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Using digital phenotyping to capture depression symptom
variability: detecting naturalistic variability in depression
symptoms across one year using passively collected wearable

movement and sleep data
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Major Depressive Disorder (MDD) presents considerable challenges to diagnosis and management due to symptom variability
across time. Only recent work has highlighted the clinical implications for interrogating depression symptom variability. Thus, the
present work investigates how sociodemographic, comorbidity, movement, and sleep data is associated with long-term depression
symptom variability. Participant information included (N =939) baseline sociodemographic and comorbidity data, longitudinal,
passively collected wearable data, and Patient Health Questionnaire-9 (PHQ-9) scores collected over 12 months. An ensemble
machine learning approach was used to detect long-term depression symptom variability via: (i) a domain-driven feature selection
approach and (ii) an exhaustive feature-inclusion approach. SHapley Additive exPlanations (SHAP) were used to interrogate variable
importance and directionality. The composite domain-driven and exhaustive inclusion models were both capable of moderately
detecting long-term depression symptom variability (r=0.33 and r = 0.39, respectively). Our results indicate the incremental
predictive validity of sociodemographic, comorbidity, and passively collected wearable movement and sleep data in detecting

long-term depression symptom variability.

Translational Psychiatry (2023)13:381; https://doi.org/10.1038/541398-023-02669-y

INTRODUCTION

Major Depressive Disorder (MDD) is highly prevalent and
burdensome, socially and economically. An estimated 8% of all
U.S. adults (~21 M) experienced a depressive episode in the last
year [1], and an estimated 6% (15 M) experienced associated
severe functional impairment [1]. Depression is ranked in the top
twenty leading causes of disability, globally [2] and is estimated to
cost $326 billion USD annually, an increase of 38% in the last
decade [3]. Many people with MDD do not receive treatment, with
one in three people with active symptoms failing to receive care
[1]. Further, MDD is frequently misdiagnosed by primary care,
which is often the first point of contact for those with clinical
symptoms [4].

MDD presents considerable challenges to effective diagnosis
and management, due, in part, to its dynamic nature and variable
trajectory [5]. The longitudinal course of MDD, as described by the
DSM-5, allows for considerable variability across persons, such that
some individuals may experience only discrete episodes separated
by long periods of remission, while others experience chronic,
unrelenting symptoms over years [6]. Research to date has
explored person-to-person differences in depression course and

variability over time, with empirical evidence for heterogeneity in
symptom trajectory [7-9], as well as difficulty in predicting
longitudinal course [10]. These findings suggest that cross-
sectional severity (“level of depression”) and presence (“depressed
vs. not depressed”) outcomes alone, while providing informative
“snapshots” in time, are insufficient for understanding the
naturalistic course of MDD, and thus, the core nature of MDD.
We posit that depression symptom variability, per se, is an
important outcome, which has meaningful basic science and
translational implications. For the purpose of our study, we define
depression symptom variability to mean the degree of within-
person variation in reported depression symptom severity across
time. Indeed, research to date examining depression temporal
dynamics (Nemesure et al., [11]), has revealed considerable within
and between-person symptom variability over time. We provide a
theoretical and empirical basis for the importance of depression
symptom variability as an outcome. First, variability is important to
explore as a core metric of depression’s naturalistic, longitudinal
course. Together with other summative longitudinal metrics, such
as mean severity, variability provides an important summary of
depression’s longitudinal course. Depression symptom variability
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is a necessary precondition for relapse and remission (i.e., major
depressive episodes), which are important outcome and prog-
nostic markers in MDD [6]. Further, depression temporal variability
may help to inform diagnostic distinctions, such as that between
MDD and Persistent Depressive Disorder (PDD), with the latter
theoretically showing less long-term temporal variability than the
former as well as more severe functional impairment [12].
Therefore, a nuanced understanding of depression’s course,
including an understanding of those factors associated with
symptom variability, is fundamental to effective assessment and
management. A highly variable course, for instance, would require
more frequent assessments to accurately describe the disorder
trajectory, and likely more temporally dynamic interventions.

Second, depression symptom variability has been associated
with important clinical, prognostic, and treatment outcomes.
Specifically, higher depression symptom variability has been
positively associated with (i) higher risk of suicide attempts [13],
(i) lower family functioning (in maternal depression) [14], (iii)
cognitive decline [15], and (iv) pathological narcissism [16] (an
important prognostic marker for mental health treatment) [17].
Depressed mood variability has also been shown to interact with
perceived self-esteem instability in predicting future depression at
six-month follow-up [18], and a variable, chronic depression
course has been associated with all-cause mortality in older adults
[19]. In addition, rapid symptom fluctuation in depressed people
has been associated with involvement in violence [20]. Given
these impactful clinical and prognostic associations, it is of
considerable importance to understand naturalistic depression
symptom variability, including the personalized features which
may contribute to a fluctuating course.

Of important transdiagnostic consideration, there is face validity
that depression variability may have a relation to affective
instability, the latter of which has been studied in relation to
depression utilizing repeat assessment of both high and low-
arousal negative affect features [21]; low-arousal negative affect
features (e.g., “tired”, “bored”, “droopy”) [22] have considerable
overlap with the core neurovegetative depressive symptoms
including low energy, depressed mood, and reduced interest [6].
Thus it may be a reasonable assumption that affective instability
may be at least partially explained by temporal depression
variability, and therefore understanding depression variability may
help in understanding affective instability, which is also an
important consideration in borderline personality and bipolar
disorders [23].

Machine learning methods, operating on highly dimensional
datasets, have shown great promise in modeling important
clinically relevant outcomes in MDD [24-26]. Advances in
computing power and passive data streaming have made possible
the application of ecologically valid, person-generated health data
(e.g., sleep, movement) to personalized depression models [24],
complementing more traditional demographic features. Price
et al, for example, utilized actigraphy data to effectively detect
MDD presence in a large cohort [27]. Naturalistic movement and
sleep data are promising candidates for modeling MDD symptom
variability, given their established relationship to major depressive
episodes and their capacity for predicting depression severity
[28, 29]. In particular, sleep and movement problems are core
features of depression [6], and sleep problems are a known risk
factor for depression recurrence [30], a plausible driver of long-
term symptom variability. In addition, such passively collected
features have contributed to empirical support for MDD-
associated (1) sleep and circadian rhythm irregularities [31, 32],
(2) reduced locomotion [33], and (3) reduced daily activity [34].
These efforts inform our understanding of features associated with
depression presence and severity, and thereby serve as a
benchmark for identifying biodemographic and behavioral
characteristics that may also have an association with long-term
depression symptom variability.

SPRINGER NATURE

To build upon efforts by Makhmutova et al. in the development
of the Prediction of Severity-Change Depression (PSYCHE-D)
model and data source [35, 36], the present work leveraged a
stacked ensemble machine learning approach applied to baseline
biodemographic (i.e, sociodemographic and comorbidity) fea-
tures and objective, wearable passively collected movement and
sleep data, to explore factors associated with long-term depres-
sion symptom variability. Methodologically, our work is unique in
our direct model comparisons on the basis of feature selection
and feature-type. First, we compared a model trained on theory-
informed feature selection against a parallel model trained on an
exhaustive feature set. Second, we compare a model trained on
baseline demographic features to a parallel model trained on
passively derived sleep and activity features. Further, we examine
the incremental predictive gain when combining both types of
features; for all models we utilize a robust stacked ensemble
approach. We hypothesized that (1) features having known
association with depression presence and severity would also
associate with long-term symptom variability. Further, (2) we
hypothesized that biodemographic and objective passively
collected movement and sleep data each contain complementary
information and, thus, when combined would produce improved
model prediction compared to either singular information
modality, as accounting for complementarity during feature
selection has been shown to increase model performance
[37, 38]. To test our hypotheses, we used 12-month longitudinal
data [39] comprising personal biodemographic data, movement,
and sleep metrics statistically derived from passively collected
wearable accelerometry data, and quarterly PHQ-9 scores. A cross-
validation framework, coupled with a stacked ensemble machine
learning approach, was implemented to model depression
symptom variability using features with empirical associations
with depression. For model interpretability, we used an algorith-
mic approach to quantify the relative importance and direction-
ality of biodemographic features, statistical movement, and sleep
features, and both in concert for predicting depression symptom
variability.

METHODS

Study sample

The present work used publicly available biodemographic, wearable
passively collected movement and sleep, and depression symptom data
originally collected over a 12-month period provided in the PSYCHE-D
dataset [40], which was captured as part of the DiSCover Project developed
by Evidation Health [39]. Participants were originally recruited via
Achievement, a community of adults in the United States that can
connect consumer-grade fitness applications and wearable (e.g., Fitbit,
Garmin) to the study platform. Participant inclusion was limited in the
present analyses to individuals with twelve consecutive months of
objective accelerometer information, reflecting non-missing values for
some or all of the related movement and sleep metrics for each month,
and a reported Patient Health Questionnaire-9 (PHQ-9) [41] composite
score completed at baseline and every subsequent 3-month time point for
the 12-month study period (N=939, 70.61% female, 29.39% male,
ag€mean =42.55+10.23, 91.37% White, 4.69% Black, 4.05% Hispanic,
2.66% Asian, 2.23% Race not specified, 10.81% required financial assistance
from the government) (see Fig. 1). A full description of the original
DiSCover Project study design, recruitment protocols, and participant
baseline demographic information is provided by Lee et al. [39].

Study measures

The original PSYCHE-D dataset contains 150 person-generated health data
(PGHD) features reflecting baseline biodemographic information, derived
passively collected movement and sleep information, and Patient Health
Questionnaire-9 (PHQ-9) composite scores (PHQ-9eqn =6.80 +5.72;
42.79% No Depressive Symptoms, 28.78% Mild Depressive Symptoms,
17.61% Moderate Depressive Symptoms, 7.41% Moderately Severe
Depressive Symptoms, 3.41% Severe Depressive Symptoms) [40]; a
common screening tool for MDD [42] consisting of nine items which
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Fig. 1 A flow diagram representing the selection and exclusion of participants, which led to the 939-participant sample in the
present work. From top to bottom: Headers at the top of the diagram reflect projects, with citations, from which the data originated. Below
the headers, we show the absolute numbers of participants, changing with further exclusion, during each stage of the project. Dialogue
bubbles provide detail at a stage where participants were excluded. Large rectangular dialogue boxes contain high-level detail regarding
features included at each stage. Gradient arrows indicate feature change or subsetting that occurred to produce the feature set used in the

present work.

reflect the degree to which each item was bothersome over the last two
weeks (e.g., feeling down, depressed, or hopeless) [41]. Makhmutova et al.
describe the PGHD feature collection and processing in further detail [35].
The dataset was subset for the present analyses to 20 features consisting of
a combination of 8 baseline biodemographic (i.e, Sex, Race, BMI,
Pregnancy Status, Money Assistance, Comorbid Diabetes Type |, Comorbid
Diabetes Type Il, Comorbid Migraines), and 12 derived passively collected
movement and sleep data (i.e, Average Awake Activity, Low Physical
Activity Duration, Moderate-to-Vigorous Activity Duration, Active Day
Count, Sedentary Day Count, Nighttime Sleep Variability, Average Weekday
Sleep, Average Weekend Sleep, Sleep Start Time, Variability In Sleep Start
Time, Weekly Hypersomnia Count, Weekly Hyposomnia Count). These
features were chosen based on known direct or indirect associations with
depression, outlined in Supplementary Table 1, as feature engineering and
selection informed by domain knowledge has been shown to improve
predictive performance and model interpretability [43].

Data preprocessing

All data preprocessing was performed in R (v 4.0.2) [44]. Baseline
biodemographic feature data types were interrogated and converted
according to their reporting structure (e.g., Migraine comorbidity was
converted from numerical to categorical). To account for the missingness
of certain biodemographic and movement and sleep-related metrics,
multivariate imputation by chained equations (mice) with predictive mean
matching was implemented using the mice package in R [45], as mice is
well-suited to handling high proportions of missing data, and captures the
uncertainty associated with approximating missing information [46].
Across all participants, 0.08% of the subsetted biodemographic informa-
tion was missing, and 15.64% of the subsetted passively collected
movement and sleep-related metrics information was missing. Resultantly,
five imputed datasets were generated, reflecting the plausible distribution
of missing information, and used for subsequent analyses. Following
imputation, summative metrics of the longitudinal passive-collected
movement and sleep features were derived to represent the average
and variability of each selected feature across the twelve-month data
collection period. The average was calculated as the mean of the feature’s
values, and variability was calculated as the root mean square of successive
differences (RMSSD) of the respective feature. The summative features
were derived to reflect longitudinal movement and sleep behaviors, as
well as avoid a nested data structure, such that each participant could be
represented as a single row with their fixed baseline biodemographic
features and their statistically derived movement and sleep features. To
interrogate the naturalistic fluctuation in sequential depressive symptoms
across a twelve-month period, the RMSSD of depressive symptom change
was calculated. As previously stated, individuals’ composite PHQ-9 scores
collected at months 0, 3, 6, 9, and 12 were used to calculate variability in
depressive symptoms (RMSSD). Thus, an individual's PHQ-9guyssp repre-
sented a single metric of depressive symptom variability that captured
fluctuation in symptom expression across the entire study. Additionally,
PHQ-9;umssp was correlated with mean PHQ-9 score to establish that PHQ-
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9rmssp Was not simply a proxy for depression symptom intensity (r = 0.54,
R*=0.29).

Machine learning modeling approach

The present analyses were completed in Python (v 3.9) [47], and followed a
threefold cross-validation framework (80%), allowing for a within-sample
completely held-out test set (20%) to quantify predictive performance [48],
and providing an efficacious approach in allowing for unbiased
performance estimates in machine learning modeling [49]. Specifically, a
stacked ensemble machine learning approach was used across the five
MICE-generated datasets to assess for predictive robustness across the
plausible imputation distribution. Stacked ensemble machine learning
approaches have shown the capacity to consistently outperform base
algorithms in detecting depression [50], by leveraging algorithmically
distinct machine learning models (e.g., linear models, tree-based models)
to individually train on the data. The individual model predictions are
subsequently used as inputs to a final “meta” model, which returns a
consensus score. The stacked ensemble algorithms and hyperparameters
implemented for the present analysis are provided in Supplementary Table
2. In addition, the cross-validation architecture and random seed chosen
for splitting the data were standardized across the three models (baseline
biodemographic model; passively collected movement and sleep model;
composite model) to reflect consistency across the model progression.
Further, an exhaustive feature-inclusion approach was implemented,
where all originally collected features were incorporated or transformed
for the three respective model types (see Table 1) to evaluate performance
with an increased feature space.

Model performance

Model performance was reported for the validation and held-out test set
for each of the machine learning models as the mean and standard
deviation across the five MICE-imputed datasets for correlative strength (r),
and normalized mean absolute error (MAE,o,;m). The MAE,,, reflects an
outcome-agnostic representation of the model's mean absolute error by
dividing the mean absolute error by the range of the observed outcome,
and thus represents the mean percentage error of the prediction.

Model introspection

To assess the most influential features for model prediction across the
three models, SHapley Additive exPlanations (SHAP) were implemented,
and the top five most influential features were reported for each model.
SHAP provides a method for model introspection by iteratively perturbing
the input features and assessing how this affects the model prediction [51].
Thus, SHAP provides a mechanism for determining feature importance, as
well as the marginal contribution of each input variable to the model’s
prediction at the individual level, represented as the individual values
positioning on the x axis of Fig. 2. Specifically, an individual features SHAP
values can be interpreted as the features’ partial association with the
outcome when controlling for all other input features in the model.

SPRINGER NATURE
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Fig. 2 Model(s) actual versus predicted values plotted with respective correlative strength and the top five most influential features for
the models’ predictions. In the respective SHAP plots, the individual dot color corresponds to the value of the variable, and location on the
plot’s x axis corresponds to that point’s relative impact on the model output (e.g., a high-feature value (red) with a corresponding high x axis
value (SHAP value) represents a point that strongly, positively influences the model’s prediction of depression symptom variability). A Baseline
biodemographic variables. B Passively collected movement and sleep variables. C A composite model, using biodemographic and passively
collected movement and sleep variables. r = Pearson’s correlation coefficient. For binary features, the presence of comorbid migraines, male
sex, required financial assistance, and white race represented a higher feature value (red SHAP value color).
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Fig. 3 Comparative analysis incorporating or transforming all originally collected variables for the three respective models. Model(s)
actual versus predicted values plotted with respective correlative strength and the top five most influential features for the models’
predictions. In the respective SHAP plots, the individual dot color corresponds to the value of the variable, and location on the plot’s x axis
corresponds to that point’s relative impact on the model output (e.g., a high-feature value (red) with a corresponding high x axis value (SHAP
value) represents a point that strongly, positively influences the model’s prediction of depression symptom variability). A Baseline
biodemographic variables. B Passively collected movement and sleep variables. C A composite model, using biodemographic and passively
collected movement and sleep variables. r = Pearson’s correlation coefficient.
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depression symptom variability (PHQ-9zyssp), followed by (2)
female sex, (3) lower duration of weekend sleep, averaged over 12
montbhs, (4) higher range of time asleep, averaged over 12 months.
and (5) higher duration of weekday sleep, averaged over
12 months (see Fig. 2C and Supplementary Table 1).

Exhaustive feature-inclusion modeling results
Complementing the decision to subset biodemographic and
passively collected movement and sleep features using theoretical
and empirical domain knowledge, we also constructed three
parallel stacked ensemble machine learning models operating on
the non-subsetted PSYCHE-D [40] feature set, including 49 original
and statistically derived biodemographic features, and 222 statis-
tically derived movement and sleep features. The exhaustive
feature-inclusion approach showed marginal performance
improvement compared to the theory-driven variable selection
approach across the three model types (see Table 1 and Fig. 3).
Nevertheless, the exhaustive inclusion of all previously collected
features introduced increased model complexity and reduced
featured interpretability.

DISCUSSION

General overview

The present results demonstrate the successful application of both
biodemographic and passively collected movement and sleep
features for modeling the novel outcome, long-term depression
symptom variability. We found moderate predictive capacity of
the biodemographic and passively collected movement and sleep
features for long-term depression symptom variability detection
when used in concert. This validates our hypothesis (1) of features
indicative of depression severity also indicative of depression
symptom variability and (2) the predictive utility of complemen-
tarity (i.e., unique information) between feature types. Regarding
our theory-guided subsetting approach, we found modest
improvements in predictive performance using a non-subset
feature set with an increase in model complexity (see Table 1 and
Fig. 3).

Implications and importance

The successful application of the biodemographic and passively
collected movement features used in the present analysis to
detect depression symptom variability has promising mental
health clinical implications, strengthening evidence for more
objective and naturalistic assessments, with less burden to
patients [52]. The work also validates our hypothesis of variables
empirically correlated with major depressive disorder (e.g., sex,
migraines, sleep disturbances) also having association with
depression symptom variability. While biomarkers of depression
severity have been studied more extensively, factors associated
with depression symptom variability have had relatively less
attention.

In this work, we make the case for (1) variability, per se, as an
outcome of high importance, as well as (2) the importance and
utility of predicting who is likely to have high variability. First,
variability has been linked to important outcomes, including
suicide attempts in high-risk individuals [13], as well as family
functioning in the case of maternal depression [14]. Thus,
symptoms variability, itself, may be a risk factor for important
clinical outcomes. Second, long-term symptom variability is a
necessary precondition for episodic depression relapse and
remission. Relapse and remission counts have obvious importance
as clinical outcomes by themselves, and have been associated
with poorer long-term prognosis in MDD [53, 54]. Third, predicting
person-level variability has implications for personalized medicine
[55] approaches to mental healthcare. Identifying who is likely to
have higher symptom variability over time, would allow for
person-tailored assessment frequencies. For instance, a person
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with high depression symptom variability would require more
frequent depression assessments compared to someone with
lower depression symptom variability to adequately capture the
disorder course over time.

Model introspection and depression symptom

variability theory

The presence of migraines was the most influential of the
biodemographic features for predicting depression symptom
variability and remained so even when combined with statistically
derived passively collected movement and sleep features (see
Fig. 2). Migraines have been established as highly comorbid with
depression [56, 57]; additionally, research has demonstrated that
migraines may perturb the naturalistic course of depression,
prolonging the time to depression remission [58]. However, the
direct relationship of migraines to depression symptom variability
is not well understood. A plausible explanation stems from
research demonstrating depression exacerbation in concurrence
with migraine headache onset (a phenomenon reported in nearly
one-third of a depressed sample) [59]. Given the discrete and
episodic nature of migraine headaches [60], as well as the
empirical support for simultaneity in migraine onset and depres-
sion exacerbation, it would follow that such patients would show
heightened variability in their depression over time.

Following migraines, the next most influential features for
modeling depression symptom variability in the biodemographic
model included: (i) female sex, (ii) high BMI, (iii) required financial
assistance, and (iv) non-White race. These findings may be
contextualized in research to date, which demonstrated females
had a considerably higher rate of depressive episodes [61], with
higher frequency, theoretically serving as a proxy for variability.
Further, required financial assistance may be a proxy for lower
socioeconomic status, a known correlate of depression [62];
specific to variability, a large longitudinal cohort study
(N=12,650) showed socioeconomic status predicted long-term
patterns of change in intra-individual depression symptom
variability [63]. However, it is also important to consider that
markers of variability in depression, such as race and sex, could
also be markers for events such as racism and discrimination,
which may, themselves, have an episodic course [64]. While racism
and discrimination have been shown to predict depressive
symptoms, longitudinally [65], discriminatory events have also
been shown to cause acute exacerbations in depression [66]. Such
depression “spikes” over time may appear to be of a more variable
course.

Movement and sleep features derived from passively collected
actigraphic data demonstrated capacity for modeling depression
symptom variability. Sleep behaviors were highly represented
among the most influential features in the movement and sleep
model, as well as the composite model (see Fig. 2B, C). Specifically,
sleep duration (for both weekends and weekdays), range of sleep
duration, and nights spent with hyposomnia were the most
influential sleep-related features. These findings are generally
consistent with well-established knowledge of the close relation-
ship between sleep, activity, and depression [6, 67], validated with
passively collected, objective data [33]. Notably, sleep quality and
duration have bidirectional associations with psychosocial func-
tioning amongst young adults [68]. Moreover, short sleep duration
and poor sleep quality are associated with a higher prevalence of
depressive symptoms among university students [69]. This
suggests a complex relationship between sleep and depression
that is not merely unidirectional, but rather complicated by
biopsychosocial variables.

Further, specific sleep profiles have been empirically correlated
with longitudinal depression symptom variability [70], perhaps
suggesting the existence of sleep markers for MDD variation.
Curiously, sleep quality correlates more strongly with psychosocial
functioning than sleep duration among young adults [68]. Our
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findings, range of sleep duration, nights with hyposomnia, and
sleep duration, may be further contextualized in research linking
similar features (i.e., total sleep time and day-to-day variability in
total sleep time) to next-day mood and depressive symptoms [71].
It follows that changes in mood may track with changes in sleep;
thus, a higher range of nightly sleep duration would imply a wider
range of depression severity. Recognizing the multifactorial nature
of sleep, optimizing sleep architecture, quality, and duration
collectively, yet intricately, influences depression outcomes. Both
insufficient and excessive sleep durations have been shown to
elevate depression risk [72, 73], with the latter being particularly
pertinent when coupled with sustained poor sleep quality. Factors
such as emotional exhaustion and stress, whether stemming from
academic demands [74] or shift work [75], further complicate the
intricate relationship between sleep and depression.

Recall that, in addition to a feature subsetting approach, guided
by a priori domain knowledge, we comparatively tested an
exhaustive feature set approach, using all biodemographic and all
movement and sleep features (see Fig. 3C). Despite the reduced
interpretability of such a model, conferred by the inclusion of
statistical features which are more convoluted, there is a modest
increase in performance (r=0.39, compared to r=0.33 with
reduced feature model), highlighting the utility and application of
such an approach for a performance-driven task. In contrast to the
domain-driven approach, the top five most influential features in
the exhaustive feature model were all derived from passively
collected movement and sleep data—none from biodemographic
information or self-report. Notably, a subset of these features were
generated from regression-based statistics on the passively
collected movement and sleep data [35], which have not been
established in the literature on long-term depression symptom
variability, but do seem to offer a substantive increase in
information for the model’s predictions, allowing for increased
model performance. These findings suggest further consideration
into the utility of feature engineering as it pertains to passively
collected movement and sleep data, as it offers clear advantages
for tasks strictly concerned with improving predictive performance
relating to long-term depression symptom variability.

Strengths, limitations, and future directions

The current study uniquely utilized long-term depression varia-
bility as an outcome measure. In addition, our methods allow for a
direct comparison between feature selection strategies, specifi-
cally theory-informed versus exhaustive, and between feature
types, specifically passive sensing-derived features and baseline
demographic features. A significant strength of our work lies in
our application of a robust stacked ensemble approach, accom-
modating the potentially complex relationships among features.
Despite the strengths and novelty of our work, the study results
must be considered in the context of several important limitations,
described here. (1) The study population was limited in demo-
graphic diversity, and future research would benefit from
analyzing a more nationally representative sample when detect-
ing depression symptom variability. Further, a consideration for
depression symptom variability within demographic groups (e.g.,
gender, race) should be assessed, as influential biodemographic
and passively collected movement and sleep features are likely
differentially expressed between populations, which would allow
for more effective personalized treatment. (2) Recall that the
outcome (PHQ-9zussp) is derived from self-reported PHQ-9 scores
at 3-month intervals over the course of one year. As such, the
temporal resolution of depression symptom variability is limited. A
related but distinct limitation inherent in the original study design
is the mismatch between the 2-week look-back period of the PHQ-
9 and the 3-month interval at which the measurements were
collected. In future research investigating depression symptom
variability, ecological momentary assessments for depressive
symptoms would be preferable. (4) Finally, the choice of one year
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over which to measure variability has important implications in
the applicability and interpretation of results. While one year is
likely sufficient to capture a single depressive episode [76], it may
be insufficient to capture the temporal dynamics across multiple
depressive episodes. Furthermore, while the present investigation
of factors associated with depression symptom variability is
appropriately conducted on a community sample, given that over
one-third of participants (38.8%) reported PHQ-9 scores both
below and above the clinical threshold for depression (PHQ-
9> 10), generalizability to a clinical sample remains uncertain.
Thus, a future extension of this work would be validation and
comparison on a clinical sample to assess both model perfor-
mance as well as features most associated with the model’s
predictions.

CONCLUSION

In the present work, we emphasize depression symptom variability
as an important clinical and research variable in mental health.
Variability represents an important attribute of the depression’s
longitudinal course, as well as a dimension of heterogeneity
between depressed persons. In addition, depression symptom
variability has been linked to important clinical outcomes, such as
suicide. Though much is known of factors associated with point-in-
time depression severity, relatively little is known of long-term,
naturalistic variability in depression, as well as person-specific
factors which associate with variability. In the present work, we
explore the capacity of biodemographic and passively collected
movement and sleep information to model depression symptom
variability. We find positive results to suggest association between
both biodemographic and passively collected data types, inde-
pendently, as well as evidence of complementarity in predictive
capacity. Our work provides an early step toward the complemen-
tary, personalized use of unobtrusive data types in addressing the
question of depression’s temporal variability.
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