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Three-quarters of lifetime mental illness occurs by the age of 24, but relatively little is known about how to robustly identify youth
at risk to target intervention efforts known to improve outcomes. Barriers to knowledge have included obtaining robust predictions
while simultaneously analyzing large numbers of different types of candidate predictors. In a new, large, transdiagnostic youth
sample and multidomain high-dimension data, we used 160 candidate predictors encompassing neural, prenatal, developmental,
physiologic, sociocultural, environmental, emotional and cognitive features and leveraged three different machine learning
algorithms optimized with a novel artificial intelligence meta-learning technique to predict individual cases of anxiety, depression,
attention deficit, disruptive behaviors and post-traumatic stress. Our models tested well in unseen, held-out data (AUC ≥ 0.94). By
utilizing a large-scale design and advanced computational approaches, we were able to compare the relative predictive ability of
neural versus psychosocial features in a principled manner and found that psychosocial features consistently outperformed neural
metrics in their relative ability to deliver robust predictions of individual cases. We found that deep learning with artificial neural
networks and tree-based learning with XGBoost outperformed logistic regression with ElasticNet, supporting the conceptualization
of mental illnesses as multifactorial disease processes with non-linear relationships among predictors that can be robustly modeled
with computational psychiatry techniques. To our knowledge, this is the first study to test the relative predictive ability of these
gold-standard algorithms from different classes across multiple mental health conditions in youth within the same study design in
multidomain data utilizing >100 candidate predictors. Further research is suggested to explore these findings in longitudinal data
and validate results in an external dataset.
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INTRODUCTION
The majority of lifetime primary mental illness is clinically
diagnosed from 10 to 24 years of age (y) when incidence rises
exponentially, with 50% of lifetime illness diagnosed by 14 y and
75% by 24 y [1]. Importantly, manifest illness is typically preceded
by ~8–10 years of symptoms [1–4], offering a window for
intervention and prevention. However, it is currently challenging
to easily identify youth at elevated risk, and diagnosis tends to
occur retrospectively. Since evidence across disorders suggests
that early intervention improves outcomes [5, 6] and reduces
resource use [7], identifying specific factors that predict individual
cases would likely promote advances in population health and
inform public policy. In the last decade, there has been increasing
interest in using machine learning (ML) techniques to construct
predictive models of youth mental illness. Here, we use the term
‘prediction’ as commonly employed in ML: to train a discriminative
classifier to predict the quantitative value of a target variable by
analyzing patterns in input data (‘predictors’ or ‘features’). ML
techniques can offer a useful bridge between work focused on
identifying statistical associations at a group level and clinical
relevance since they can “generate individual predictions from
multidimensional data, providing multivariate signatures that are

valid at the single-subject level” [8, 9]. Further, these approaches
can simultaneously analyze dozens or hundreds of candidate
predictors (though this can pose the problems of feature selection
and computational complexity) and incorporate non-linear
relationships among a set of predictors.
Several types of datasets have historically been used to conduct

a predictive classification of youth mental illnesses. Outside the
US, population-level registry data may be available, offering large
sample sizes (n > 10,000) but are often limited with respect to data
types. In particular, neuroimaging and/or psychometric testing is
typically not available. Examples of this type include work
performed in Australia, China, Sweden and the UK [10–13].
Alternatively, some participant samples have been assembled with
a broader array of data types, including neuroimaging, that are
focused on individual conditions, such as the IMAGEN (depression,
anxiety) or ENIGMA (ADHD) datasets [14–16]. To promote
comparative discovery at scale, federal and other organizations
have most recently sponsored the formation of large transdiag-
nostic or population-based samples that collect a wide array of
multimodal data types and hundreds to thousands of descriptive
variables. In peri-adolescence, flagship initiatives of this type
include the ongoing population-level ABCD and Healthy Brain
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Network studies, the latter being used in the present study
[17–19]. Such large-scale, multidomain data repositories offer the
opportunity to compare the relative ability of a wide range of
phenotypic, physiologic and neural candidate predictors to
predict cases of multiple psychiatric illnesses in more naturalistic,
community-based samples. In recent years, a new generation of
studies has started to emerge applying ML predictive classification
in these large, multidomain, naturalistic participant samples that
offer a wide range of candidate predictor data types. To date,
these have focused on comparing the predictive ability of
different ML algorithms in individual conditions such as depres-
sion or disruptive behaviors and used <100 candidate predictors.
Certain common mental health conditions in youth have received
less emphasis in ML-based predictive work. In particular, there are
very few studies aimed at predicting anxiety or post-traumatic
stress (PTS) in youth using ML classifiers.
Extant studies using ML techniques to construct individual-level

predictive classifiers of cases of youth mental illnesses typically
compare the performance of multiple algorithm types across
different classes to explore different ways of fitting models to the
data, a recommended practice [20]. These have most often been
linear or decision-tree algorithmic classes that offer the advantage
of producing models that are inherently explainable: the identity
of each of the final set of predictors is known, and their relative
importance may be quantified. Typically, such studies have found
that decision-tree algorithms achieved superior performance.
Newer deep learning algorithms (e.g., artificial neural networks)
are powerful techniques that are well-suited to high-dimensional
data. However, they have been less often employed to construct
discriminative classifiers in psychiatry and are ‘black box’ methods
that use intermediate features that are not interpretable by
humans. While all ML algorithms have hyperparameter settings
that govern learning that require ‘tuning’ (a principled method to
optimize hyperparameter settings for performance), deep learning
algorithms are also notoriously challenging to tune. Few studies to
date have compared the relative effectiveness of deep learning
versus linear and decision-tree-based algorithms in constructing
predictive (classification) models of youth mental illness cases.
Most, but not all, of those that have done so have found that deep
learning has outperformed [12, 13, 16, 21]. Moreover, no studies to
our knowledge compare the relative predictive ability of different
ML algorithmic classes across multiple mental health conditions in
youth within the same participant cohort and study design.
Anxiety, attention deficit, depression, disruptive behaviors and

post-traumatic stress (PTS) are among the most common and
disabling mental illnesses in youth. The emphasis of the present
study was to enlarge our knowledge of the ability of ML
algorithms to provide interpretable predictive models of these
major mental illnesses in youth by (1) analyzing a larger number of
candidate predictors (n= 160) of multiple data types (e.g.,
psychosocial, cognitive and neural); (2) comparing the predictive
ability of gold-standard ML algorithms from different classes
(deep, decision tree and logistic regression classifiers); (3)
construct interpretable models across multiple mental health
conditions within the same analytic design; and (4) using a large,
naturalistic participant sample that resembles that presenting at
mental health clinics, i.e., is enriched for at least one behavioral
complaint.
We hypothesized that deep learning optimized with artificial

intelligence (AI) would outperform decision-tree and logistic
(linear) regression in constructing individual-level psychiatric cases
of major mental illnesses during the peri-adolescent develop-
mental life stage. To determine the relative performance of
different algorithm classes in high-dimension multidomain data,
we compared the predictive ability of gold-standard logistic
regression (LR), decision tree (XGBoost: XGB) and deep learning
(artificial neural network: ANN) algorithms to predict individual
cases of anxiety, attention deficit, depression and disruptive

behaviors in a large (n= 1120), naturalistic, transdiagnostic
sample of youth aged 5–21 y and their parents from the Healthy
Brain Network (HBN) cohort. In addition, we added an exploratory
analysis that attempted to predict PTS, which has not historically
been a focus of ML techniques. Predictive models were
constructed that simultaneously surveyed and quantified the
relative predictive ability of 160 candidate predictors encompass-
ing neural, prenatal, developmental, physiologic, sociocultural,
environmental, emotional and cognitive features. We did not
stratify the sample in order to test the predictive ability of this
design and algorithms in more naturalistic data. By nesting each
ML algorithm (LR; XGB; ANN) inside an innovative AI meta-learning
method, we optimized algorithmic performance by jointly
learning hyperparameters and performing automated, principled
feature selection while also rendering deep learning interpretable
for translational applications. All models were tested in a held-out
test dataset, and all results presented in this manuscript are from
testing in the held-out test set. To our knowledge, this is the first
study to test the relative predictive ability of these gold-standard
algorithms from different classes across multiple mental health
conditions in youth within the same study design in multidomain
data and to incorporate PTS related to accumulated early life
adverse events in a ML-based predictive classification.

MATERIALS AND METHODS
Terminology and definitions
This manuscript uses ML terms and conventions throughout [20, 22, 23].
Accordingly, ‘prediction’ refers to predicting the quantitative value of a
target variable by analyzing patterns in input data (‘candidate predictors’
or ‘features’) used to predict the value of the target variable. In this case,
input data is chronologically contemporaneous with target variables since
this is a cross-sectional participant sample. We neither aim to predict cases
using antecedent features nor predict the future occurrence of cases in
individuals who are not manifesting symptoms. We refer to the set of all
input data as containing ‘candidate predictors’ (features) and the actual
predictors identified in final, optimized models as ‘final predictors’. The set
of observations (n= 784) used to train, fit and test models under
development is referred to as the ‘training set’, and the unseen held-out
set of observations (n= 336) is termed the ‘test set’. In terms of
performance, we use ‘generalizability’ to refer to the ability of a trained
model to adapt properly to new, previously unseen data drawn from the
same distribution as the one used to create the model, though we
acknowledge that generalization can have a different meaning in other
fields. ‘Precision’ refers to the fraction of positive predictions that were
correct; ‘Recall’ to the proportion of true positives that are correctly
predicted; and ‘Accuracy’ to the number of correct predictions as a fraction
of total predictions. We provide Receiver Operating Characteristic curves
(ROC Curves) showing the performance of classification models at different
classification thresholds plotting true positive versus false positive rates,
and the Area Under the Curve (AUC), defined as the two-dimensional area
under the ROC curve from (0,0) to (1,1).

Participant sample
Participants with at least one complete resting-state fMRI scan (365
volumes) and available phenotypic data were selected from the ongoing
Healthy Brain Network (HBN) study to Release 8 [17]. The HBN initiative
collects multidomain data from youth with at least one behavioral concern
aged 5–21 y in the New York City area. This is a naturalistic, cross-sectional
community-based population sample and not a fully representative
epidemiologic design or longitudinal sample. No attempt was made in
the original or present study to stratify the sample with respect to
demographic or psychiatric features or determine the point of disease
onset for any mental health condition. Exclusion criteria are the presence
of acute safety concerns, cognitive or behavioral impairment (e.g., IQ level
<66) or medical concerns that might confound brain imaging. The overall
and present study sample is enriched for mental health concerns:
approximately 2/3 meet the criteria for a clinical diagnosis. Demographic
features of this participant sample are presented in Table 1, as well as
summary metrics regarding participants’ level of autism traits, handedness,
body mass index and performance in core metrics of cognitive and
executive function. The participant sample was randomly split, with 70%
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used as the training/validation set (784 participants) and 30% (336
participants) reserved as an unseen test set. The number and proportion of
subjects with cases of each mental health disorder (predictive target) in the
study may be viewed in Table 2. The data preparation and preprocessing
pipeline were applied separately to the training and test sets (Fig. 1). The
HBN study was approved by the Chesapeake Institutional Review Board.
The present study was deemed not human subjects research by the
University of Washington Institutional Review Board and the University of
Utah Institutional Review Board.

Data and data preparation
Data collection. All data was originally collected by the Child Mind
Institute as part of the ongoing HBN study. Comprehensive details of the
HBN project may be accessed at the project data portal: https://
fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/index.html.
In brief, multidomain data are collected in four study visits of 3 h, each
comprising cognitive and language testing, behavioral assessment and
measures of family structure, stress and trauma, physical function and
substance use. Cognitive testing, biological sampling and mock scanning
are performed on the first visit, MRI scans on the second visit, learning and
language testing on the third visit and mental health assessment on the
final visit. All data are collected by the Child Mind Study Team. Further
details of the data collection protocol may be accessed at: https://
fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/The%20Pro-
ject%20Plan.html.

Phenotypic candidate predictor preparation. Candidate predictors used in
the present study may be reviewed in Fig. 2. Phenotypic candidate
predictors include multiple metrics incorporating information about
participants’ developmental history, educational history, cognitive traits
and function, behavioral function, youth and parent experience, youth
and parent demographics, youth social skills and function, physiologic
characteristics and medical history including psychiatric medications used
(current and past). As detailed above, this is a naturalistic, community-
based sample, and as such, stratification on the basis of demographic
features (e.g., race/ethnicity) is not performed. Typically, ML predictive
classification in similar study designs takes demographic characteristics
such as race and sex/gender into account by including them as candidate
predictors. Similarly, a rich set of parent and youth demographic features,
including race and sex, is incorporated as candidate predictors equally
across all analyses. Supplementary Table 1 provides more detailed
information about each candidate predictor, including the name and
description of each feature and the name of the original psychometric or
psychological assessment instrument from which the feature was drawn.
Supplementary Table 2 (provided by the Child Mind Institute) includes a
more detailed description of each original psychometric or psychological
assessment instrument and the foundational literature citation pertaining
to each instrument, including metrics of its psychometric properties
where applicable. Candidate phenotypic predictors (n= 26) with >40%
missing values were discarded. This threshold was used since prior
research shows that good results may be obtained with ML methods with
imputation up to a threshold of 50% missing data [24]. Continuous
variables were trimmed to mean ± 3 standard deviations to remove
outliers. Missing values were imputed using non-negative matrix
factorization (NNMF). NNMF is a mathematically proven imputation
method that minimizes the cost function of missing data rather than
assuming zero values. It is effective at capturing both global and local
structure in the data, and it has been demonstrated to perform well
regardless of the underlying pattern of missingness [25–27]. Supplemen-
tary Table 3 shows the number and percentage of observations that were
trimmed and filled with NNMF for the training and test sets, respectively.
For continuous measures, we selected summary or total metrics. For 11
instruments (Italicized in Fig. 2), we computed the summary measure by
applying feature agglomeration to recursively merge individual items and
generate a single continuous measure. All features were then scaled using
the MinMaxScaler. Features with non-normal distributions were trans-
formed with the Quantile and Power transforms, and the post-transform
feature version most resembling a normal distribution was selected. The
univariate odds ratio and confidence interval of each candidate
phenotypic predictor with each target were computed and may be
viewed in Supplementary Table 4.

Neural connectivity features. We computed gold-standard brain functional
connectivity measures from functional MRI (fMRI). Multiband 3T resting-
state, eyes open fMRI comprising 365 volumes are acquired at 2 sites. After
removing the first 10 volumes, each participant’s scan was realigned,
coregistered, normalized and smoothed at 6mm full width at half
maximum using standard algorithms in SPM12 (https://
www.fil.ion.ucl.ac.uk/spm/software/spm12/). Scans were then submitted
to quality control by computing correlation with a group mask, and 21
participants with <90% correlation with this group mask were eliminated.
Head motion was computed for each participant with the DVARS metric
[28], and scan site and DVARS were included as candidate predictors. We

Table 1. Characteristics of participant sample.

Characteristic Range Mean Median

Age in years 5.1–21.5 10.8 9.9

Full Scale Intelligence
Quotient

42–147 98.2 100

Body mass index 12.3–40.3 19.3 18.2

Autism traits 0–47 7.2 4

Handedness (−100)–
(+100)

59.4 77.8

Dimensional change 0–100 34.2 25.0

Inhibitory control 0–99 26.2 19.0

Working memory 0–100 41.3 37.0

Pattern recognition 0–100 39.0 32.0

Characteristics of 1120 participants in the study are shown. The sample
contained 729 male youth and 391 female youth. Full scale intelligence
quotient was determined with the Wechsler Intelligence Scale (WISC 5).
Level of autism traits was determined with the Autism Spectrum Screening
Questionnaire (ASSQ). Handedness was determined with the Edinburgh
Handedness Inventory, where a score of −100 represents maximal left
dominance and +100 maximal right dominance. For cognitive measures,
dimensional change was assessed with a card sort task, inhibitory control
with a flanker task and working memory with a list sorting task.

Table 2. Case counts of major mental illnesses in youth in participant sample.

Anxiety Attention deficit Depression Disruptive behaviors PTSD

Training: cases 338, 43.1% 546, 69.7% 95, 12.1% 238, 30.4% 126, 16.1%

Training: not cases 446, 56.9% 238, 30.3% 689, 87.9% 546, 69.6% 658, 83.9%

Training: cases after SMOTEENN 197, 80.1% 50, 9.9% 683, 78.0% 456, 81.0% 643, 85.6%

Training: not cases after SMOTEENN 49, 19.9% 457, 90.1% 193, 22.0% 107, 19.0% 108, 14.4%

Test: cases 145, 43.1% 251, 74.7% 51, 15.2% 101, 30.0% 17, 5.1%

Test: not cases 191, 56.9% 85, 25.3% 285, 84.8% 235, 70.0% 319, 94.9%

Counts and percentages of cases versus not-cases are shown for anxiety, attention deficit, depression, disruptive behaviors and post-traumatic stress in the
training and test data partitions in the participant sample. For the training partition, data is shown before and after synthetic oversampling with the
SMOTEENN algorithm. Oversampling was not conducted in the test partition.
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used an established pipeline to perform group spatial ICA and extract a
whole-brain parcellation scheme representing 15 functional components
[29] with the Group ICA of fMRI Toolbox (GIFT: https://trendscenter.org/
software/gift/). Components estimated by ICA were sorted into gray-matter
intrinsic functional networks versus artifactual noise components with a
combination of expert visual inspection by NdL and the quantitative

metrics of fractional amplitude of low-frequency fluctuations and dynamic
range [29]. Components with poor overlap with cerebral gray matter or
low spectral metrics were discarded, and we retained a set of 10 functional
intrinsic neural networks (IN). We constructed a spatial map for each IN
following an established GIFT pipeline [29]. To determine functional
connectivity features among INs, we computed Pearson correlations

Fig. 1 Computational pipeline. The study computational pipeline is shown for classification experiments. Individual machine learning
algorithms (artificial neural networks, XGBoost and logistic regression) are nested within an integrated evolutionary learning architecture to
optimize learning by providing joint feature selection and optimization across the hyperparameters. This figure is adapted from de Lacy et al.,
Integrated Evolutionary Learning: an artificial intelligence approach to joint learning of features and hyperparameters for optimized,
explainable machine learning. Front Artificial Intelligence (2022).
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among each possible pair of spatial maps. Pearson correlations among
functional networks are subsequently Fisher-transformed [z = atanh(k)] to
smooth outliers. An additional set of dynamic connectivity metrics was
computed by delineating stable dynamic whole-brain connectivity states
from the fMRI ICA timecourses and applying the k-means clustering
algorithm to connectivity windows using an established sliding window
method [30]. A sliding window length was selected based on prior work
demonstrating that a window length of 40–60 s produces reasonable and
robust results [30–32]. These dynamic connectivity metrics describe the
fluidity and range with which participants traverse brain states and are
available for each individual participant. Specifically, they are the number
of brain states traversed, the number of times a subject switches between
brain states, the maximal L1 span achieved between brain states and total
distance traveled (sum of all L1 distances). Nuisance regressors of scanner
site, DVARS statistic and six realignment parameters and their six first
derivatives for each participant were regressed from all connectivity
models using the general linear model prior to computing. The univariate
odds ratio and confidence interval of each candidate neural predictor with
each target were computed and may be viewed in Supplementary Table 4.
More details of specific neural metrics may be found in Supplementary
Table 1.

Predictive targets
Predictive targets of mental illness cases were computed with data
obtained from the computerized version of the Kiddie Schedule for
Affective Disorders and Schizophrenia (KSADS-COMP) [33, 34], a standar-
dized, semistructured diagnostic interview administered by a clinician to
youth participants and their parent(s) used widely in youth psychiatric
research. Responses for the diagnostic screening assessment were used
covering multiple symptoms across all major mental illnesses obtained
through clinician consensus. For each of the five illness targets in this
study, the multiple KSADS symptom scores available for each diagnostic
class were reduced to a single metric using feature agglomeration. The
distribution of scores for each illness target was then determined, and
participants were thereby divided into ‘cases’ and ‘not cases’ to form a
binary target vector for classification. Specifically, the group of participants
who exhibited a zero agglomerated score on KSADS symptoms were
deemed ‘not cases’. The second group exhibited scores reflecting a range
of symptom severity for each target, and members of this group were
deemed ‘cases’. Given the naturalistic, community-based nature of this
sample, which was not stratified, there was an imbalance in terms of cases
versus not-cases. Synthetic oversampling with the SMOTEENN algorithm
was performed on the training/validation portion of the participant sample

Fig. 2 Candidate predictors for youth mental illness before and after adaptive selection with AI. 160 candidate predictors across multiple
domains of human function were simultaneously assessed for their ability to predict mental illnesses. This figure is adapted from de Lacy et al.,
Integrated Evolutionary Learning: an artificial intelligence approach to joint learning of features and hyperparameters for optimized,
explainable machine learning. Front Artificial Intelligence (2022).
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for each target but not the test partition. The number and proportion of
participants in each category (cases versus not-cases) before and after
synthetic oversampling in the training set may be viewed in Table 2.

Overview of predictive analytics
We compared the ability of three leading ML techniques to predict cases of
each type of mental illness using 160 candidate predictors (Fig. 2): deep
and decision tree-based learning and logistic regression. All ML estimators
used (Adam; XGBoost; Logistic Regression) are ‘off the shelf’ algorithms
from standard libraries (Tensorflow, Sci-Kit Learn). To optimize learning
performance, each ML model was performed with k-fold cross-validation
and nested within the Integrated Evolutionary Learning (IEL) AI algorithm.
IEL is an AI meta-learning genetic algorithm that wraps around each ML
algorithm to optimize the latter’s performance. Each ML algorithm and IEL
are therefore separate but interacting computational processes: the ML
algorithm fits a model and performs the classification of cases while IEL
jointly learns features (predictors) and hyperparameters for each ML
algorithm. Typically, ~40,000ML model fits are pursued by IEL during each
optimization process. A number of methodologic and design features were
incorporated to reduce bias, and these are detailed above and below. In
brief, missing data was filled using non-negative matrix factorization;
preprocessing is performed separately on training and testing partitions;
large-scale feature selection is performed through a principled AI meta-
learning architecture; thousands of model fits are explored to enlarge the
solution space; and training is terminated based on a principled basis
quantified with an information theoretic fitness function. Code for the
predictive analytics may be accessed at the de Lacy Laboratory GitHub:
https://github.com/delacylab/integrated_evolutionary_learning.

Deep learning with artificial neural networks. We trained artificial neural
networks using the Adam algorithm with 3 layers, 300 neurons per layer,
early stopping (patience = 3, metric = validation loss) and the Relu
activation function. The last output layer contained a conventional softmax
function. The Adam algorithm was selected based on its established
computational efficiency and suitability for problems with a large number
of parameters like our study [35]. Learning parameters (Supplementary
Table 5) were tuned with IEL Deep learning models were encoded with
TensorFlow embedded in custom Python code.

Gradient-boosted tree-based learning. We trained decision tree-based
models to predict mental illness cases with the XGBoost algorithm using
the gbtree booster [36, 37]. This is an ensemble-based method that
generates a multitude of decision trees that ‘vote’ on a composite
prediction. It is accurate, resistant to overfitting when properly tuned and
uses model residuals (actual–predicted values) to penalize leaves that do
not improve predictions, reducing bias as well as variance. Empirically,
gradient-boosted techniques have been highly successful. Hyperpara-
meters were tuned with IEL and may be viewed in Supplementary Table 5.
XGBoost was encoded with the Scikit-Learn wrapper in custom
Python code.

Logistic regression. We trained linear models to classify mental illness
cases with logistic regression regularized with the ElasticNet [38]. The latter
regularization method linearly combines the L1 penalty of the LASSO (least
absolute shrinkage and selection operator) and the L2 penalty of the Ridge
method. It produces superior results in real-world and simulated data,
particularly to the use of LASSO alone. For the logistic regression analysis,
the odds ratio and confidence interval of the optimized model were
computed. The L1 and L2 parameters were tuned using IEL (Supplemen-
tary Table 5). We encoded logistic regression models using the Scikit-learn
algorithm embedded within custom Python code.

Integrated evolutionary learning for machine learning optimization. ML
models, particularly deep learning models, are famously difficult to ‘tune’,
i.e., determine the right values of the many algorithm hyperparameters
(settings) that control learning and can have a dramatic effect on
performance. To achieve the best performance of ML experiments, we
developed and here applied a meta-learning technique we call Integrated
Evolutionary Learning. We have previously demonstrated that IEL improves
the performance of ML predictive algorithms in comparable data by up to
20–25% versus the use of default model hyperparameters and conven-
tional designs [39].
Typically, tuning is often done manually via ‘rules of thumb’ and ≤50

model fits are explored, introducing the possibility of bias and limiting the

solution space [40–42]. Furthermore, powerful techniques such as deep
learning with artificial neural networks can behave as ‘black boxes’ that
obtain predictions with machine-generated intermediate features that are
not interpretable by humans. For the translational or mechanistic
applications that are common in biomedicine, explainable ML is a priority.
Many researchers forego deep learning to focus on inherently explainable
techniques like decision trees or linear models. In contrast, IEL provides
adaptive, automated feature selection and principled hyperparameter
tuning for any ML technique by leveraging evolutionary algorithms,
advanced computational metaheuristics, instantiating the concepts of
biological evolutionary selection in computer code. All results, including
those obtained from deep learning, are fully explainable. IEL ‘breeds’
optimized models adaptively over hundreds of generations (Fig. 1) by
selecting for improvements in a fitness function (here, the Bayes
Information Criterion).
For each learning technique, we initialized the first generation of 100

models with randomized hyperparameter values or ‘chromosomes’. These
were subsequently recombined, mutated or eliminated over successive
generations. In recombination, ‘parent’ hyperparameters were averaged to
form ‘children’. In mutation, hyperparameter settings were shifted. The
range of possible values is shown in Supplementary Table 5. Excepting the
logistic regression model (which has naturally bounded hyperparameter
intervals in [0–1]), these were generously set to allow for broad exploration
of the potential solution set. After training the initial 100 models, we
computed the BIC for each solution. Of the 80 best models, 40 were
recombined by averaging the hyperparameter setting after a pivot point at
the midpoint to produce 20 ‘child’ models. 20 were mutated to produce
the same number of child models by shifting the requisite hyperparameter
by the mutation shift value (Supplementary Table 5). The remaining 20
were discarded. The next generation of models was formed by adding 60
new models with randomized settings and adding these to the 40 child
models retained from the initial generation. Thereafter, an automated
process continued to recombine, mutate and discard 100 models per
generation in a similar fashion to minimize the BIC until the latter fitness
function plateaued.
A further major issue in analyzing multidomain ‘big data’ with AI is

feature selection: how to identify a small number of predictive risk factors
from the much larger set under consideration in a principled manner.
Empirically, models with fewer variables are simpler to train, run and
understand and generalize better. As with tuning, many practitioners still
use manual or semi-manual approaches. Given the large number of
features screened during training, we incorporate automated feature
selection within IEL to mitigate the risk of overfitting. Here, a random
number of features in the range (2–50) was set for each model in the initial
generation and randomly sampled from the set of 160 possible candidate
predictors. After computing the BIC, feature sets from the best-performing
60 models were individually allocated to the recombined and mutated
child models. Other feature sets were discarded. As with hyperparameter
tuning, this process was repeated for succeeding generations until the BIC
plateaued.
To facilitate computationally efficient modeling, IEL implements

recursive learning. After training models until the BIC plateaued, we
determine the elbow of the fitness function plotted versus the number of
features. The feature set available after the warm start is constrained to the
subset of features, thresholded by their importance, corresponding to the
fitness function elbow. After the warm start, learning proceeds by
thresholding features available for learning at increasing thresholds of
the original warm start feature importance + 2-10 standard deviations. In
addition, we reduce the number of models per generation to 50, with 20
models recombined and 10 models mutated. Otherwise, after restarting
the training process at the warm start threshold ranges an initial
generation of models was randomly initialized and training completed
using the same principles as detailed above.

Cross-validation. For each of the three learning techniques, individual
models were fit using stratified k-fold cross-validation, i.e., every one of the
100 models in each learning generation within IEL was individually trained
and validated using cross-validation. Since the number of features for each
model fit could differ within each model in every generation of IEL, k (the
number of splits) was set as the nearest integer above [sample size/
number of features]. Cross-validation was implemented with the scikit-
learn StratifiedKFold function.

Determining predictor importance. Two types of techniques were used to
compute the relative importance of each predictor in making predictions.
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First, Shapley Additive Explanations (SHAP) values were computed using
the SHAP toolbox (https://shap.readthedocs.io/en/latest/). SHAP is a game
theoretic approach that may be used to explain the output of any ML
model, including ‘black box’ estimators such as artificial neural networks
[43]. It unifies prior methods such as LIME, Shapley sampling values and
Tree Interpreter. Second, the inherent method available for each algorithm
was employed. For XGBoost, the importance of each feature was
computed within the algorithm, which for decision-tree estimators is
essentially a permutation-based method. To offer comparability, we also
therefore determined feature importance for the artificial neural networks
by embedding eli5 (https://eli5.readthedocs.io/en/latest/index.html), an
established permutation algorithm, within IEL [44]. Where relevant, the
relative importance of each risk factor for logistic regression was
determined by computing its linear coefficient (beta).

Testing in held-out test data. After training was completed for each type
of psychiatric condition, the best-performing 100 tuned models from the
IEL process were tested on the reserved unseen test set of 336 participants
and accuracy, precision, recall and the AUC were determined using
standard Sci-Kit learn libraries. The threshold for prediction probability was
0.5, and ROC curves are provided for each algorithm type and each target
mental health condition in Fig. 3. For testing, we applied optimized model
parameters (hyperparameter settings and selected features) obtained from
the best-performing models of the IEL training/validation process to
unseen data. Synthetic oversampling was not used to formulate predictive
targets (see: “Predictive Targets”). All reported results in this paper are from
testing in unseen data.

RESULTS
Deep and tree-based learning optimized with IEL can predict
major mental illnesses with high fidelity
We nested three gold-standard algorithms with cross-validation
within the IEL architecture to compare their predictive ability:
deep learning with artificial neural networks, decision tree-based
learning with XGBoost and a logistic regression model regularized
with the ElasticNet. The comparative ability of each technique to
predict mental illness cases in youth in replication testing is shown
in Table 3 in terms of accuracy, precision, recall and the AUC. ROC
curves may be inspected in Fig. 3. Odds ratios and confidence
intervals for the logistic regression analysis may be viewed in
Supplementary Table 6.
There is no single metric that determines the best performance

in an ML classifier since how performance is judged may be
dependent on the use case for which the model is constructed.
For example, precision (positive predictive value) may be
prioritized during genetic testing, whereas recall (sensitivity)
might be most important in a mass screening assay. However,
the AUC is often used as an aggregate measure of overall
performance across all possible classification thresholds. In terms
of the AUC, we found that deep learning with artificial neural
networks provided superior performance in predicting anxiety and
attention deficit, whereas decision-tree learning did better at
predicting depression, disruptive behaviors and PTS. Logistic
regression consistently underperformed and achieved an AUC of
0.5 across all conditions, indicating these classifiers performed no
better than random chance. In terms of other performance
statistics, deep learning performed consistently strongly across all
mental health conditions achieving ≥85% accuracy, precision and
recall throughout, though its performance must be approached
with caution in the case of PTS, given the AUC= 0.5. Decision-tree
learning was a generally strong performer in terms of accuracy
and recall in predicting attention deficit, depression, disruptive
behaviors and PTS though not anxiety, but displayed low recall
throughout, with the exception of attention deficit. The logistic
regression technique achieved reasonable accuracy ranging from
57 to 95% over the five conditions but had notable weaker
precision and recall with the exception of attention deficit, and all
these results must be interpreted with caution given the AUC of
0.5 for all conditions. Interestingly, our results taken together

demonstrate that attention deficit appeared the most tractable
target for all approaches, including LR.

Each major mental illness was predicted by a unique
combination of final predictors
In the best-performing models produced by deep and decision-
tree learning as measured by AUC, each youth mental illness had a
unique combination of final predictors (Table 4). Logistic
regression models contained only a single final predictor. With
the exception of the exploratory PTS models, deep learning
models were generally the most complex, i.e., contained the
largest number of final predictors. With the exception of speech
phoneme articulation in depression, physiologic, cognitive and
neural metrics derived from functional MRI were de-emphasized
as final predictors in optimized models, where the majority of
predictors were psychosocial or psychometric indicators. In terms
of the relative importance of different predictors, importance
scores from the Shapley and permutation methods were in broad
concordance across deep and decision-tree models.
Anxiety was predicted in the stronger-performing deep learning

model by six predictors: adverse events, externalizing traits, parent
stress level, internalizing traits, emotionality and social skills
aptitude. These were fairly equal in importance measured by
either permutation or Shapley values. The weaker-performing
decision-tree algorithm used only two of these (adverse advents
and internalizing traits) and the logistic regression model only
internalizing traits as final predictors. In attention deficit, the deep
learning model was again complex with six final predictors
(hyperactivity and externalizing traits, parent-child relationship
stress levels and parent feelings toward their child, handedness
and autism traits). Both permutation and Shapley values more
strongly weighted hyperactivity and parent feelings about their
child. The decision-tree model with lower recall and AUC also
selected hyperactivity and externalizing traits but added the
prosocial factor of ‘gets along well with classmates’ and MRI site.
The logistic regression model contained only hyperactivity. In the
depression models, mood and negative affect were selected as
equally weighted final predictors by the decision-tree algorithm
for a higher AUC, where the deep learning model added age,
speech articulation, parent feelings about their child and
externalizing trait level to mood to achieve higher precision. The
logistic regression model used only age. Predictors of disruptive
behaviors by the decision-tree model were led by the youth’s level
of behavioral impairment as well as externalizing trait and
hyperactivity levels. The deep learning model also heavily
weighted externalizing and hyperactivity trait levels but added
social responsiveness and mood symptom levels. The logistic
regression model used only externalizing traits. As reviewed
above, our exploratory PTS models cannot be considered reliable
in the case of deep learning or logistic regression, given their
AUC= 0.05. However, the decision-tree model performed well
(with the exception of low precision). Here, the model identified
daily life function level, degree of normal development and levels
of coping skills and mood symptoms as final predictors.

Optimized models were parsimonious
IEL incorporates robust automated feature selection, adaptively
selecting the best-performing features based on a fitness function.
Our results demonstrate that only a small number of final
predictors were required by either deep or decision-tree learning
to generate high-fidelity predictions that generalized to unseen,
held-out data across all mental illnesses, reduced from the 160
originally included for consideration. In each case, ~40,000 model
fits were explored during training in the course of fitting the final,
optimized model that was selected for testing in held-out, unseen
data. No final model (Table 4) required more than six final
predictors to make high-quality predictions (deep learning for
anxiety and attention deficit and decision-tree learning for
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Fig. 3 ROC curves for predicting youth mental illness cases with three machine learning algorithms. ROC curves are shown for the
predictive models for a Deep learning with the Adam estimator; b Decision-tree learning with the XGBoost algorithm; and c Logistic
regression with ElasticNet regularization, all used to predict cases of anxiety, attention deficit, depression, disruptive behaviors and post-
traumatic stress in youth.
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depression, disruptive behaviors and PTS) as measured by
accuracy, precision, recall and the AUC.

DISCUSSION
Using the same analytic design across five common conditions in
youth, we show that rigorous individual case predictions (AUC ≥
0.94) can be obtained from gold-standard ML classification
algorithms in a naturalistic participant sample by applying AI to
optimize performance.
Anxiety and depression are common disorders in peri-

adolescent youth that may overlap phenomenologically and
epidemiologically and are sometimes grouped as ‘internalizing’
disorders. We found that anxiety and depression had different sets
of final predictors, helping disambiguate these conditions.
XGBoost best predicted depression with mood and negative
affect (AUC= 0.94; Accuracy= 98%; Precision= 14%; Recall= 88%),
though our results with deep learning (AUC= 0.77; Accuracy = 93%;
Precision = 93%; Recall = 98%) are of value given the higher
precision and recall of the latter algorithm. Here, depression was
predicted by age, mood, speech articulation, how parents felt
toward their child and externalizing traits. Commonalities
between our findings and final predictors in prior studies (both
cross-sectional and longitudinal) are in highlighting the predictive
role of mood symptom level and factors related to parents or the
parent-child relationship. In a large (n > 6000) cross-sectional
sample of Australian youth, Haque et al. used 62 final features
(primarily psychosocial and symptom-based) and several types of
decision-tree algorithms. Random Forest (RF) performed best
(AUC= 0.74) with final predictors of any 5 of 11 cardinal clinical
depressive symptoms (e.g., anhedonia, irritable mood, sleep
disturbance, suicidality) [10]. Xiang et al. compared several types
of decision-tree algorithms in the ABCD sample to predict
depression trajectories finding a gradient-boosted algorithm

worked best (AUC= 0.90), with sleep disturbances, parent mental
health burden and family financial adversity being the most
important predictors [45]. In the IMAGEN cohort, Toenders et al.
used LR (AUC= 0.70) and identified baseline depressive symptom
severity, female sex, neuroticism, prior bullying, adverse life
events, and surface area of the supramarginal gyrus as the most
important predictors of later adolescent depression [14]. Finally,
Huang et al. found that RF outperformed CART and SVM
algorithms (AUC= 0.90), with suicidality, anhedonia, lack of social
support, emotional neglect in childhood, non-suicidal self-injury
and poor maternal relationship being the most important final
predictors of depression in youth [11].
Anxiety has received less frequent attention than depression in

terms of ML-based predictive classification. We found that deep
learning produced substantially stronger performance (AUC=
0.94; Accuracy = 95%; Precision = 94%; Recall = 95%) than XGB
(AUC= 0.61) or LR (AUC= 0.5), with anxiety predicted by a history
of adverse life events and levels of internalizing, externalizing and
emotionality traits as well as stress in the parent-child relationship
and social skills. There is a similarity of our final predictors in terms
of emotionality, internalizing behaviors and family-related factors
with the one prior study in youth anxiety using ML-based
predictive classification. Here, Chavanne et al. trained a majority
voting classifier composed of RF, SVM and LR (AUC= 0.68) using
27 features (14 volumetric from structural MRI and 13 psychoso-
cial), finding the top predictors of a pooled anxiety target (similar
to our own) in future followup were neuroticism, hopelessness,
emotional symptoms, family, alcohol consumption and distress
level [15]. Overall, the best-performing models in our analyses
discriminated between these internalizing conditions: there were
no overlapping final predictors between anxiety and depression in
this youth cohort.
Attention deficit and disruptive behaviors may similarly overlap

phenomenologically and epidemiologically and are often

Table 3. Relative performance of three algorithm types in predicting major mental illnesses in youth.

a.

Disorder Accuracy (%) Precision (%) Recall (%) AUC

Anxiety 94.6 93.5 95.3 0.94

Attention deficit 96.4 88.5 90.1 0.95

Depression 92.6 93.4 97.5 0.77

Disruptive behaviors 84.5 84.5 94.0 0.73

PTS 95.6 95.5 100.0 0.50

b.

Disorder Accuracy Precision Recall AUC

Anxiety 65.2 38.7 28.3 0.61

Attention deficit 89.0 72.3 96.0 0.79

Depression 97.9 13.6 88.2 0.94

Disruptive behaviors 97.3 27.7 91.1 0.96

PTS 99.7 0.05 94.1 0.97

c.

Disorder Accuracy Precision Recall AUC

Anxiety 56.9 43.2 0.0 0.50

Attention deficit 74.7 74.7 100.0 0.50

Depression 84.8 15.2 0.0 0.50

Disruptive behaviors 70.0 30.0 0.0 0.50

PTS 95.0 0.06 0.0 0.50

The relative classification performance of a Deep learning with artificial neural networks; b Gradient-boosted tree-based learning and c Linear model with
ElasticNet tuned with Integrated Evolutionary Learning. Performance metrics for the best-performing model for each algorithm type in testing in the held-out,
unseen test set are shown.
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collectively considered ‘externalizing’ disorders. As in the inter-
nalizing disorders, we identified different sets of final predictors
for these conditions, though levels of externalizing and hyper-
activity behaviors were shared between the best-performing
models for each condition. We found there was a split in terms of
best-performing algorithm, with attention deficit best predicted
by deep learning (AUC= 0.95; Accuracy = 96%; Precision = 89%;
Recall = 90%) using hyperactivity, parent feelings about their
child, handedness, level of stress in the parent-child relationship,
autism and externalizing traits while XGB performed best in
predicting disruptive behaviors (AUC= 0.96; Accuracy = 97%;
Precision = 28%; Recall = 91%) with levels of behavioral
impairment, externalizing and hyperactivity traits. Similar to
depression, XGB exhibited relatively low precision in predicting
disruptive behaviors, so the final predictors identified by deep
learning (AUC= 0.73; Accuracy = 85%; Precision = 85%; Recall =
94%) of externalizing and hyperactivity trait level, social respon-
siveness and mood symptom level are worthy of consideration.
Our present study identified final predictors of attention deficit

and disruptive behaviors that are congruent with prior ML-based
work in highlighting communication deficits and social/emotional
development (likely represented in our experiments by autism
trait level) and factors related to the familial/home environment.
Historical ML-based predictive modeling in ADHD has typically

involved smaller sample sizes and many studies have lacked a
held-out test set [16]. More recently, however, several studies have
appeared on ADHD in large, cross-sectional samples, including the
ENIGMA cohort (created to address the former issue) with
neuroimaging. In a Swedish registry (n > 200,000), Garcia-Argibay
et al. compared deep learning with RF, XGB Naïve Bayes and LR
with the ElasticNet using 22 psychosocial features to predict
ADHD cases. Deep learning performed best (AUC= 0.75), with
having a relative with criminal conviction(s), sex, school perfor-
mance, speech disability and acute stress level being the most
important predictors [12]. Maniruzzaman et al. used the Japan
National Survey (n > 45,000) and compared several decision-tree
algorithms with K nearest neighbors, SVM and two deep learning
algorithms (Multi Layer Perceptron (MLP); Convolutional Neural
Net) using 19 psychosocial predictors, identifying RF as the top
performer (AUC= 0.94) with child’s age, sex, mother’s age,
allergies, asthma, family structure and psychiatric comorbidities
as final predictors [46]. In the ENIGMA dataset, Zhang-James et al.
compared the predictive performance of nine algorithms, includ-
ing multiple types of decision-tree and linear algorithms and two
variants of an MLP using only neural features derived from a
dimensionality-reducing principal factors factor analysis. Deep
learning performed best (AUC= 0.64), though the features post
dimensionality reduction were not conventionally interpretable
[16]. Finally, Ter-Minassian et al. used the UK Maudsley & National
Pupil Database (n > 55,000) to compare deep learning (MLP) with
RF, NB, LR and SVM and 68 psychosocial features, identifying
school attendance, social/emotional development, writing perfor-
mance, male sex and problem solving/reasoning [13]. This was
one of the few studies in child mental health that found LR
outperformed (AUC= 0.72). Several ML predictive studies have
been conducted on disruptive behaviors. Menon and Krishna-
murthy used diffusion, structural and resting-state imaging in
1100 youth from the ABCD cohort and compared individual vs
ensemble CNN to achieve an AUC of 0.74 in predicting DBD [47].
In a particularly interesting study, Chan et al. used the first wave of
the ABCD study (children aged 8–10) to predict conduct disorder
using 52 features (psychosocial, prior ADHD/ODD diagnosis,
resting-state graph neural metrics) with a neural network
algorithm, achieving AUC= 0.91. Here, a model combining
psychosocial with imaging metrics outperformed either alone,
with the most important final predictors being lower parental
monitoring, more aggression in the household, lower income,
greater ADHD and ODD symptoms, worse crystallized cognitionTa
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and card sort performance and topologic disruptions in sub-
cortical and frontoparietal networks [8].
Our analysis of traumatic symptoms was more exploratory. The

vast majority of ML-based studies aiming to predict PTS and PTSD
are conducted in adult populations who have experienced
military-, disaster- or medical-related traumatic events. In a 2020
comprehensive survey of the literature, Ramos-Lima et al.
identified 49 such studies. Of these, only a single study was
conducted with youth participants, with one additional study in
youth more recently being published [48–50]. Both extant studies
in youth focus on cohorts constructed to specifically address PTS
after medical injury and/or hospitalization. Thus, our study
represents the first to attempt prediction in a naturalistic cohort
where PTS is much more likely attributable to the cumulative
burden of adverse life events, including emotional trauma. In our
exploratory analysis, we found PTS slightly more challenging to
predict. While the best-performing algorithm proved to be XGB
(AUC= 0.97; Accuracy = 100%; Precision = 5%; Recall = 94%), this
technique was weak in precision, which we also found to be the
case in other conditions and indeed, is a common feature of
decision-tree techniques in tabular data and can be seen in peer
studies reviewed above. Unfortunately, given the weakness of the
deep learning and logistic regression models (AUC= 0.5), we
could not turn to the former to access results with higher precision
as were available for the other four conditions. XGB used final
predictors of daily life function level, degree of normal develop-
ment and levels of coping skills and mood symptoms. While no
prior ML-based studies are available for direct comparison, these
final predictors are concordant with prior work using correlative
techniques to make group comparisons in youth PTS, which have
found that lower intelligence/developmental level, thought
suppression (a maladaptive coping skill) and poor life/family
functioning have medium to large effect sizes [51]. PTS and PTSD
are complex phenomena and a very active area of research. Our
results are promising, but model weaknesses may reflect a lack of
PTS-specific candidate predictors in the underlying data (e.g.,
intentionality of trauma; group versus individual trauma) or
sample construction issues. In particular, we note that the
randomization process used to assign cases to train and test
partitions in the current analysis produced an undesirably small
number of PTS cases in the test partition.
To our knowledge, this is the first study to compare the relative

predictive ability of ML algorithms from different classes across
multiple major mental health conditions in youth within the same
analytic design, allowing us to make a number of further
observations. We found that across all five conditions, psychoso-
cial and psychometric constructs were more important final
predictors than neural metrics of brain function. Our experience is
largely congruent with prior research in mental health in youth
and recent large-scale research demonstrating that the effect size
of associations between inter-individual differences in brain
structure or function and complex cognitive or mental health
phenotypes are smaller than previously thought and prone to
replication failures [52]. Only a small number of predictive studies
in youth mental health conditions have similarly incorporated
multidomain candidate predictors including neural metrics and
results have been mixed. In depression, Xiang et al. found that
psychosocial predictors outperformed a wide variety of neural
metric types in predicting trajectory severity in the ABCD cohort,
whereas Toenders et al. found that two structural MRI metrics
were useful in predicting depression in the IMAGEN cohort but not
as important as five other psychosocial predictors. In anxiety,
Chavanne et al. found that structural MRI volumetrics did not
improve the prediction of a pooled anxiety target in the IMAGEN
cohort, with every psychosocial predictor except extraversion
outranking volumetrics, though neural metrics made a partial
contribution to predicting Generalized Anxiety Disorder. Chan
et al. used the first wave of the ABCD study (children 8–10) to

predict conduct disorder and found that combining psychosocial
with imaging metrics outperformed either alone. However, such
results in predictive classification (which, when successful,
typically identifies final predictors of large importance) do not
necessarily downgrade the role of neural metrics in probing
disease mechanisms, particularly when specialized models allow-
ing for the interaction of many effects of smaller size are
constructed. Moreover, there is a paucity of work in predictive
classification in youth incorporating multidomain data, and most
extant work, including the present study, employs metrics from a
single type of neuroimaging (volumetric or functional). Future
studies incorporating multiple types of neural metrics with
psychosocial and cognitive candidate predictors are indicated to
improve our understanding of the former’s potential role in
predictive classification in youth mental health.
In terms of algorithm types, we found that deep learning with

ANNs or tree-based learning with XGB outperformed logistic
regression across all five mental health conditions. This result is
concordant with the vast majority of prior comparable studies in
youth that have compared across these algorithm categories in a
single disorder (see above). Further, we found that demographic
characteristics with historical associations with relative severity
and incidence, such as race/ethnicity and, in particular, sex/
gender, where these associations might reflect bias in case
ascertainment, did not prove to be shared or specific predictors of
major mental illnesses in youth in the best-performing models.
With scattered exceptions, this finding is also concordant with
prior studies predicting these conditions in youth [12, 13, 46]. As
well, it provides some empirical support that bias in case
ascertainment attributable to characteristics such as race/ethnicity
or sex/gender was not present. However, we also caution that this
was a community-based, naturalistic sample from the NYC area
only and therefore larger conclusions may not be drawn.
AI techniques are well-suited to optimizing ML predictive

models in multidomain biomedical ‘big data’ where underlying
mechanisms are poorly defined and likely multifactorial and/or
non-linear or non-hierarchical. Notwithstanding its reputation for
automation and large scale, the majority of academic ML research
proceeds idiosyncratically at a small scale with ≤50 model fits
explored [23]. This cramps the scientific search space, increases
the potential for bias and noise and reduces statistical power.
Here, we applied IEL to address prominent and current issues in
the ML field of interpretability, feature selection and hyperpara-
meter tuning and fit ~40,000 models for each condition over the
course of training to generate rigorous predictions that general-
ized well to unseen, held-out data with algorithms that are readily
available as open-source code. Our results highlight the value of
investment in a principled approach to model tuning, such as IEL,
in the large multidomain open science datasets that are
increasingly the focus of psychiatry. Future directions may extend
the approaches and findings in the present paper to large,
longitudinal participant samples underway, such as the ABCD
study, to mitigate the present reliance on cross-sectional
assessment. Our own such study is currently in progress.

LIMITATIONS
This study applies AI/ML predictive analytics to a cross-sectional
sample of youth aged 5–21 and throughout the term ‘predict’ is
used in the ML sense to mean the prediction of a class label for
given examples of input data or the construction of a
discriminative classifier. Neither causality nor the prediction of
class labels in the future for the same example subjects, the
prediction of future occurrence of cases for subjects not yet
exhibiting symptoms should or can be imputed from this analysis.
The participant sample in the present study was a naturalistic,
community-based, undifferentiated population of youth and their
parents. The present authors did not collect the original data and
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are unable to control for any bias that was present in data
collection. No attempt was made to stratify the sample along
demographic or other characteristics, and all participants were
from the NYC area. Accordingly, results may not be applicable to
other types of population samples from different regions or
stratified samples. Further, no attempt was made to collect the
original data to determine the point of disease onset, and this is a
cross-sectional sample. Therefore candidate predictors have an
undefined chronologic relationship to disease onset. We acknowl-
edge that the present study does not include exhaustive
connectomic or genomic data, albeit high-fidelity predictions
were obtained without them. Future work might explore the
possibility that including other data types could incrementally
improve accuracy, sensitivity and specificity at the margin and
should validate findings in an external dataset.

CONCLUSION
By applying AI-optimized ML to a transdiagnostic, multidomain
dataset within a common analytic architecture, we were able to
delineate discrete sets of final predictors for the five most
common mental illness conditions in youth with models that
generalized well (AUC ≥ 0.94) in unseen, held-out test data. Our
results support the current intuition that peri-adolescent psychia-
tric conditions are multifactorial disease processes with non-linear
relationships among predictors, given the preference for ANN and
XGB algorithms. In the present dataset, we found that psychoso-
cial and psychometric predictors were preferred over metrics of
neural function.
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