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Mindfulness-based interventions are showing increasing promise as a treatment for psychological disorders, with improvements in
cognition and emotion regulation after intervention. Understanding the changes in functional brain activity and neural plasticity
that underlie these benefits from mindfulness interventions is thus of interest in current neuroimaging research. Previous studies
have found functional brain changes during resting and task states to be associated with mindfulness both cross-sectionally and
longitudinally, particularly in the executive control, default mode and salience networks. However, limited research has combined
information from rest and task to study mindfulness-related functional changes in the brain, particularly in the context of
intervention studies with active controls. Recent work has found that the reconfiguration efficiency of brain activity patterns
between rest and task states is behaviorally relevant in healthy young adults. Thus, we applied this measure to investigate how
mindfulness intervention changed functional reconfiguration between rest and a breath-counting task in elderly participants with
self-reported sleep difficulties. Improving on previous longitudinal designs, we compared the intervention effects of a mindfulness-
based therapy to an active control (sleep hygiene) intervention. We found that mindfulness intervention improved self-reported
mindfulness measures and brain functional reconfiguration efficiency in the executive control, default mode and salience networks,
though the brain and behavioral changes were not associated with each other. Our findings suggest that neuroplasticity may be
induced through regular mindfulness practice, thus bringing the intrinsic functional configuration in participants’ brains closer to a
state required for mindful awareness.
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INTRODUCTION
Mindfulness refers to attending to what is happening in the present,
while accepting and not passing judgment on these experiences [1].
Practicing mindfulness has been found to improve psychological
wellbeing through beneficial effects on cognitive and emotional
processes, such as improvements in working memory [2–4],
attention [5–7] and emotion regulation [2, 8–10]. Furthermore,
mindfulness training has been found to be effective in the treatment
of psychological disorders such as depression [11–13], anxiety
[12, 14–16], stress [17–19], and insomnia [20–22]. In particular, the
prevalence of sleep disturbances has often been reported to
increase in the elderly [for reviews, see refs. [23, 24], which is linked
to increased risk of depression [25–27] and cardiovascular disease
[28–31], as well as dementia and cognitive impairment [32–34]. The
use of mindfulness training as a potential method for improving
sleep quality may be especially relevant for elderly with sleep
difficulties to reduce the risk of these disorders and improve quality
of life in old age [35, 36]. In line with this, previous studies have also
reported improvement in sleep quality following mindfulness-based
interventions in elderly participants [22, 37–39].
To understand the mechanisms underlying these beneficial

effects of mindfulness, previous studies have investigated the

brain activations [for reviews, see refs. [40, 41] and functional
connectivity (FC; temporal synchrony of activity across brain
regions) [for reviews, see refs. [42–44] related to mindfulness. Most
of these studies have focused on cross-sectional mindfulness-
related functional brain differences between meditators and non-
meditators or novice meditators [e.g., refs. [45–51]. Such studies
reported altered activation and connectivity of default mode
network regions (e.g., posterior cingulate cortex and medial
prefrontal cortex), salience network regions (e.g., insula) and
executive control network regions (e.g., dorsolateral prefrontal
cortex) in more experienced meditators. More recent studies have
adopted longitudinal designs to study functional brain changes
after mindfulness-based interventions [52–59]. Changes in brain
activity and functional connectivity of the default mode, salience
and executive control networks were also reported in such studies,
though more studies including active control interventions are
needed to elucidate the specific neural correlates of mindfulness
[59].
The involvement of these networks in mindfulness is consistent

with the role of the default mode network in self-referential
processing [60, 61], the salience network in interoceptive
awareness [62, 63], and the executive control network in cognitive
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control and externally-directed goals [64, 65]. Furthermore, the
salience network is involved in switching attentional focus
between external and internal cognition [64, 66]. Since the default
mode network is involved in internally oriented cognition and the
executive control network is involved in externally oriented
cognition, the interaction between the three networks could
further support their role in switching from externally oriented
attention to internally oriented mindfulness-related processes. In
addition, previous studies have found that mindfulness-related
measures are associated with intrinsic FC [55, 67–70] as well as
task activations [71–73] in these networks. Of note, the anterior
cingulate cortex (ACC) is also involved in mindfulness, and can be
divided into dorsal and rostral subregions, which contribute more
to the default mode network and salience network respectively.
While both subregions are implicated in mindfulness conditions
[74] as well as mindfulness training [43], they may mediate
different mindfulness-related processes relating to their network
assignments – dorsal ACC is relevant to focused attention and
conscious awareness [75], while ventral ACC is involved in
emotion regulation and mindwandering [43, 76].
As mindfulness is associated with functional brain activity in

both rest and task, combining information from both conditions
could provide further insights into the effects of mindfulness
training on the brain. Indeed, recent studies have used graph
theoretical methods [77–80], predictive modeling [81–83], infor-
mation transfer mapping [84] and correlational approaches
[85–88] to integrate rest and task fMRI data to reveal novel
insights into functional brain organization supporting cognition.
Among these, a simple and straightforward way to combine rest

and task information is through the measure of rest-task FC
similarity (defined as the spatial Pearson correlation between rest
and task FC). The rest-task FC similarity measure represents the
amount of reconfiguration in brain FC patterns needed when a
person goes from an intrinsic, task-free resting state to a state of
performing a task [87]. Previous work has found that higher fluid
intelligence and better performance across language, reasoning
and working memory tasks was associated with higher rest-task
FC similarity (i.e., less FC reconfiguration or more efficient FC
reconfiguration from rest to task) in young adults. This suggests
that individuals with better cognitive ability have intrinsic FC that
is optimized for general cognition, thus requiring less functional
reconfiguration from rest to task [87].
The efficiency of functional reconfiguration between rest and

task could be especially relevant for studying mindfulness as
mindfulness training is thought to promote increases in trait
mindfulness, permitting practitioners to more easily and fre-
quently enter a mindful state [89]. Supporting this view, previous
work reported improved efficiency of FC patterns during
meditation in expert compared to novice meditators [90],
suggesting an easier-to-reach state of mindfulness in more
practiced individuals. Furthermore, reduced activation of the
default mode network regions during meditation tasks with
mindfulness practice have been reported previously [46, 91]. This
indicates that less activity in the default mode network is needed
to support mindfulness with training, for example, due to reduced
mindwandering, suggesting more efficient functional processes
supporting mindfulness states in experienced meditators
[46, 54, 92]. However, previous work on FC similarity focused on
externally oriented tasks [85–88], and it remains unclear how
functional reconfiguration efficiency may be relevant for internally
oriented, mindfulness-related tasks. Furthermore, the effect of
cognitive interventions on functional reconfiguration efficiency
has yet to be studied.
In this work, we aimed to investigate the changes in this rest-

task functional reconfiguration efficiency after a mindfulness-
based intervention in a cohort of elderly participants with
reported sleep difficulties. To study the intervention effects
specific to mindfulness improvements, we compared the

mindfulness intervention to an active control intervention (sleep
hygiene education and exercise). Specifically, we investigated
network-level rest-task reconfiguration efficiency between resting
state and a mindfulness-related breath-counting task (BCT) across
the two intervention arms. We hypothesized that increased
reconfiguration efficiency would occur after mindfulness inter-
vention, particularly in the executive control, default mode and
salience networks that are often reported to be associated with
externally- and internally oriented attention, interoception and
mindfulness in previous literature [41, 42, 93–95]. We also sought
to see whether changes in brain network reconfiguration
efficiency were related to changes in mindfulness measures.

METHODS
Participants
To investigate mindfulness-related functional brain reconfiguration, we
studied healthy older adults with self-reported sleep difficulties (N= 127)
from the Mindfulness to Improve Sleep Trial (MIST) [22]. The MIST trial was
a randomized controlled study in which mindfulness-based therapy for
insomnia (MBTI) was compared against an active control intervention
(sleep hygiene, education and exercise program; SHEEP) for improvement
of sleep quality. Sample size required to detect intervention effects were
determined before recruitment based on reported effect sizes from the
literature, and researchers collecting the data from the trial were blinded to
the participants’ assigned intervention group [see ref. [22] for details]. The
trial was approved by the SingHealth Clinical Institution Review Board and
the Institutional Review Board of the National University of Singapore, as
well as registered on ClinicalTrials.gov as Improving Sleep Continuity
Through Mindfulness Training for Better Cognitive Ageing with the
identifier NCT03677726. Written informed consent was obtained from all
participants. Inclusion criteria for MIST were: (i) age within 50–80 years, (ii)
English fluency, (iii) cognitively normal (Montreal Cognitive Assessment
(MoCA) score [96] ≥23, Mini-Mental State Examination (MMSE) score [97]
≥26), and (iv) self-reported sleep difficulties (Pittsburgh Sleep Quality Index
(PSQI) [98] score ≥5 AND >30min sleep latency and/or >30min
wakefulness after sleep onset and/or <6.5 h sleep time). Participants were
excluded if they had: (i) any neurological or psychiatric disorders, (ii) use of
long-term sleep medications, (iii) prior mindfulness-based intervention, or
(iv) MRI contraindications.
For this study, we chose a subset of participants from the MIST study

who had resting state and breath-counting task fMRI data meeting quality
control criteria before and after intervention. Specifically, 42 participants
were excluded as they did not have imaging data at both pre- and post-
intervention, 2 participants were excluded due to incidental findings, 1
participant withdrew from the study, and 5 participants were dropped due
to incomplete data (scans were truncated or behavioral data was lost due
to technical issues). 10 participants were also excluded due to poor
performance during the breath-counting task inside the scanner, defined
as having less than 50% accuracy for the task (see Breath-counting task for
details). In addition, 16 participants were excluded as their imaging data
did not meet the quality control criteria for head motion (1 failed for post-
intervention rest scan, 11 for pre-intervention BCT scan, 4 for post-
intervention BCT scan; see Image preprocessing for details). We further
excluded 3 participants as they were outliers (>3 standard deviations from
the mean for task performance or functional reconfiguration measures).
This resulted in 48 participants used in our study (Table 1). We note that
the subsample was representative of the full sample in the MIST study [22]
based on demographics and behavioral measures – age, gender, sleep
indices and Five Facet Mindfulness Questionnaire (FFMQ) scores were all
not significantly different between the subsample and the full sample
(two-sided Mann–Whitney U tests; all p > 0.05).

Interventions
To compare the effect of mindfulness against an active control,
participants were randomized into one of two intervention groups using
a simple randomization procedure in MATLAB. Both interventions were run
in weekly 2-hour sessions over 8 weeks, and matched as closely as possible
for contact time, daily practice, and sleep education content. The
mindfulness-based intervention was based on the MBTI developed by
Ong [99], and conducted by a trained and certified mindfulness instructor.
The mindfulness practices included mindful eating, mindful movement
and meditation. The active control SHEEP intervention was developed at
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the Singapore General Hospital and conducted by a clinical psychologist.
This intervention involved adaptations of habits and environment to
improve sleep, and included sleep-promoting exercises (stretching,
breathing exercises and muscle relaxation). More details on the interven-
tions and randomization procedure are reported in Perini, Wong [22]. We
note that there are no significant differences for sleep indices (PSQI or ISI)
or FFMQ scores between the two intervention groups at baseline (two-
sided Mann–Whitney U tests; all p > 0.05).

Five facets mindfulness questionnaire
To obtain behavioral scores for mindfulness, self-reported measures were
collected as a secondary outcome in the MIST trial using the FFMQ [100]. In
brief, the FFMQ examines five facets or components of mindfulness,
namely ‘Observing’, ‘Describing’, ‘Acting with awareness’, ‘Nonjudging of
inner experiences’ and ‘Nonreactivity to inner experience’ (each with 8
items, except non-reactivity with 7 items). Participants rated each item on a
scale of 1–5 (from ‘Never or very rarely true’ to ‘Very often or always true’).
Subscale scores were obtained by taking the sum of the rating for all items
within each facet, and total FFMQ scores were calculated as the sum of all
subscale scores for each participant.

Breath-counting task
To obtain functional brain measures of mindfulness, participants under-
went fMRI scanning while performing an internally oriented, mindfulness-
related BCT task [101, 102]. In this task, participants attended to the
sensations of their breathing while using a part of their attention to
maintain a count in cycles. They pressed a button to indicate breath counts
1–8 in each cycle, and a second button to indicate the 9th breath. A third
button was pressed if they lost count. Participants were first given
instructions on the task and performed it outside of the scanner to ensure
they understood the instructions. During the BCT scan, participants were
instructed to keep their eyes open and perform the same task. A blank
screen was shown throughout the BCT scan. BCT accuracy inside and
outside of the scanner were used as task performance measures. A correct

cycle comprised exactly eight presses on the first button, followed by one
press on a second button. Accuracy was calculated as the number of
correct cycles divided by the total number of cycles. Full details of the
scoring procedure are reported in refs. [103, 104].

Image acquisition
All participants were scanned using a 3T Siemens Magnetom Prisma Fit
scanner. High-resolution T1 structural magnetic resonance imaging (MRI)
scans were collected using a magnetization-prepared rapid gradient echo
sequence (TR/TE= 2300/2.28ms, voxel size= 1.0 × 1.0 × 1.0mm3, FOV=
256 × 240mm2, 192 sagittal slices, flip angle= 8◦, bandwidth= 200 Hz/
pixel). Resting state and BCT task fMRI data were collected during scans of
10min each using the same interleaved multiband echo-planar imaging
sequence (TR/TE= 719/30ms, multiband acceleration factor= 4, voxel
size= 3.0 × 3.0 × 3.0mm3, FOV= 225 × 225mm2, 44 axial slices, flip angle=
52◦, bandwidth= 2632 Hz/pixel). During resting state, participants fixated
on a cross presented in the center of the screen and were instructed that
they need not think about anything in particular.

Image preprocessing
Preprocessing of fMRI scans was performed using FreeSurfer [105], FSL
[106, 107], and SPM (Wellcome Department of Cognitive Neurology, London,
UK) through the pipeline developed by the Computational Brain Imaging
Group [108]. In brief, the functional images underwent removal of four
volumes from the start of each run; motion correction; boundary-based
registration onto Freesurfer surface; creation of whole brain, white matter
and ventricular masks from structural segmentation; regression of nuisance
signals (whole brain, white matter signal, ventricle signal and 12 motion
parameters); band pass filtering (0.009–0.08 Hz); projection onto MNI-152
volumetric space; downsampling to 2mm voxels; and spatial smoothing with
a Gaussian kernel (6mm full-width half maximum). For consistency, the same
preprocessing steps were performed for both rest and BCT task fMRI scans.
Functional images were subjected to quality control for head motion

using measures of framewise displacement (FD) and variance of temporal

Table 1. Demographics of participants in full sample from mindfulness to improve sleep trial and subset used in this study.

Variables MIST (full cohort) Subset used in this study

MBTI SHEEP MBTI SHEEP

N 65 (36F/29M) 62 (38F/24M) 25 (14F/11M) 23 (14F/9M)

Age (years) 61.2 ± 6.6 60.7 ± 6.2 59.9 ± 6.0 59.2 ± 5.3

Education levela 3.5 ± 1.1 3.5 ± 1.0 3.9 ± 0.8 3.6 ± 1.2

Ethnicity

Chinese 63 57 24 19

Malay 0 0 0 0

Indian 1 1 0 0

Other 1 4 1 4

PSQI

Pre 10.98 ± 3.10b 10.87 ± 3.10b 10.36 ± 3.26b 10.91 ± 3.03

Post 7.34 ± 3.01b 7.58 ± 3.37b 6.48 ± 2.93b 8.09 ± 3.69c

ISI

Pre 14.89 ± 3.89b 14.21 ± 4.13b 15.20 ± 3.24b 14.30 ± 3.18b

Post 9.95 ± 3.88b 11.23 ± 4.54b 9.20 ± 4.20b 12.52 ± 4.14b,c

FFMQ

Pre 128.83 ± 17.13 131.68 ± 16.38 125.48 ± 15.28 128.87 ± 11.17

Post 131.43 ± 16.59 132.61 ± 14.30 131.92 ± 14.23 132.52 ± 13.42

All values are listed as mean ± standard deviation (except number of participants). PSQI and ISI are primary outcomes in the Mindfulness to Improve Sleep Trial
(MIST), while FFMQ is a secondary outcome.
MBTI Mindfulness-Based Therapy for Insomnia, SHEEP Sleep Hygiene Exercise and Education Program, PSQI Pittsburgh Sleep Quality Index, ISI Insomnia
Symptoms Index, FFMQ Five-Facets Mindfulness Questionnaire.
aEducation was categorized into 6 levels as follows: 0= no education, 1= less than or equals primary education, 2= less than or equals secondary education,
3=more than secondary or less than university education, 4= university-level education, 5= post graduate-level education.
bSignificant differences (p < 0.05) pre- and post-intervention from Mann–Whitney U test.
cSignificant differences (p < 0.05) across MBTI and SHEEP intervention groups from Mann–Whitney U test.

W.L. Yue et al.

3

Translational Psychiatry          (2023) 13:345 



derivative of time courses over voxels (DVARS) [109]. Volumes with high
motion (FD > 0.2 mm or DVARS > 50 [110, 111]), one frame before and two
frames after the high motion volumes were interpolated from surrounding
data. Participants were excluded if <50% of the original frames (i.e., <5 min
of each scan [112]) in the full run remained after this motion correction
step. The final sample had mean relative rest motion= 0.07 ± 0.02mm and
mean relative task motion= 0.10 ± 0.03mm. No significant group, time or
interaction effects were observed in mean relative rest and task motion.

Derivation of functional reconfiguration
Following previous work on rest-task functional reconfiguration efficiency
[87, 88], we further regressed task activations from preprocessed task fMRI
data before deriving task FC [113]. Specifically, main and derivative
regressors were created for button presses recorded during the BCT, which
were then convolved with a canonical hemodynamic response function.
To extract fMRI time series for construction of FC matrices, we used a

parcellation with 400 cortical regions of interest (ROIs) [114] and
30 subcortical ROIs [115, 116], averaging over voxels within each ROI to
obtain ROI-level time series. The ROIs were then grouped into 9 networks
(executive control, default mode, dorsal attention, limbic, salience/ventral
attention, somatomotor, temporal-parietal, visual and subcortical). We
calculated Pearson’s correlation for each pair of ROI time series (Fisher’s r-
to-z transformed) to represent FC between ROIs. We then constructed rest
and BCT FC matrices for each participant using the correlation z-values
from resting state and BCT respectively.
We studied rest-task functional reconfiguration efficiency through

network-level FC similarity measures. Network-level FC similarity was
separated into intranetwork and internetwork components. Specifically, for
intranetwork, rest-task FC similarity was computed as the Pearson’s
correlation (Fisher’s r-to-z transformed) of all FC between ROIs of each
network in the resting state with all FC between ROIs of the same network
in the task state. For internetwork, rest-task FC similarity was computed as
the Pearson’s correlation (Fisher’s r-to-z transformed) of the between-
network FC vector (i.e., all the FC values between ROIs from one network
and ROIs of all other networks) in the resting state with the same between-
network FC vector in the task state. For each network and each participant
at both pre- and post-intervention sessions, this yielded one intranetwork
and one internetwork FC similarity value. Higher rest-task FC similarity
corresponds to less reconfiguration of spatial patterns of brain between
rest and task, or more efficient functional reconfiguration.

Statistical analyses
To investigate behavioral and neuroimaging measures before and after the
two interventions, we performed linear mixed modeling separately on BCT
performance (accuracy inside and outside of scanner), FFMQ scores
(subscale scores and total score) and FC similarity measures (network-
level):

Y � Ageþ Gender þ Group � Timepoint þ 1þ TimepointjParticipantð Þ

Where Y represented the outcome measure of interest, Age was the
participants’ age at the start of the intervention, while Gender, Group and
Timepoint were binary dummy variables for the participants’ gender,
intervention group, and pre- or post-intervention timepoints. Data from all
participants were included in each model. The models also included
random intercepts and slopes for each participant. The coefficient (β) for
Timepoint was the estimated time effect for changes in the outcome
before and after the interventions. Importantly, the interaction term
(Group x Timepoint, as enclosed in the * notation) was included to assess if
the changes were different between the two intervention groups.
Next, we investigated whether any behavioral changes were positively

associated with FC similarity changes across all participants. This was
performed only for behavioral and neuroimaging measures that showed a
time and/or interaction effect in the previous analysis. Linear models were
constructed with behavioral change as the outcome variable and FC
similarity change as the independent variable. Age and sex were included
as covariates of no interest. To assess if there were differential associations
between brain and behavior across the two intervention groups, a second
set of models were also constructed with group interacting with FC
similarity change.
Due to the relatively small sample size, we used non-parametric

methods to obtain p values for the described analyses. Specifically, we
performed permutation analyses to obtain null distributions of estimates,
shuffling Group labels across all participants and switching Timepoint

labels within participants 50% of the time for 1000 iterations. The p values
were then calculated as the fraction of iterations in which the permuted
estimates were as extreme as or more extreme than the observed estimate.
All statistical analyses described were carried out in MATLAB 2015a (The
MathWorks, Inc.), and the code is available on Github (https://github.com/
hzlab/2022_Yue_Mindfulness_Reconfiguration_TransPsy). Data used in this
study is available upon reasonable request from the corresponding authors.

RESULTS
Effects of interventions on mindfulness measures
Overall, we found that both the FFMQ total score and the FFMQ
Awareness and Observing subscale scores increased after inter-
vention across all participants (Fig. 1, FFMQ Total: βTimepoint= 6.44,
Cliff’s δPost-Pre effect size= 0.19, p < 0.001, FFMQ Awareness:
βTimepoint= 1.32, δPost-Pre= 0.11, p= 0.044, FFMQ Observing:
βTimepoint= 2.32, δPost-Pre= 0.14, p= 0.001). For the Observing
subscale, we further found an interaction effect such that the
subscale score appeared to increase only in the mindfulness
intervention group but not the sleep hygiene group
(βGroup × Timepoint=−2.23, δMBTI(Post- Pre)= 0.30, δSHEEP(Post- Pre)=
−0.004, p= 0.032), suggesting that the time effect for FFMQ
Observing subscale was driven by the improvement in the
mindfulness intervention group. All other mindfulness measures
(from FFMQ and BCT) did not show significant time and/or
interaction effects, while sleep measures of PSQI showed a time
effect and Insomnia Severity Index (ISI) [117] showed both time
and intervention effects (Supplementary Table 1).

Effects of interventions on functional reconfiguration
efficiency
Brain FC similarity between rest and BCT task showed differential
changes after intervention for the mindfulness and sleep hygiene
groups. Specifically, we observed group and time interaction
effects for rest-task intranetwork FC similarity in the executive
control network (βGroup × Timepoint=−0.10, δMBTI(Post- Pre)= 0.16,
δSHEEP(Post- Pre)=−0.17, p= 0.032), default mode network
(βGroup × Timepoint=−0.13, δMBTI(Post- Pre)= 0.21, δSHEEP(Post- Pre)=
−0.10, p= 0.013) and salience network (β

Group × Timepoint
=−0.11,

δMBTI(Post- Pre)= 0.16, δSHEEP(Post- Pre)=−0.10, p= 0.027), such that
FC similarity appeared to increase over time for mindfulness
intervention group but seemed to decrease in the sleep hygiene
group within all three networks (Fig. 2).
Since the intranetwork FC similarity of these networks were not

significantly different across the two groups pre-intervention (two-
tailed Mann–Whitney U test; all p > 0.05), baseline differences did
not contribute to the observed interaction effects. FC similarity
measures from all other networks (both intranetwork and
internetwork) did not show significant time and/or interaction
effects (Supplementary Table 2). Furthermore, repeating the
analyses with network-averaged rest and task FC revealed
interaction effects only in the default mode network for rest FC
and the somatomotor network for task FC (Supplementary Table
3), indicating that changes in FC similarity between rest and task
were not simply due to changes in rest or task FC alone.

Associations between changes in mindfulness measures and
reconfiguration efficiency
Finally, we found no positive associations between these
behavioral and brain imaging measures, and no interaction effects
on associations across intervention groups (all p > 0.05 from 1000
permutations; Supplementary Table 4). Similarly, no associations
were found with sleep measures (Supplementary Table 5).

DISCUSSION
In this study, we investigated how mindfulness intervention
changed network-level functional reconfiguration between resting
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state and a breath-counting task in a sample of healthy older
adults with reported sleep difficulties. Overall, we found that self-
reported mindfulness measures and brain functional reconfigura-
tion efficiency in the executive control, default mode and salience
networks improved after mindfulness intervention, though the
behavioral and brain changes did not show significant associa-
tions with each other. Our findings suggest that regular mind-
fulness practice may induce changes in neuroplasticity of the
executive control, default mode and salience networks, such that
the participants’ intrinsic functional brain configurations were
brought closer to a state of mindful awareness.
Our findings add to the existing evidence that mindfulness

improves after short-term practice, with self-reported mindfulness
measures proving useful for assessing effects of mindfulness-
based intervention [118]. Specifically, we found that FFMQ
Observing subscale score improved only for the mindfulness
group and not the control group, indicating that formal mind-
fulness practice did contribute to improvements in mindfulness
over the control intervention. This result mirrors the group × time
interaction found for FFMQ in the full MIST sample, which was
driven by increased FFMQ scores in the mindfulness group [22].
Our findings of higher rest-task functional network reconfigura-

tion efficiency after mindfulness intervention suggest that mind-
fulness practice made it easier (or less effortful) for participants in
the mindfulness group to move from resting state to a mindful
state for performing the BCT, even if there was no significant
difference in their BCT performance. The observed increase in
functional reconfiguration efficiency after mindfulness interven-
tion is consistent with the previously reported results on
functional reconfiguration with externally oriented tasks, where
participants with more efficient rest-task functional reconfigura-
tion had better task performance and general cognitive abilities
[87, 88]. In addition, rest-task functional reconfiguration efficiency
appeared to increase after the mindfulness intervention but not
the active control intervention. This may indicate that participants
who underwent mindfulness practice and sleep hygiene

education had differential functional brain reorganization based
on the type of training received. Since the sleep hygiene
intervention did not include mindfulness techniques, different
strategies could have been used that caused their rest and BCT
task states to differ more after the intervention. Furthermore,
previous work using graph-theoretical methods to study FC during
meditation has reported that brain regions show more efficient FC
organization in expert compared to novice meditators [90],
providing further support for our findings of improved functional
brain reorganization from rest to task in participants who
underwent mindfulness intervention.
Our observations of intervention effects in the executive

control, default mode and salience networks are consistent with
existing literature on the relevance of these networks to
mindfulness. The default mode network is involved in self-
referential processes and mind-wandering [60, 61]. Regions in
the default mode network have been observed to have reduced
activity during mindfulness tasks [46, 48, 51, 72], with further
reductions in activity in experienced meditators [46] possibly
reflecting reduced mindwandering, thus suggesting increased
efficiency in this network with mindfulness practice. On the other
hand, the key regions of the salience network – anterior insula and
anterior cingulate cortex – have roles in interoception and self-
awareness [62, 63], which is especially relevant to the BCT used in
this study. In previous work, the regions of the salience network
have also been found to be consistently activated during
meditation [for review, see ref. [41]. The executive control network
is involved in cognitive control and externally-directed goals
[64, 65], and has also been linked to mindfulness in previous
literature [49, 58, 67, 71]. Further supporting the involvement of
the executive control, default mode and salience networks in
mindfulness practice, mindfulness-related changes were also
observed for FC within and between these networks during
mindfulness tasks as well as resting state in previous studies
[46, 47, 52, 119, 120]. In particular, mindfulness-related increases in
FC within these networks in resting state [for reviews, see refs.

Fig. 1 Self-reported mindfulness measures improved after intervention. FFMQ Total score and FFMQ Awareness subscale score showed
Time effect and increased after intervention for both groups (FFMQ Total: βTimepoint= 6.44, Cliff’s δPost-Pre effect size= 0.19, p < 0.001, FFMQ
Awareness: βTimepoint= 2.32, δPost-Pre= 0.11, p= 0.001). FFMQ Observing subscale score showed an interaction effect, with an increase in
subscale score only in the mindfulness intervention group but not the sleep hygiene group (βGroup × Timepoint=−2.23, δMBTI(Post- Pre)= 0.30,
δSHEEP(Post- Pre)=−0.004, p= 0.042). Only significant effects from linear mixed models (p < 0.05 from 1000 permutations, controlled for age and
gender) are illustrated, and residuals from the linear mixed model (controlling for age and gender) are plotted here. All time and interaction
effects for behavior are detailed in Supplementary Table 1.
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[43, 46] suggest that our observed intervention effects on rest-task
functional reconfiguration efficiency can be explained by the
intrinsic functional organization of these networks getting closer
to a mindful state.
In the context of mindfulness-based tasks like the BCT,

functional reconfiguration in the default mode network from
resting state to task could be related to transitions towards a more
self-detached viewpoint as well as increasing focus through
reduced mind-wandering, which become easier to achieve after
mindfulness intervention. Crucially, the salience network is
involved in switching between internally- and externally oriented
attention [64, 66], which is relevant for attentional processes
during mindfulness states that also become more efficient with
mindfulness practice [54, 92]. Since the default mode network is
involved in internal cognition while the executive control network
is involved in externally-directed cognition, the three networks
could be working together as the participants switch from a state
of attending to stimuli from the environment into a self-aware
state during mindfulness tasks. Taken together, changes in
network-level FC from rest to task may thus correspond to the
involvement of the three networks in key processes related to
mindfulness practice such as increased self-awareness, decenter-
ing and focused attention. Improvements in the executive control
network, default mode network and salience network FC
reconfiguration efficiency from pre- to post-intervention could
thus be a potential mechanism underlying observed improve-
ments in mindfulness measures.

Despite the observed changes in both mindfulness measures
and functional reconfiguration efficiency post-intervention, we did
not find any significant associations between these changes.
Similarly, a previous study found cross-sectional differences in task
performance and neural responses between meditators and non-
meditators, but no significant correlations between these differ-
ences [121]. The lack of brain-behavior associations may be due to
behavioral and neuroimaging measures changing at different
timescales [122]. Future studies could include additional follow-up
sessions which may reveal associations between these measures
at different timepoints post-intervention and whether functional
brain changes were maintained.

Limitations and future directions
Our study had a moderate sample size which may not be
sufficiently powered to detect the associations between changes
in brain and behavioral measures before and after intervention.
Larger sample sizes or meta-analyses may be required to reveal
these associations. Furthermore, as only older adults were studied,
future work could investigate possible differences in mindfulness-
related functional reconfiguration in aging and development.
Moreover, we note that the FFMQ total score increased in both

intervention groups instead of showing improvements only for
the mindfulness intervention group. This may be due to the poor
discriminant validity of the FFMQ measure, which has been also
reported in previous literature [123, 124]. Furthermore, the FFMQ
suffers from several limitations due to its nature as a self-report

Fig. 2 Brain functional reconfiguration efficiency improved after mindfulness intervention. Interaction effects were observed for
intranetwork FC similarity between rest and breath-counting task (BCT) in brain networks (executive control network (ECN): βGroup× Timepoint=−0.10,
Cliff’s δMBTI(Post-Pre) effect size= 0.16, δSHEEP(Post-Pre)=−0.17, p= 0.032, default mode network (DMN): βGroup × Timepoint=−0.13, δMBTI(Post-Pre)= 0.21,
δSHEEP(Post-Pre)=−0.10, p= 0.013, salience network (SN): βGroup× Timepoint=−0.11, δMBTI(Post-Pre)= 0.16, δSHEEP(Post-Pre)=−0.10, p= 0.027). Both
networks increased in FC similarity in the mindfulness group but decreased in the sleep hygiene group. Only significant interaction effects from
linear mixed models (p< 0.05 from 1000 permutations, controlled for age and gender) are illustrated; all time and interaction effects for FC similarity
are detailed in Supplementary Table 2. FC similarity was calculated using data preprocessed with global signal and task activations regressed, and
residuals from the linear mixed model (controlling for age and gender) are plotted here. Brain networks were visualized using BrainNet Viewer
(http://www.nitrc.org/projects/bnv).
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measure. For example, self-report measures of mindfulness are
confounded by differing interpretations of questionnaire items
across participants as well as before and after mindfulness practice
[125–127]. Participants may also misrepresent themselves on the
questionnaire, either intentionally or unintentionally. In addition,
filling up the questionnaire may require a certain level of
mindfulness, and may also positively affect one’s mindfulness
levels [128]. Despite these inherent limitations, the FFMQ is still
considered the gold standard among mindfulness measures and is
widely used in the field. Thus, future work on developing better
measures for assessing mindfulness is needed to advance our
understanding of the specific neural mechanisms underlying the
beneficial effects of mindfulness.
We further note that the use of FC to study the neural correlates

of mindfulness also poses several limitations. First, the network-
level or region-specific changes observed may be task-specific due
to different cognitive processes being involved to different
extents across mindfulness tasks [129]. Future work could
investigate functional reconfiguration efficiency across a variety
of mindfulness-based tasks to obtain a more complete picture of
how network-level functional reconfiguration supports mind-
fulness. Second, neuroimaging confounds such as head motion
and physiological changes could affect the estimation of FC and
FC-derived measures, with mindfulness possibly also changing the
impact of these confounds on the neuroimaging measures [130].
While we selected only participants with minimal head motion for
inclusion in this study, physiological measures such as heart rate
could also be taken into account for future work, especially given
the interoceptive nature of mindfulness-based tasks. Third, we
only used static FC to study mindfulness-related changes in
functional reconfiguration, but previous work revealed that FC
patterns do not remain constant throughout mindfulness states
and their dynamics are relevant to mindfulness measures
[131–133]. Future work could thus investigate how the dynamics
of functional reconfiguration may also be relevant for supporting
mindfulness-related processes.
In conclusion, our study revealed improvements in self-

reported mindfulness scores and increased rest-task functional
brain reconfiguration efficiency of the executive control, default
mode and salience networks through mindfulness practice.
These findings were specific to mindfulness training as the
active control intervention group did not show these changes.
Our findings suggest that participants’ brain functional organiza-
tion becomes more efficient and closer to a state of mindful
awareness through undergoing mindfulness intervention, and
indicate that neuroplasticity may be induced through mind-
fulness practice.
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