], p= 0.679;
theta: g=−0.03, 95% CI [−0.27, 0.20], p= 0.777; alpha: g=−0.17,
95% CI [−0.37, 0.02], p= 0.072; beta: g= 0.01, 95% CI [−0.13,
0.15], p= 0.868).
Consistent with our prediction, relative alpha power differed

between autistic and neurotypical individuals, with autistic indivi-
duals exhibiting reduced power that resulted in a medium effect size,
g=−0.35, 95% CI [−0.61, −0.08], p= 0.013. Additionally, as
expected but with the caveat that only two studies were included
in the meta-analysis, autistic individuals demonstrated greater
relative gamma power than neurotypical individuals, as evidenced
by a very large effect size, g= 1.06, 95% CI [0.65, 1.48], p= 0.020.
Contrary to predictions, relative delta, theta, and beta power were
not significantly different between autistic and neurotypical indivi-
duals, with very small to small effect sizes (delta: g= 0.10, 95%
CI [−0.26, 0.45], p= 0.563; theta: g=−0.15, 95% CI [−0.62, 0.33],
p= 0.515; beta: g= 0.08, 95% CI [−0.18, 0.33], p= 0.535).

Heterogeneity of individual study effect sizes. As tabulated in
Fig. 2F, tests of heterogeneity were broadly significant across all
absolute power frequency bands (Qs > 20.85, ps < 0.008), except
for absolute beta power (Q= 23.47, p= 0.075). Similarly, Fig. 3F
revealed significant tests of heterogeneity across all relative power
frequency bands (Qs > 36.68, ps < 0.001), with the exception of
relative gamma power (Q= 0.01, p= 0.904). These substantial
differences across individual study effect sizes represented
moderate to high levels of heterogeneity, with I2 values ranging
from 36.1% to 81.9% and from 64.6% to 84.4% for absolute and
relative EEG power, respectively.

Fig. 1 Study search and selection flow diagram. This flow diagram depicts the flow of information across the identification, screening, and
inclusion phases of the systematic review.

2Given that we did not include identification of outlier effect sizes in
our preregistration, we conducted parallel meta-analyses without
excluding any effect sizes and obtained qualitatively similar results.
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Moderator analyses
Table 3 summarizes findings of subgroup and meta-regression
analyses. Broadly, these moderator analyses did not provide
support for effect sizes being moderated by full-sample demo-
graphic characteristics, study methodological differences, and
potential sources of bias. Specifically, full-sample biological sex,
age, and IQ did not moderate effect sizes across all absolute
(Fs < 3.13, ps > 0.127) and relative (Fs < 2.23, ps > 0.195) power
frequency bands. Referencing scheme, epoch duration, and
recording duration did not moderate effect sizes across all
absolute (Fs < 2.59, ps > 0.128) and relative (Fs < 2.19, ps > 0.189)
power frequency bands, with the exception that recording
duration was a significant moderator of effect sizes for relative
alpha power (F= 6.26, p= 0.034), such that longer recording
durations were associated with negative effect sizes of larger
magnitudes (B=− 0.06, SE= 0.02). Use of gold-standard ASD
diagnostic instruments did not moderate all absolute power effect
sizes (Fs < 0.22, ps > 0.646).
Notably, moderator analyses of resting-state paradigm yielded

mixed results, with significant effects for absolute beta (F= 4.89,
p= 0.044), relative delta (F= 7.00, p= 0.025), and relative alpha
power (F= 8.03, p= 0.014), but not for the remaining absolute
and relative power frequency bands (Fs < 4.11, ps > 0.070). For
absolute beta power, the pooled effect sizes for studies using
eyes-closed and eyes-open paradigms were g=−0.32, 95%
CI [−0.66, 0.02], p= 0.067 and g= 0.06, 95% CI [−0.07, 0.19],
p= 0.342, respectively. For relative delta power, the pooled effect
sizes for eyes-closed and eyes-open paradigms were g=−0.34,
95% CI [−0.80, 0.11], p= 0.125 and g= 0.35, 95% CI [−0.01, 0.72],
p= 0.058, respectively. For relative alpha power, the pooled effect
sizes for eyes-closed and eyes-open paradigms were g=−0.09,
95% CI [−0.36, 0.19], p= 0.523 and g=−0.52, 95% CI [−0.70,
−0.34], p < 0.001, respectively.

DISCUSSION
We conducted a systematic review and meta-analysis of 41
resting-state EEG studies that examined absolute and relative
power differences in ASD across five canonical delta, theta, alpha,
beta, and gamma bands, based on a total sample of more than
2,700 autistic and neurotypical individuals and 135 effect sizes. To
our knowledge, the present study is the first to (a) quantitatively
synthesize the contemporary literature on resting-state EEG power
differences in ASD using meta-analytic approaches; (b) conscien-
tiously include a substantial amount of gray literature in
accordance with PRISMA guidelines; and (c) systematically
evaluate several potential moderators that may account for
heterogeneous study findings.
We observed three major findings. First, as expected, our meta-

analyses demonstrated that autistic individuals exhibit greater
absolute and relative resting-state gamma power than neuroty-
pical individuals with medium to very large effect sizes. Consistent
with our predictions, relative resting-state alpha power is reduced
in ASD, yielding a medium effect size. In contrast, we found
limited evidence of EEG power differences between autistic and
neurotypical individuals for delta, theta, beta, and absolute alpha
power. Broadly, our meta-analyses across all five canonical EEG
frequency bands offered some support for the U-shaped profile of
resting-state EEG power differences described in prior narrative
reviews [36]. Additionally, the significant findings for gamma and
alpha bands are largely compatible with theoretical accounts that
disruptions to GABA neurotransmitter systems are implicated in
the pathogenesis of ASD and reflected in neural networks being
biased toward gamma-related excitation and away from alpha-
related inhibition [36, 101, 102]. Nevertheless, current findings for
relative gamma power were based on only two studies, thus
warranting replication efforts. Additionally, gamma oscillations
overlap considerably with muscle activity, thus resting-stateTa
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gamma power is susceptible to various muscle artifacts
(e.g., microsaccades). Therefore, specific techniques to optimize
acquisition and analysis of resting-state gamma power as well as
to detect and remove muscle artifacts during preprocessing may
be needed when leveraging gamma power metrics for clinical
purposes [103, 104].
Second, we obtained significantly heterogeneous study effect

sizes across most absolute and relative power frequency bands.
Despite moderate to high levels of heterogeneity, moderator
analyses of key demographic characteristics, methodological

details, and risk-of-bias indicators largely resulted in null findings.
A likely explanation is that our moderator analyses might have
been statistically underpowered, as is relatively common in
moderator analyses of meta-analytic models [105]. An alternative
perspective is that resting-state EEG power differences in ASD may
be robust to variability in demographic characteristics. Supporting
this potential interpretation, past studies were quite variable in
their sampling approaches. For example, several within-study
samples included participants with wide IQ (e.g., 64 to 136 for the
autistic sample in [37]) and age ranges (e.g., 8 to 56 years for the

Fig. 2 Forest plots for absolute EEG power differences. Forest plots are depicted separately for absolute (A) delta (k= 15), (B) theta (k= 19),
(C) alpha (k= 23), (D) beta (k= 16), and (E) gamma (k= 9) power differences between autistic and neurotypical individuals. Positive effect sizes
indicate greater absolute power in autistic individuals than neurotypical individuals. F Between-study heterogeneity is tabulated for all
absolute power frequency bands.

Fig. 3 Forest plots for relative EEG power differences. Forest plots are depicted separately for relative (A) delta (k= 12), (B) theta (k= 12), (C)
alpha (k= 15), (D) beta (k= 12), and (E) gamma (k= 2) power differences between autistic and neurotypical individuals. Positive effect sizes
indicate greater relative power in autistic individuals than neurotypical individuals. (F) Between-study heterogeneity is tabulated for all relative
power frequency bands.
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neurotypical sample in [71]); samples across studies differed
considerably in biological sex (e.g., approximately balanced male
and female sample in [91] and exclusively male sample in [68])
and age (e.g., young children in [77] and adults in [37]). If these
null findings are replicated, it is possible that resting-state gamma
and relative alpha power differences may hold true even for
infants and toddlers of both sexes, holding promise for potential
applications of resting-state EEG power as an ASD biomarker that
could be applied to support diagnosis at early ages. Nevertheless,
it is important to recognize that EEG frequency bands in infancy
differ from those in late childhood and adulthood [23, 106].
Further work may clarify how best to operationalize gamma and
alpha frequency bands across a broad range of ages.
Finally, we observed that resting-state paradigm type and

recording duration significantly moderated some results. Specifi-
cally, for absolute beta and relative delta power, eyes-open
paradigms yielded positive effect sizes, while eyes-closed para-
digms resulted in negative effect sizes. For relative alpha power,
eyes-open paradigms and longer recording durations resulted in
negative effect sizes of larger magnitudes. These patterns of
results suggest that predicted differences in resting-state EEG
power in ASD may be optimally detected in eyes-open and
sufficiently long paradigms, raising important translational ques-
tions on how best to deploy such paradigms in clinical contexts
while balancing practical considerations (e.g., increased likelihood
of participant noncompliance with prolonged protocols).
Although the present study has made several methodological

advancements relative to prior narrative reviews, our findings
must be considered in the context of the relatively small number
of studies that were available in the literature to be synthesized.
The small number of included studies likely resulted in suboptimal
subgroup and meta-regression moderator analyses. One potential
solution to amass an expanded set of resting-state neurophysio-
logical studies involving autistic and neurotypical individuals is to
integrate magnetoencephalography (MEG) studies with compar-
able resting-state paradigms, though special considerations are
needed when interpreting MEG findings due to fixed sensor
locations (e.g., MEG-specific motion artifacts) and when synthesiz-
ing across EEG and MEG studies [107]. We were also unable to
examine a number of EEG study parameters that are relevant to
power spectral analyses but have not been consistently explored
in previous studies. For example, during the transformation of EEG
signals from the time to frequency domain, characteristics of taper
window functions directly impact the computation of resting-state
EEG power but are often reported with incomplete details [108].
Increased adoption of recommended reporting standards for
electrophysiological research in ASD may pave the way for more
robust investigations into potential moderators in future
studies [107].
In summary, the present systematic review and meta-analysis

provides an updated and, for the first time, quantitative synthesis
of published and gray literature on resting-state EEG power
differences in ASD. We found that autistic individuals exhibit
reduced relative alpha power and increased gamma power,
offering initial evidence that resting-state alpha and gamma
power metrics may be promising ASD biomarker candidates.
Future studies may consider examining additional diagnostic and
psychometric properties of resting-state alpha and gamma power,
such as reliability, sensitivity, and specificity. It will also be
important to further evaluate whether resting-state alpha and
gamma power differences reported in the present study are
unique to ASD, given resting-state EEG power differences in
neurodevelopmental and neurogenetic disorders that frequently
cooccur with ASD, such as attention-deficit/hyperactivity disorder,
Down syndrome, and fragile X syndrome [39, 109, 110]. Since the
present study focused on autistic and neurotypical individuals, a
natural extension is to synthesize the emerging literature on
resting-state EEG power differences between young children at

low and high likelihood of receiving an ASD diagnosis. Addition-
ally, to fully realize the efficacy of resting-state EEG power for
clinical diagnostics, it will be valuable to optimize neurodiagnostic
clinical protocols, including streamlining resting-state EEG acquisi-
tion procedures, automating components of preprocessing and
analytic pipelines, and integrating EEG power metrics into broader
diagnostic frameworks. Broadly, the present study holds clinical
translational value and may contribute to ongoing efforts aimed at
incorporating psychophysiological markers into multi-tiered
assessment approaches for early diagnosis of ASD.
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