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Patients exposed to trauma often experience high rates of adverse post-traumatic neuropsychiatric sequelae (APNS). The biological
mechanisms promoting APNS are currently unknown, but the microbiota-gut-brain axis offers an avenue to understanding
mechanisms as well as possibilities for intervention. Microbiome composition after trauma exposure has been poorly examined
regarding neuropsychiatric outcomes. We aimed to determine whether the gut microbiomes of trauma-exposed emergency
department patients who develop APNS have dysfunctional gut microbiome profiles and discover potential associated
mechanisms. We performed metagenomic analysis on stool samples (n= 51) from a subset of adults enrolled in the Advancing
Understanding of RecOvery afteR traumA (AURORA) study. Two-, eight- and twelve-week post-trauma outcomes for post-traumatic
stress disorder (PTSD) (PTSD checklist for DSM-5), normalized depression scores (PROMIS Depression Short Form 8b) and somatic
symptom counts were collected. Generalized linear models were created for each outcome using microbial abundances and
relevant demographics. Mixed-effect random forest machine learning models were used to identify associations between APNS
outcomes and microbial features and encoded metabolic pathways from stool metagenomics. Microbial species, including
Flavonifractor plautii, Ruminococcus gnavus and, Bifidobacterium species, which are prevalent commensal gut microbes, were found
to be important in predicting worse APNS outcomes from microbial abundance data. Notably, through APNS outcome modeling
using microbial metabolic pathways, worse APNS outcomes were highly predicted by decreased L-arginine related pathway genes
and increased citrulline and ornithine pathways. Common commensal microbial species are enriched in individuals who develop
APNS. More notably, we identified a biological mechanism through which the gut microbiome reduces global arginine
bioavailability, a metabolic change that has also been demonstrated in the plasma of patients with PTSD.
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INTRODUCTION
Adverse posttraumatic neuropsychiatric sequelae (APNS) such as
posttraumatic stress disorder (PTSD), depression, and somatic
symptoms are common after traumatic stress exposure [1–6].
Contemporary limitations in understanding the pathogenesis of
APNS are a barrier to developing effective primary and secondary
preventive interventions [1, 7]. Novel multidisciplinary approaches
applying methodologic advances from other areas of neu-
roscience to the early post-trauma period may advance under-
standing of APNS pathogenesis.
One such area is the study of the microbiome-gut-brain axis.

The microbiome-gut-brain axis has been demonstrated to have an
important influence on brain function in neuropsychiatric
disorders [8–10], and has been hypothesized to play an important

role in trauma-related neuropsychiatric disorders [11]. Gut
microbes affect central nervous system function through the
production of metabolites and neurochemicals [10]. For example,
short-chain fatty acids such as butyrate support gut homeostasis
by maintaining gut barrier integrity and inducing anti-
inflammatory factors which cross the blood-brain barrier [12, 13].
In contrast, Enterobacteriaceae expansion can augment neuroin-
flammatory processes through the lipopolysaccharide (LPS)
endotoxin-mediated activation of the Toll-like receptor 4 (TLR4)
pathway, leading to the production of pro-inflammatory cytokines
[14].
While specific mechanisms responsible for it remain incomple-

tely understood, dysregulated immunity and elevated inflamma-
tion are risk factors for PTSD [15]. Given the above known
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influence of the gut-brain axis on neuroinflammation, these data
support the hypothesis that variations in microbiome character-
istics could influence APNS pathogenesis. This hypothesis is also
supported by several small studies which identified broad
phylum-level differences in microbiome characteristics among
individuals with PTSD (n= 18) as compared to those without PTSD
(n= 12) [16], and in veterans which found associations between
lower diversity and a higher abundance of opportunistic microbes
with PTSD symptoms and impaired cognition [17]. This hypothesis
is also supported by animal studies in which trauma was found to
cause alterations in the microbiome and lead to increased local
and systemic inflammation [8].
In this nested study, we explored the association between the

gut microbiome and APNS development in a subsample of
individuals recruited from emergency departments (ED) in the
immediate aftermath of trauma as part of the AURORA study
(n= 74) and who also provided stool samples [1]. We employed
shotgun metagenomic sequencing of stool samples from patients
evaluated and discharged from the ED and machine learning (ML)
predictive analytics to test the hypothesis that variability in
microbiome species and pro- and anti-inflammatory metabolic
pathways is associated with APNS outcomes.

PATIENTS AND METHODS
Study Population and Sample Collection
The AURORA study began in September 2017; we pre-registered a nested
microbiome pilot study with the AURORA consortium and enrolled
participants from November 2020 until February 2021 (Supplemental
table 1) [18]. AURORA participants who completed their first outpatient
remote assessment and had not received antibiotics within the previous
6 months were approached for enrollment into this nested study. Participants
also could not have had any other influences that could cause major
microbiome perturbations (e.g., infections). Of the 2,097 AURORA participants
subjects approached, 106 provided consent to participate, and we received
stool samples from n= 74 of these individuals (69.8%). Stool samples were
self-collected at home using OMNIgene•GUT collection kits (DNAgenotek,
catalog no. OMR-200). All stool samples were self-collected at least five days
after the initial ED presentation (Supplemental figure 1). Upon receipt,
samples were stored at -80 °C until DNA extraction and sequencing were
performed. This study was approved by the University of North Carolina’s
institutional review board (IRB protocol #17-0703) and by the UMass Chan
Medical School’s institutional review board.

Outcome Measurements
After receiving written informed consent from eligible patients, study
coordinators from each participating ED performed data collection for ED-
based assessments, including baseline questionnaires. Follow-up evalua-
tions were internet-based at the two-, eight-, and twelve-week intervals.
We assessed posttraumatic stress symptoms using the Post Traumatic
Stress Disorder (PTSD) checklist for DSM-5 (PCL-5) [19–22]. Per this
instrument’s guidelines, a PTSD diagnosis can be made by summing the
self-reported responses to the PCL-5. We used total sum of 31 for a positive
diagnosis of PTSD [23]. A normalized t-score for depression severity and
the diagnosis was assessed using the PROMIS Depression Short Form 8b
[24]. A t-score of 60 is one standard deviation lower than average and was
used to designate a depression diagnosis. The Rivermead Post-concussive
questionnaire (RPQ) was used to obtain a count of somatic symptoms. The
twelve post-traumatic somatic symptoms included in the RPQ are
headache, dizziness, nausea, noise sensitivity, fatigue, insomnia, poor
concentration, taking longer to think, blurred vision, light sensitivity,
double vision, and restlessness [25]. For each symptom, a yes/no variable
was created. A positive response to a symptom would be counted as
YES= 1 that it does exist, while a NO= 0 indicates that the symptom does
not exist. The yes/no responses were summed to provide a simple count of
somatic symptoms.

Sample Processing and DNA Sequencing
Prior to extraction, stool samples were heat inactivated at 65 °C-70 °C for
1 hour and stored at -80 °C. Approximately 250mg of resulting sample was
extracted using the QIAGEN DNeasy PowerSoil Pro Kits (QIAGEN, catalog

no. 47016). Sequencing libraries were prepped using the Nextera XT DNA
library prep kit and sequenced on a NextSeq 500 sequencer with 2×150 bp
paired-end reads. Of the 74 stool samples received, 69 (93.2%) were
successfully sequenced. Samples with a percentage of reads identified
greater than 0.5%, and complete metadata were used for analysis (n= 51).
Shotgun metagenomic reads were trimmed and filtered for host

contamination using the KneadData pipeline (https://github.com/
biobakery/kneaddata). The resulting metagenomic data was profiled for
microbial abundance and metabolic pathways using the MetaPhlAn3 [26]
and HUMAnN3 databases and tools [27]. The resulting relative microbial
species abundance and metabolic pathway data was used for downstream
analysis in R.

Microbiome Analysis and Statistics
Power Analysis. We performed a power analysis to estimate the study size
according to a one sample Spearman correlation. Spearman correlation is a
non-parametric test and is thus suitable for microbiome data. With a
sample size of 51 a correlation of 0.5 (a medium effect size), the power was
found to be 0.97. This analysis was performed in R using the pwr package
(https://github.com/heliosdrm/pwr).

Linear mixed model-based analysis to determine the relative contribution of
the microbiome. To determine how much of the variability in post-trauma
APNS outcomes is explained by the gut microbiome, we first constructed
linear mixed models (LMM) using the lme4 R package [28] for each of the
three APNS outcomes of interest (PTSD, Depression Scores and Somatic
Symptoms) as a function of relevant clinical covariates (sex, age, body mass
index, race/ethnicity) [29], and also of the arcsine square root-transformed
abundance [30] of each microbial species independently. Features
identified as significant (FDR corrected p-value <= 0.05) were combined
and used to fit a global LMM. The contribution of each feature to the
regression line fit by the model was determined by running analysis of
variance (ANOVA) and examining the total sum of squares for the fixed
effects. The resulting sum of squares ratio for each feature was graphed
using WebR (https://github.com/cardiomoon/webr).

Mixed-effect random forest analysis of microbiome permutated importance to
outcomes at twelve weeks post-trauma. Microbiome data is non-linear and
not normally distributed [31, 32]. Additionally, such data are characterized
by many predictors, which, if combined in the same model (without
prefiltering), can prohibit a traditional regression model to converge [33].
We have previously demonstrated that tree-based machine learning (ML)
approaches such as random forest, which are non-parametric and perform
intrinsic feature selection, are very powerful in finding a signal from static
and time-resolved microbiome data [34–37]. To fully utilize the long-
itudinal clinical data collected by the AURORA (parent) study for this
nested study [1], we assumed, barring perturbation, the gut microbiome is
stable over time. Several high-resolution gut microbiome temporal studies
have demonstrated that the microbiome is rather stable and displays only
small random fluctuations [38–41]. The extent to which the microbiome is
stable in individuals that have experienced trauma remains to be
established. We built a mixed-effect random forest (MERF) regression
model to predict either PTSD raw score, Depression t-score, or somatic
symptoms count at twelve weeks post-trauma. We use either microbial
abundance or metabolic pathway abundance and relevant clinical
covariates (e.g., BMI, age, sex, and race) as variables in this modeling.
The first step of our pipeline split our data into a training and test set. To
predict twelve-week post-trauma outcomes, two-week and eight-week
post-trauma outcomes were used to train the MERF model. The unseen
twelve-week data was used for testing the model. For each APNS outcome,
the pipeline was run ten times with ten different random seeds, and model
performance, statistics, and outcomes were calculated for each seed.
Model performance was evaluated by Root Mean Square Error (RMSE) and
correlation of true versus predicted values, which illustrates the model’s
accuracy and fit for predicting outcome measurements at twelve weeks
post-trauma (Supplemental figure 2). Permuted variable importance was
calculated and used to evaluate models. Plots summarizing results were
generated in R using the ggplot2.

RESULTS
Characteristics of Study Subjects
Among 2,097 individuals who were approached in the ED regarding
this nested study, 106/2,097 (5.1%) agreed to participate, and 74/106
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(69.8%) provided a stool sample. Of the stool samples received,
51(68.9%) passed all quality and metadata checks (see methods) and
were profiled for microbial abundance and metabolic pathways. From
these 51 participants (mean age 52 years; 26 (51%) female) stool
samples were received a median of 45 days (range 5 to 182 days)
(Supplemental figure 1) after ED visit for trauma evaluation that
conferred entry to the AURORA (parent) study (Table 1). The most
common types of trauma were motor vehicle collision (55%, n= 28),
fall from height (n= 9, 18%), and other accidental or targeted/
involuntary events (9.8%, n= 5). Stool samples originated primarily
from White (61%, n= 31) and Black (25%, n= 13) participants. Of the
31 white participants, 29 (94%) were non-Hispanic White. Microbiome
diversity measures show that individuals do not stratify based on
alpha (Simpson and Shannon) or beta diversity.

Gut Microbiome Features associated with APNS
Linear mixed effect models and ANOVA adjusting for socio-
demographic characteristics were used to assess for associations
between microbiome characteristics and APNS symptom severity.
Gut microbiome characteristics accounted for 48%, 26%, and 44%
of the variation in PTSD, depressive, and somatic symptoms after
trauma, respectively (Fig. 1). The abundance of Firmicutes
bacterium CAG:555, Bifidobacterium adolescentis, and the pro-
inflammatory Streptococcus infantis were associated with PTSD
symptom severity. The abundance of B. adolescentis was
associated with depressive symptom severity (Fig. 1B).

Ruminococcus gnavus and Streptococcus parasanguinus were
associated with somatic symptom severity (Fig. 1C).

Post-trauma neuropsychiatric outcomes are predicted by
microbial abundance
While the above LMM approach is useful to assess total variance
accounted for by microbiome characteristics and is common in the
field, it has several limitations, including the inability to evaluate
microbial abundances in the context of the entire microbiome and
the limited ability to account for inter-individual microbiome
differences [33]. Therefore, we used a complementary machine
learning approach to train and test models examining associations
between gut microbiome characteristics and posttraumatic out-
comes. We have previously used this approach and have determined
its optimality for inferring biologically relevant host-microbe inter-
actions from cross-sectional and longitudinal microbiome data (see
methods sections for further justification) [34–37, 42–44].
A Mixed-Effect Random Forest (MERF) regression model was

used to identify microbiome features associated with PTSD,
depression, and somatic symptom burden at twelve weeks post-
trauma (Supplemental figure 2). Our findings using this approach
confirmed and expanded on findings from the linear mixed-effect
models. Bacterial species identified in linear mixed effects
modeling, specific species of the Alistipes, Bifidobacterium, and
Ruminococcus genera were also found as important predictors by
the MERF model (Fig. 2). The models also identified more species

Table 1. Patient Characteristics by APNS outcome category.

Depression PTSD

Patient Characteristics Overall,
N= 51a

Depression-,
N= 35a

Depression+ ,
N= 16a

q-value
(adjusted
p-valueb)c

PTSD-,
N= 31a

PTSD+ ,
N= 20a

q-value
(adjusted
p-valueb)c

Demographics

Age in years (at enrollment) 52 (36, 60) 52 (36, 59) 52 (37, 60) >0.9 52 (36, 58) 50 (34, 61) >0.9

Sex (Female) 26 (51%) 19 (54%) 7 (44%) >0.9 19 (61%) 7 (35%) 0.7

BMI 29 (24, 33) 27 (24, 30) 33 (29, 40) 0.11 27 (23, 30) 31 (29, 36) 0.083

White 31 (61%) 21 (60%) 10 (62%) >0.9 18 (58%) 13 (65%) >0.9

Black 13 (25%) 11 (31%) 2 (12%) >0.9 9 (29%) 4 (20%) >0.9

Asian 1 (2.0%) 1 (2.9%) 0 (0%) >0.9 1 (3.2%) 0 (0%) >0.9

other 6 (12%) 2 (5.7%) 4 (25%) 0.8 3 (9.7%) 3 (15%) >0.9

Hispanic 7 (14%) 4 (11%) 3 (19%) >0.9 4 (13%) 3 (15%) >0.9

U.S. Geographic Region >0.9 >0.9

Midwest Region 10 (20%) 5 (14%) 5 (31%) 5 (16%) 5 (25%)

Northeast Region 38 (75%) 27 (77%) 11 (69%) 24 (77%) 14 (70%)

Southern Region 3 (5.9%) 3 (8.6%) 0 (0%) 2 (6.5%) 1 (5.0%)

Trauma Event Type (Broad) >0.9 >0.9

Animal-related 1 (2.0%) 1 (2.9%) 0 (0%) 1 (3.2%) 0 (0%)

Fall < 10 feet or from unknown
height

9 (18%) 7 (20%) 2 (12%) 6 (19%) 3 (15%)

Fall >= 10 feet 4 (7.8%) 2 (5.7%) 2 (12%) 2 (6.5%) 2 (10%)

Incident causing traumatic
stress exposure to many people

1 (2.0%) 1 (2.9%) 0 (0%) 1 (3.2%) 0 (0%)

Motor Vehicle Collision 28 (55%) 19 (54%) 9 (56%) 17 (55%) 11 (55%)

Non-motorized Collision 3 (5.9%) 2 (5.7%) 1 (6.2%) 2 (6.5%) 1 (5.0%)

other 5 (9.8%) 3 (8.6%) 2 (12%) 2 (6.5%) 3 (15%)

Self-Reported Perceived
Chance of Dying

6.0 (1.0, 8.5) 6.0 (1.0, 8.5) 5.5 (1.8, 8.2) >0.9 6.0 (0.5, 8.5) 5.5 (1.8, 8.5) >0.9

an (%); Median (IQR)
bPearson’s Chi-squared test; Fisher’s exact test; Wilcoxon rank sum test
cBonferroni correction for multiple testing
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as contributors to each outcome, with many similar species in the
top 15 predictors identified by the three models. B. adolescentis, B.
longum, and Flavonifractor plautii were among the top five
predictors for all three APNS outcomes (Fig. 2). Across our models,
both Bifidobacterium species and F. plautii showed similar trends of
increased abundance being informative of higher scores (Supple-
mental figure 3). Ruminococcus gnavus was found to be among the
top 15 predictors only for PTSD (ranked 7th) and depression
(ranked 14th), with increases in abundance correlating with disease
outcomes (Fig. 2, Table 2). Decreases in certain species were noted
to cluster by individual outcomes for the most part (Fig. 2D).

Metabolic Pathway Profiling Identifies Novel Gut-Brain-Axis
Interface with APNS Outcomes
Species abundance, although informative of outcomes, does not
directly provide context for the functional roles of associated
microbes. By analyzing metabolic pathway abundances encoded
in the metagenomic data, we can gain insight into the microbial
products, metabolites, and functions that may associate with each
outcome of interest, thus shedding light on possible mechanistic
links. To this end, we employed the same MERF-based pipeline to
examine associations between the abundance of microbially-
encoded metabolic pathways and PTSD, depressive, and somatic
symptom severity twelve weeks after trauma (Supplemental figure
4). The Calvin-Benson-Bassham cycle, a common CO2 fixation
pathway in autotrophic bacteria, was identified as one of the top
three predictors of PTSD and depressive symptom severity (i.e.,
cycle was reduced in samples with higher scores (Fig. 3A and B)).
Amino acid biosynthesis pathways were a leading predictor for all
three APNS outcomes, with the L-citrulline biosynthesis pathway
identified as one of the top two predictors for all APNS outcomes.
The super pathway of arginine and polyamine biosynthesis was
identified as the top predictor for the PTSD model and as the third
most important pathway for the depression model, correlating
negatively with PTSD and depression scores (Fig. 4, Table 3).
Furthermore, all three models identified pathways involving
arginine, ornithine, and citrulline, three amino acids that are often
interconverted (Fig. 5). De novo biosynthesis of L-ornithine, which
can be interconverted from ornithine and urea to arginine and
water, was identified by all models and appeared increased in
patients with higher scores. Increased abundance of L-citrulline

biosynthesis was also associated with higher scores of PTSD,
depression, and somatic symptoms count (Fig. 4).
Given the strength of findings around pathways affecting global

arginine levels, we next sought to identify microbes responsible
for changes in these pathways. Focusing on ornithine, citrulline,
and arginine, we examined the contribution of individual genera
to each pathway (Tables 4, 5, 6) to PTSD and depression. Somatic
symptoms were not further analyzed as the simple count nature of
the variable was not appropriate for this analysis. We observed
that in individuals with PTSD or depression, Escherichia had an
increased contribution to all pathways involving arginine and
ornithine biosynthesis. However, the contribution of E. coli to
L-citrulline biosynthesis was decreased in those with PTSD and
increased in those with depression. In patients with PTSD or
depression, the Ruminococcus genus had a decreased contribution
to L-arginine biosynthesis via both L-ornithine and the acetyl
cycle. Alistipes, Flavonifractor and Faecalibacterium genera con-
tributed more to the L-arginine biosynthesis via ornithine in
individuals with diagnosed PTSD or depression.

DISCUSSION
We have demonstrated here that gut microbiome characteristics
of trauma survivors were associated with the development of
APNS, in this pilot longitudinal study of individuals enrolled in the
ED after trauma exposure. Our analysis first suggested that
overall inter-individual differences in gut microbiome taxonomy
accounts for a substantial fraction (20-48%) of the differences in
APNS outcomes. This finding is similar to what is attributable to
known APNS outcome-associated clinical and demographic
covariates (e.g., sex and race/ethnicity) [45]. We leveraged ML
modeling to identify specific bacterial species and microbial
encoded metabolic pathways with previously established pro-
and anti-inflammatory properties that are predictive of APNS
development. Our analysis highlights the most prevalent APNS
outcome-associated gut microbiome-encoded pathways are
those leading to the biosynthesis of arginine, ornithine, and
citrulline. These pathways can possibly affect global arginine
levels in the body, a biomarker that has been previously
associated with PTSD [46]. To our knowledge, ours is the first
study to longitudinally evaluate the link between the gut

A B CPTSD (Raw Score) Depression Score (Normalized) Somatic Symptoms (Y/N Count)

(55%)Microbes
(26%)

Other
(19%)

Age
(40%)

Black
(60%)

Bifidobacterium 
adolescentis

(100%)

Days Since
Trauma
(100%)

(10%)

Microbes
(48%)

Other
(42%)

Age
(30.0%) Female

(70.0%)Alistipes 
finegoldii
(16.7%)

Bifidobacterium 
adolescentis

(25.0%)

Firmicutes 
bacterium CAG 555

(25.0%)

Lactobacillus 
ruminis
(2.1%)

Streptococcus 
infantis
(31.2%)

Days Since
Trauma
(28.6%)

PTSD 
Time Point

(71.4%)

(56%)

Microbes
(44%)

Female
(100.0%)

Ruminococcus 
gnavus
(54.5%)

Sellimonas 
intestinalis

(4.5%)

Streptococcus 
parasanguinis

(40.9%)

Demographics

Demographics

Demographics

Fig. 1 Contribution of microbiome features significantly associated with neuropsychiatric outcomes. After metagenomic sequencing,
microbial species abundances were combined with demographics and select clinical variables (other) in linear mixed effect models for the
APNS outcomes at two-, eight-, and twelve weeks post trauma (A) PTSD raw score as determined by the DSM-5 PTSD checklist, (B) depression
score as determined by the PROMIS Depression Short Form 8b and (C) somatic symptoms count (Yes/No) based on the Rivermead Post-
Concussive Questionnaire. Individual microbial species, demographics, and clinical variables found as significant are displayed in the outer
wheels. PTSD time point reflects the time at which the modeled score was taken (either two weeks, eight weeks, or twelve weeks). The length
of time between trauma exposure and stool sample collection was included as days since trauma in all models.
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microbiome and APNS outcomes while providing mechanistic
links along the microbiome-gut-brain axis.
Our initial analyses by simple linear mixed-effect models

demonstrated the significant contribution of microbiota to APNS
outcomes in comparison to clinical covariates and demographic
characteristics. The proportion of the gut microbiome accounting
for variability in each APNS outcome (26-48%) is of the same order
of magnitude as demographic characteristics (10-56%) that are
already known to associate with each outcome [45]. However, this
analysis required transformation of microbiome abundance
variables and the use of a two-tiered approach to select

outcome-associated features, which is suboptimal. Although
common, this approach neither accounts for the inter-personal
variation of the microbiome nor evaluates the effect of microbial
species together [47].
While there is evidence for dramatic changes in the gut

microbiome after trauma within 72 hours [48], almost no research
describing long-term changes in gut microbiota after acute
trauma currently exists. One study on PTSD in frontline healthcare
workers suggests that long-term gut microbiome dysbiosis
induced by stress is sustained for months and predisposes
individuals to recurring PTSD [49]. Thus, we built our pipeline
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Fig. 2 Mixed-Effect Random Forest (MERF) Regression Models Using Microbial Abundance and Clinical Covariates to Predict
Neuropsychiatric Outcomes. MERF models combining microbial abundance data with clinical and demographic (highlighted in red) features
demonstrate the importance of microbial features in predicting outcomes. Permutated importance analysis of model outcomes shows the top
15 features contributing to predictions of (A) PTSD raw score, (B) depression normalized score, and (C) somatic symptoms count (yes/no) are
mostly microbial species. D Heat map showing correlation coefficients of the top 30 contributing species show common species that
contribute to all three outcomes (increased abundance) and species which associate with individual outcomes (mostly decreased abundance).
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Table 2. Spearman’s Correlation of Important Microbes with APNS Outcomes.

Predictors PTSD Depression Somatic
Symptoms

Notes

Bifidobacterium adolescentis 0.286 0.216 0.0704 • Produces GABA in the gut [69]
• Induction of Th17 cells in mice [70]
• Decreased in Crohn’s Disease [71]
• Lower abundance in children with autism spectrum disorder
[72]

Bifidobacterium longum 0.34 0.259 0.251 • GABA production in vivo [73]
• Anxiolytic effect through the vagus nerve in mice [57]
• Lower abundance in children with autism spectrum disorder
[72]

• Strain specific induction of cytokines in peripheral blood
mononuclear cells [74]

Bifidobacterium bifidum 0.185 NA NA • Th17 inducing profile [75]
• Lower abundance in children with autism spectrum disorder
[72]

Parabacteroides merdae 0.176 0.226 NA • Indole negative [76]
• Rarely associated with infections[77]
• Branched-chain amino acid catabolism by P. merdae reduces
atherosclerotic lesions [78]

Flavonifractor plautii 0.207 0.177 0.173 • In mice, suppresses Th2 immune response [79]
• [80]
• Genera found to be enriched in those with active major
depressive disorder (MDD) [63]

Adlercreutzia equolifaciens 0.0195 NA NA • Strain specific equol production [81]

Ruminococcus gnavus 0.441 0.335 NA • Increased in Crohn’s Disease [71]
• Depleted genera level in active MDD [63]

Alistipes finegoldii 0.198 NA NA • Can hydrolyze tryptophan to indole; Succinic acid producer in
vitro with minor acetic and propionic acid; bile-resistant,
esculin-negative; catalase-negative; nitrogen-reductase
negative [82, 83]

• Enriched in colorectal cancer [84]
• Main cellular fatty acid 13-metyltetradecanoic acid (iso-C15:0)
• Genera Increased abundance in active MDD patients
compared to healthy controls [63]

Eubacterium eligens −0.216 NA -0.14 • Decreased in COVID-19 health care workers with higher stress
scores [49]

• Anti-inflammatory related [85]

Firmicutes bacterium CAG 110 −0.182 NA NA • Identified in livestock [86]

Alistipes indistinctus −0.0339 NA NA • Unable to hydrolyze tryptophan to indole; susceptible to bile;
catalase-positive; urease and nitrogen reductase-negative;
Succinic and acetic acid producer in vitro [83]

• Main cellular fatty acid 13-metyltetradecanoic acid (iso-C15:0)
• Genera Increased abundance in active MDD patients
compared to healthy controls [63]

Bacteroides massiliensis −0.0271 NA NA • Phocaeicola massiliensis
• Genera increased in health controls vs. active MDD patients
[63]

Slackia isoflavoniconvertens −0.221 NA NA • Capable of equol production [87]

Desulfovibrio piger NA NA −0.183 • Sulfur-reducing bacteria associated with inflammatory bowel
disease [88]

Blautia wexlerae NA NA 0.0584 • Inversely correlated with obesity and type 2 diabetes mellitus
[89]

• Decreased abundance in progressive multiple sclerosis [90]

Intestinimonas
butyriciproducens

NA NA −0.155 • Butyrate production [91]

Bacteroides thetaiotaomicron NA NA −0.172 • Genera increased in healthy controls vs. active MDD patients
[63]

Parabacteroides goldsteinii NA NA −0.155 • Anti-inflammatory and decreased in chronic inflammatory
diseases including chronic obstructive pulmonary disease
(COPD; negatively associates with severity) [92] and chronic
kidney disease [93]
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assuming the microbiome at our sampling point is representative
of the patient’s microbiome at the longitudinal post-trauma
outcome measurement points, which we hypothesize associates
with target outcomes of developing APNS in prolonged periods
after trauma.
ML models such as Mixed-Effect Random Forest (MERF) models

are capable of accounting for interpersonal variation, evaluating
microbial abundances in the context of the entire microbiome,
and, importantly, because no scaling is required, it can be used
with different data types (e.g., categorical, numerical, proportion,
etc.) [33]Our MERF models identified more species as significant
contributors to our outcomes than the linear models and
microbes previously associated with neuropsychiatric disorders,
specifically Bifidobacterium, Alistipes, and Flavonifractor species.
Further, the model identified F. plautii, E. eligens, E. ramulus, R.
homins, C. sybiosum, and Blautia species which are members of the
Clostridium Cluster IV and XIVa, two clusters of known beneficial

bacteria for inflammatory bowel disease and gut health [50–52].
Several of these are short-chain fatty acid producers and have
been associated with reduced inflammation in humans [53, 54].
Additionally, they are known to promote several anti-
inflammatory immune signatures, such as regulatory T-cell
expansion in vivo [55, 56].
Our models based on species abundance identified Bifidobac-

terium species and Flavonifractor plautii as the most important
factors for predicting all three APNS outcomes. Specifically, we
found higher abundances of B. adolescentis, B. longum, and B.
bifidum were associated with higher PTSD and depression scores,
which contradicts some literature regarding positive relationships
between Bifidobacterium spp. and improved neuropsychiatric
outcomes [57–59]. Contrary to this, many other microbiome-
based studies of neuropsychiatric disorders, including major
depressive disorder (MDD), schizophrenia, and anxiety, have failed
to find similar associations [60–62]. Indeed, for MDD, various

Table 2. continued

Predictors PTSD Depression Somatic
Symptoms

Notes

Pseudoflavonifractor sp An184 NA NA −0.215 • Positively associated with weight loss [94]

Streptococcus thermophilus NA NA 0.0866

Clostridium symbiosum NA 0.204 0.163 • Increased abundance in early colorectal cancer [95]

Lactobacillus acidophilus NA NA −0.21

Bacteroides vulgatus NA 0.115 NA • Genera increased in healthy controls vs. active MDD patients
[63]

Anaerostipes hadrus NA −0.0635 NA

Dialister invisus NA 0.0954 NA • [80]
• Genera increased in healthy controls vs. active MDD patients
[63]

Bacteroides ovatus NA 0.194 NA

Bilophila wadsworthia NA 0.274 NA

Eubacterium ramulus NA −0.096 NA

Roseburia hominis NA 0.102 NA

Lawsonibacter
asaccharolyticus

NA −0.0814 NA
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Fig. 3 Mixed-Effect Random Forest (MERF) Regression Models Using Microbial Metabolic Pathways and Clinical Covariates to Predict
Neuropsychiatric Outcomes. MERF models combining microbial metabolic pathway abundance data with clinical and demographic
(highlighted in red) features demonstrate the importance of microbial pathways in predicting outcomes for (A) PTSD raw score, (B) depression
normalized score, and (C) somatic symptoms count (yes/no). The top 15 features from analysis of permutated importance on model outcomes
are displayed for PTSD and depression. Our model found only seven significant features for somatic symptoms.
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investigators have found both increased and decreased abun-
dances of Bifidobacterium spp. to be associated with clinical
disease suggesting possibly strain specific effects [50, 51, 62]. Our
analysis identifying increased abundances of Bifidobacterium spp.
as being associated with APNS outcomes adds more contradiction
to the literature but highlights the importance of looking beyond
species abundances in microbiome studies.
Alone, species-based associative studies can be confounding

and limit clearer investigations into biological mechanisms. We
have previously shown that also analyzing microbial metabolic
pathways can reveal valuable insight into possible biologic

impacts of the gut microbiome on clinical outcomes [35, 42]. As
with our previous work, our combined analysis approach here,
leveraging metagenomic sequencing and ML-based pipelines on
both species’ abundance and metabolic pathways, identified a
microbially-based signature within the biosynthesis of arginine/
citrulline/ornithine as highly informative of the development of all
three APNS outcomes. This is the first study to support the
existence of microbially produced metabolites acting through the
microbiome-gut-brain axis with APNS attributable outcomes.
PTSD patients have been shown to have decreased levels of

arginine and increased levels of ornithine and citrulline in
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Fig. 4 Important metabolic pathways for PTSD and depression involve arginine, citrulline and ornithine. Heat map (A) of correlation
coefficients for the top 15 metabolic pathways contributing to PTSD, depression, and somatic symptoms from MERF analysis show significant
contributions by amino acid and polyamine biosynthesis pathways. B Violin plots showing differences in contributions of arginine, citrulline,
and ornithine biosynthesis pathways for depression (top graphs) and PTSD (bottom graphs). Blue violins indicate no diagnosis (PTSD raw
score ≤ 31; Depression T-Score < 60 indicating none to mild depression) red indicates PTSD or depression diagnosis (PTSD RS > 31; Depression
T-Score ≥ 60 indicating moderate to severe depression).
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peripheral blood [46]. The ratio of arginine to its two main
catabolic products, ornithine, and citrulline, is used as a readout of
nitric oxide (NO) capacity and is referred to as the global arginine
bioavailability ratio (GABR) [52]. Bersani et al. sought to examine
NO production in PTSD patients via the GABR as arginine is the
sole nitrogen source of NO synthesis. They found that GABR was
negatively correlated with PTSD, which they reasoned was
indicative of dysfunctional NO synthase. The directionality
observed by Bersani and authors mirrors the directionality of
arginine-related metabolic pathways in our analysis. Altered
arginine metabolism has also been implicated in other neurop-
sychiatric disorders, such as schizophrenia and MDD [53, 54]. The
influence of altered arginine metabolism is likely multidimensional

and spans multiple mechanisms of action, including through
arginine vasopressin or NO [55, 56]. Identifying microbial sources
of these potential mechanisms in specific neuropsychiatric
conditions is an important first step towards enabling research
on interventions or therapies.
In our species trained MERF pipeline, Flavonifractor plautii, a

flavonoid-degrading bacterium often found in the human gut
microbiome, was the only species among the top 5 contributors to
all three APNS outcomes that affect GABR. This genus contributes
to the L-arginine biosynthesis pathway via ornithine in those with
PTSD and via acetyl in those with PTSD or depression. From our
metabolic pathway models, the contribution of Ruminococcus,
Alistipes and Flavonifractor genera to L-arginine biosynthesis via
ornithine was identified as increased in individuals with PTSD or
depression. Although the contribution of these three species were
not ranked as highly as Bifidobacterium spp. in our species trained
MERF model, by analyzing microbial metabolic pathways, we see
that their roles in PTSD and depression may be far more
significant.
Our findings also provide an added layer of contextual insight

into seemingly contradictory findings from prior research on this
topic. In addition to being increased in Crohn’s disease, the
Ruminococcus genera have been identified as decreased in those
with MDD in multiple studies [59, 63]. Although we find R. gnavus
abundance increases with depression score, the contribution of
the Ruminococcus genera to arginine biosynthesis through the
acetyl cycle (ARGSYNBSUB-PWY) and via ornithine (ARGSYN-PWY)
was lower in those with depression compared to those without,
implying species specific effects may also be at work. Likewise,
Alistipes have been found to be both increased [63] and decreased
in patients with MDD [59, 64] as compared to healthy controls,
suggesting genus-based examination of Alistipes may not be
sufficient. A. finegoldii and A. indistinctus, were both identified by
our microbial model as informative of PTSD score yet with
opposite directions. Furthermore, A. finegoldii abundance was
positively associated with PTSD scores and specifically had a

Table 3. Spearman’s Correlation of Important Metabolic Pathways with Outcomes.

Predictors PTSD Depression Somatic
Symptoms

Notes

ARG-POLYAMINE-SYN: superpathway of arginine and
polyamine biosynthesis

−0.251 −0.229 NA • Enriched patients with Crohn’s
Disease (CD) in remission [96]

CITRULBIO-PWY: L-citrulline biosynthesis 0.346 0.298 0.261 • Enriched patients with CD in
remission [96]

CALVIN-PWY: Calvin Benson Bassham cycle −0.269 −0.315 NA • Enriched patients with CD in
remission [96]

ARGININE-SYN4-PWY: L-ornithine de novo biosynthesis 0.201 0.165 0.139

CENTFERM-PWY: pyruvate fermentation to butanoate −0.322 −0.26 -0.168

BIOTIN-BIOSYNTHESIS-PWY: biotin biosynthesis I 0.181 0.127 NA

BRANCHED-CHAIN AA-SYN-PWY: superpathway of branched
amino acid biosynthesis

−0.127 −0.00818 NA

ANAEROFRUCAT-PWY: homolactic fermentation −0.0199 NA NA

ASPASN-PWY: superpathway of L-aspartate and L-asparagine
biosynthesis

−0.0404 0.0571 0.037

COA-PWY-1: coenzyme A biosynthesis II −0.0454 NA -0.053

ARGSYNBSUB-PWY: L-arginine biosynthesis II (acetyl cycle) −0.0768 −0.131 NA

ARGSYN-PWY: L-arginine biosynthesis I (via L-ornithine) −0.0579 −0.105 NA

1CMET2-PWY: N10 formyl tetrahydrofolate biosynthesis NA −0.0885 NA • Depleted in Ulcerative Colitis (UC) in
remission [96]

ANAGLYCOLYSIS-PWY: glycolysis III (from glucose) NA −0.048 NA

ARGORNPROST-PWY: arginine, ornithine and proline
interconversion

NA 0.0264 NA
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Fig. 5 Arginine is converted into citrulline and ornithine
commonly in the host and the microbiome. The ratio of arginine
to citrulline and ornithine in PTSD patients has previously been
found to negatively correlated with PTSD. We find that this negative
correlation in the metabolic pathways encoded for in the micro-
biome of trauma survivors.
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higher contribution to L-citrulline biosynthesis in those with PTSD
or depression. We also found that the Alistipes genera contributed
more to ornithine-related pathways in those with PTSD and
depression. Thus, by combining analyses of species abundance

with microbial metabolic pathways, we can better dissect the
functional contributions of the microbiota.
The emerging role of polyamines in neuropsychiatric disorders

opens a door to a better understanding of the complex

Table 4. Microbial genus contribution to arginine-related metabolic pathways stratified by PTSD and depression diagnoses.

Pathway Genus PTSD Raw
Score < 31

PTSD Raw
Score ≥ 31

Depression t-
score < 60

Depression t-
score ≥ 60

ARG-POLYAMINE-SYN:
Superpathway of arginine and
polyamine biosynthesis

Escherichia 53.64 69.95 42.86 100.00

Klebsiella 46.36 30.05 57.14 0.00

ARGSYNBSUB-PWY: L-arginine
biosynthesis II (acetyl cycle)

Akkermansia 7.72 2.36 7.61 1.20

Anaerostipes 2.49 0.67 2.29 0.68

Anaerotignum 0.36 1.14 0.48 1.03

Bifidobacterium 1.07 1.47 1.01 1.72

Bilophila 0.52 1.61 0.58 1.75

Blautia 4.12 4.00 4.46 3.11

Escherichia 0.97 3.81 1.04 4.37

Faecalibacterium 33.79 41.04 32.37 46.62

Flavonifractor 0.79 3.32 1.55 2.06

Fusicatenibacter 8.76 4.57 8.00 5.40

Gemmiger 10.68 7.95 10.19 8.46

Klebsiella 0.96 1.74 1.73 0.00

Lachnospiraceae
unclassified

9.40 8.91 9.14 9.46

Roseburia 1.42 1.15 1.58 0.68

Ruminococcaceae
unclassified

2.43 1.16 2.55 0.50

Ruminococcus 4.14 3.45 4.09 3.39

Tyzzerella 0.00 1.40 0.33 0.94

Table 5. Microbial genus contribution to ornithine-related metabolic pathways stratified by PTSD and depression diagnoses.

Pathway Genus PTSD Raw
Score < 31

PTSD Raw
Score ≥ 31

Depression t-
score < 60

Depression t-
score ≥ 60

ARGININE-SYN4-PWY:
L-ornithine de novo
biosynthesis

Bacteroides 38.78 29.26 37.40 28.63

Catenibacterium 13.22 0.14 7.15 4.90

Escherichia 12.28 25.78 12.20 29.42

Klebsiella 5.21 4.50 8.41 0.00

Parabacteroides 28.82 35.58 33.49 31.06

Paraprevotella 1.68 4.75 1.35 5.99

ARGSYN-PWY: L-arginine
biosynthesis I (via L-
ornithine)

Alistipes 3.21 16.69 3.92 18.18

Anaerostipes 2.60 0.38 2.40 0.31

Bifidobacterium 1.28 1.47 1.21 1.65

Blautia 3.95 3.29 4.29 2.46

Escherichia 1.36 3.40 1.45 3.65

Faecalibacterium 38.95 39.19 37.33 42.50

Flavonifractor 0.72 2.79 1.56 1.56

Fusicatenibacter 9.18 3.56 8.30 4.12

Gemmiger 11.38 7.32 10.89 7.41

Klebsiella 0.55 0.77 0.96 0.00

Lachnospiraceae
unclassified

9.42 7.48 9.13 7.64

Roseburia 2.06 1.20 2.30 0.55

Ruminococcaceae
unclassified

2.32 1.02 2.49 0.41

Ruminococcus 4.51 3.05 4.43 2.89
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pathophysiology of these disorders. The ability of microbiota to
produce polyamines and known associations between polyamine-
producing microbes and neuropsychiatric disorders highlight the
importance of the microbiome-gut-brain axis in human health. Our
novel finding of the gut microbiome contributing to alterations in
GABR pathways in our studied outcomes is the first direct
mechanistic link between the gut microbiome and APNS. This result
may provide some indirect evidence of a biological link for APNS
along the microbiome-gut-brain axis via microbially generated
metabolites.

Strengths and Limitations
We are the first to delve into the predictiveness of the microbiome
to the core components of APNS. Although the sample size of our
study was limited, our employment of ML methods and
metagenomic profiling enabled us to maximize the utility and
richness of data from the samples we had. Furthermore, the
AURORA (parent) study ensured a comprehensive, thorough, and
standardized system of scoring APNS outcomes longitudinally.
Our sub-study involved a single time point collection for every
individual and the assumption that the microbiome remains
stable over the 2-12 weeks’ time-period post trauma. We
acknowledge that this sampling strategy is not ideal and that
we would have gained better resolution with having samples at
each visit. However, the microbiome tends to stabilize within two
weeks event post major perturbations including infection, diet,
and antibiotics [65–67]. Therefore we feel that a month after
trauma exposure the microbiome have reached a stable yet
trauma-shaped state and that the within individual variability that
could occur among the different time points would be due to day-
to-day fluctuations to be a fair assumption. Additionally, we
encountered logistical difficulties with recruitment and sample
collection due to COVID-19 restrictions resulting in only 106 of the
approach 2,097 participants participating in this sub-study. This
challenge necessitated the working assumption that the micro-
biome is stable following trauma. Further, compared to the parent
study, our cohort was generally older, male, and non-Hispanic
white (Supplemental figure 1). Despite an established high
comorbidity between trauma and substance use [68],we did not
find any correlation between our outcomes and substance uses in
our cohort, but this should be reevaluated in a larger study as
usage may affect the gut microbiome. Future work will aim to
expand on our preliminary findings with a larger cohort and more
sampling time points, including sampling closer to time of trauma.
Although we approached these APNS diagnoses as discrete

outcomes, it is well known that there is much overlap between
them. Traditional APNS classification evolved from the realms of
specific medical specialties and thus are not indexed to specific
biological processes or basis [1]. This biologic overlap may be
responsible for the overlap in some features identified by our
modeling. A study with a larger sample size may be able to tease
apart the overlap of these outcomes. Finally, while our study
points to a possible role of the microbiome in mediating APNS
outcomes, animal models with selective microbiota modulation
will be necessary to determine directionality of this phenotype.

CONCLUSIONS
APNS can have devastating long-term consequences for patients
who have already suffered trauma, but APNS may be preventable.
Our nested study, using a subset of the AURORA cohort,
demonstrated the importance of the microbiome in influencing
APNS development. While more work is needed, we are the first to
describe a possible biologic link between the gut microbiome and
post-trauma outcomes through arginine metabolism and global
arginine pathways, which have already been associated with PTSD
and other neuropsychiatric disorders. This discovery opens avenues
for investigating prevention and treatment strategies through both
targeted therapies and microbiome-based interventions. Our find-
ings provide some evidence of a biological link for APNS along the
microbiome-gut-brain axis via microbially generated metabolites.
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