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Speech is a promising biomarker for schizophrenia spectrum disorder (SSD) and major depressive disorder (MDD). This proof of
principle study investigates previously studied speech acoustics in combination with a novel application of voice pathology
features as objective and reproducible classifiers for depression, schizophrenia, and healthy controls (HC). Speech and voice
features for classification were calculated from recordings of picture descriptions from 240 speech samples (20 participants with
SSD, 20 with MDD, and 20 HC each with 4 samples). Binary classification support vector machine (SVM) models classified the
disorder groups and HC. For each feature, the permutation feature importance was calculated, and the top 25% most important
features were used to compare differences between the disorder groups and HC including correlations between the important
features and symptom severity scores. Multiple kernels for SVM were tested and the pairwise models with the best performing
kernel (3-degree polynomial) were highly accurate for each classification: 0.947 for HC vs. SSD, 0.920 for HC vs. MDD, and 0.932 for
SSD vs. MDD. The relatively most important features were measures of articulation coordination, number of pauses per minute, and
speech variability. There were moderate correlations between important features and positive symptoms for SSD. The important
features suggest that speech characteristics relating to psychomotor slowing, alogia, and flat affect differ between HC, SSD,
and MDD.
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INTRODUCTION
During the last century, studies have tried to disentangle major
depressive disorder (MDD) and schizophrenia spectrum disorder
(SSD) using transdiagnostic and multivariate approaches. How-
ever, these studies have failed to identify reproducible biomarkers
for these psychiatric disorders [1–3]. Recent advances have
highlighted the importance of speech features in psychiatric
disorders as objective, reproducible, and time-efficient biomarkers
[4–6]. In both SSD and MDD, the analysis of nonverbal speech
acoustic features (i.e., prosody) is considered an encouraging
prospect for developing such biomarkers [4, 5, 7].
Speech communication is the result of the coordination of over

a hundred different muscles and neurobiological processes [8].
Acoustic measurement of speech can be used to observe the
impacts of abnormalities on these neurobiological processes.
Previous work has reported atypical acoustic measurements in
both MDD and SSD. These measurements include prosody (e.g.,
intonation and stress), voice quality, spectral features (e.g., Mel-
frequency cepstrum coefficients [MFCC]), and temporal aspects
(e.g., rate, duration, number of pauses) [9]. In a meta-analysis of
acoustic features in SSD, Parola and colleagues [10] reported
significant group effects for speech features including decreased

proportion of spoken time, decreased speech rate, and increased
duration of pauses in individuals with schizophrenia. Additionally,
the authors reported correlated acoustic features with clinical
ratings (i.e., general psychopathology, alogia, positive and
negative symptoms). Comparable to patients with SSD, decreased
speech rate and increased duration of pauses have been reported
in MDD as well [9, 11]. While similarities between speech and
voice symptoms, particularly those related to negative symptoms,
have been reported [9, 12], there are also potential distinctions
between the disorders due to differences relating to positive
symptoms, such as positive formal thought disorder [13, 14].
Most previous work has investigated differences in speech and

voice patterns across a range of psychiatric disorders primarily
through null-hypothesis significance testing (NHST [9]). While
NHST has been effective in developing hypotheses related to
significant and non-significant speech and voice features in
psychiatric disorders, it is ultimately limited in its ability to scale
with data size and complexity [15]. Recent reviews and meta-
analyses of speech changes in SSD [10], MDD [11, 16], and
psychiatric disorders generally [9] have suggested machine
learning (ML) approaches for studying the complexity of speech
in psychiatric disorders. Previous work has reported the binary
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classification between HC and SSD [17] or MDD [18, 19] with
accuracy ranges between 72% and 91.8% [4, 10, 17]. However, few
have examined both diagnoses together [12, 20].
Most ML applications in speech and voice of psychiatric

disorders have focused on depression while schizophrenia is
understudied [9, 10]. These applications typically have used
hundreds of extracted acoustic features [12, 21]. These large
feature spaces have been difficult to interpret; more so when
common approaches of feature reduction (e.g., principal compo-
nent analysis) have been used. These brute force black box
approaches to ML have provided useful predictions for potential
patients in a disorder group, but they have not provided insights
into how or why the speech and voice features are contributing to
the predictions [11].
Recent work has suggested study designs using interpretable

machine learning (IML) that combine the applicability of null-
hypothesis testing with the computational complexity of machine
learning [22, 23]. IML has been either intrinsically interpretable,
such as the weights of the features in a linear model, or post hoc
interpretable, which requires additional models to evaluate
potential structures within the explained model. One model-
agnostic approach to post hoc interpretability has been permuta-
tion feature importance [24]. To optimize the interpretability, the
approach should use meaningful features. Therefore, instead of a
large set of abstract acoustic features, a smaller set of hypothesis-
driven features is used. More targeted and theory-/hypothesis-
driven research on speech and voice patterns in both MDD and
SSD is timely and warranted [9, 10].
The purpose of the present proof of principle study was to

investigate speech acoustics as objective and reproducible
classifiers for depression and schizophrenia. The first aim of this
study was to determine which speech and voice features are
relatively important in the classification of SSD and MDD
compared to HC. The second aim of this study was to measure
how the relatively important features for disorder classification
relate to symptoms of MDD and SSD. We hypothesized that (1)
speech samples from patients with MDD and SSD will be
accurately classified from healthy controls and (2) the important

features will correlate with symptom severity scores related to
depression and negative and positive symptoms in SSD. The
relative importance of the interpretable features and the
correlations with the symptom scores will provide a basis for
inference on the differences in speech patterns between patients
with SSD and MDD.

METHODS
Participants
Participants were selected from a supplemental study of the longitudinal
Marburg/Münster Affective Disorders Cohort Study [25]. This longitudinal
study started in 2014 aiming at the neurobiological analysis of the
pathophysiology and course of affective disorders (see Kircher et al. for
more details) [25]. For the present cross-sectional study, participants were
included regardless of time point in the larger study (i.e., baseline and
follow-up after two and five years) and consisted of 20 patients suffering
from DSM-IV SSD, 20 from MDD, as well as 20 HC participants. While
participants were from different time points, each participant was only
assessed once. As the pool of available patients with SSD was the smallest,
a random group of 20 participants was first chosen from this group. Then
MDD patients and HC were 1:1 matched by age and sex of the SSD group
using MatchIt in R [26].
Exclusion criteria were current or past alcohol or drug dependency,

traumatic brain injury, neurological diseases, and a verbal IQ below 80 (see
Kircher et al. for more details) [25]. Further, HC were excluded if they had a
first relative that had been diagnosed with any psychiatric disorder. During
a semi-structured interview, clinical diagnoses were assessed according to
the German version of the Structured Clinical Interview for DSM-IV (SKID-I)
[27] and additional rater-based psychopathological scales. Interrater
reliability was assessed with the interclass coefficient, achieving good
reliability of r > 0.86 in all clinical assessments.
The ethics committee of the University of Marburg approved the study

(AZ07–2014) according to the Declaration of Helsinki, and participants
gave written informed consent.
Descriptive characteristics of the three groups are shown in Table 1. One

participant in the SSD group was replaced because a majority of the
speech sample (>75% of the recording duration) contained more noise
than speech. This was a result of a combination of high background noise
(both stationary and transient) and low speech volume from the
participant.

Table 1. Descriptive characteristics of participants (HC, healthy controls; MDD, major depressive disorder; SSD, schizophrenia spectrum disorder).

HC (n= 20) MDD (n= 20) SSD (n= 20) P

Age (years) 39.3 (12.7, range 24–60) 41.5 (13.2, range 21–64) 41.6 (11.6, range 20–60) 0.799

Sex M= 13 M= 10 M= 14 0.400

F= 7 F= 10 F= 6

Years of education 15.4 (2.4) 12.3 (2.3) 12.1 (2.3) <0.001

Age of onset — 26 (13.7) 18.69 (7.5) 0.067

Duration of illness (years) — 16.3 (12.4) 18.7 (7.5) 0.28

Duration of hospitalizations (weeks) — 11.3 (18.2) 22.7 (29.6) 0.166

Antidepressant intake n, (%) — 11 (55) 4 (20) 0.048

Antipsychotic intake n, (%) — 1 (5) 12 (60) <0.001

Mood stabilizer intake n, (%) 0 (0) 1 (5) 1

HAM-A 1.20 (1.68) 8.40 (7.70) 9.90 (10.10) <0.001

HAM-D 0.82 (1.78) 6.15 (7.26) 8.35 (8.42) 0.005

SANS 0.12 (0.49) 6.2 (8.5) 17.3 (11.39) <0.001

SANS alogia subscale 0 (0) 1.06 (12.26) 2.35 (2.50) <0.001

SAPS 0 (0) 1.47 (2.15) 19.32 (15.43) <0.001

SAPS FTD subscale 0 (0) 1.67 (2.50) 9.35 (9.20) <0.001

GAF 92.4 (7.0) 65.7 (12.8) 47.9 (17.8) <0.001

Mmale, F female, HAM-A Hamilton Anxiety Rating Scale, HAM-D Hamilton Depression Scale, SANS Scale for the Assessment of Negative Symptoms, SAPS Scale
for the Assessment of Positive Symptoms, FTD formal thought disorder, GAF Global Assessment of Functioning.
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Picture description task
To elicit spontaneous speech, a picture description task based on the
Thematic Apperception Test (TAT) was used [28]. From the TAT, pictures 1,
2, 4, and 6 were displayed in front of the participants individually and in
the same order. Participants were asked to describe each picture, express
thoughts, or tell a story for a total of three minutes per picture. The speech
was recorded using a digital voice recorder (Olympus WS-853, OM Digital
Solutions GmbH, Hamburg, Germany) placed in the middle of the table
facing the participant. The average distance between the recorder and
mouth of the participants was 35 cm.

Segmentation
Each picture description was segmented, resulting in four speech samples
per participant. For each speech sample, the examiner’s speech and
instances of excessive background noise were manually removed by the
first author (M.B.). See Supplemental Material Table S1 for further
preprocessing details specific to the calculation of each feature.

Feature extraction
Prior to classification, all features were calculated from the individual
speech samples. The set of features was chosen from those reported in
Low, Bentley, and Ghosh [9] that could be used as sample-level features.
These features included speech tempo features (speech rate, articulation
rate, talking rate), speech pause features (pause duration, pause duration
standard deviation [SD], and pause rate), prosodic intonation features
(fundamental frequency [fo] SD, kurtosis, and skewness), prosodic stress
features (intensity SD, kurtosis, skewness, and energy velocity), and speech
spectrum features (mean MFFC for coefficients 1 through 13). Additionally,
other potentially useful features from other publications were added.
These included pauses per minute (PPM) [7] and articulation coordination
features (three vocal-tract-variable-based articulation coordination features
[ACF1, ACF2, ACF3]) [29]. Finally, while not previously reported a novel
addition of vocal quality features (mean smoothed cepstral peak
prominence [CPPs], CPPs SD, kurtosis, and skewness, low-to-high ratio
mean [LHR], LHR SD, kurtosis, and skewness) were added to test the impact
of clinical voice pathology measures. See supplemental Table S1 for
detailed explanations, methods on feature calculations, and references for
rationale of inclusion.

Model selection
Three pairwise classification models were used to compare differences in
feature importance. Following the work by Espinola, Gomes, Pereira, and
dos Santos [17] who used similar features for the classification of
schizophrenia and found support vector machines (SVM) provided the
best performance, here the classification models were SVM with three
polynomial kernels (n= 1, 2, 3). Additionally, five-fold cross-validation was
used for validation accuracy. To accomplish this, for each model
standardized data were randomly divided into five equal-sized folds while
maintaining class balance and participant assignment for each fold. Then
the model was trained in five iterations, the first iteration used the first fold
as the validation set and the remaining four folds were combined and used
as the training set. The model was trained and validated, then iterated four
more times using each fold as a validation set. After completing the five
iterations, the performance metrics (accuracy, precision, recall, and F1-
score) were averaged to provide an overall assessment of the model’s
performance. The models’ box constraints were set using Bayesian
hyperparameter optimization with an expected improvement acquisition
function and the kernels were allowed to auto-scale. The machine learning
pipeline was implemented in MATLAB (2021b, MathWorks, Natwick,
Massachusetts) using the Statistics and Machine Learning Toolbox and
the code is available upon request from the corresponding author.

Feature importance
Feature importance through permutation was computed for each model.
For each feature, the respective trained model was tested on a randomized
permutation of the values. The difference between the testing accuracies
with and without permutation was the feature importance score (FI). This
was repeated 20 times and an average accuracy was computed. To
mitigate bias from the random nature of the cross-validation in the
machine learning and permutation feature importance testing, the entire
pipeline including the randomized train-test split was repeated 100 times
and average performance metrics and feature importance scores were
computed.

Descriptive statistics
The statistical relationships between the most important features (top
25%) and the three classification groups were calculated. For important
features, the percent difference between the HC group and the two clinical
groups was calculated and tested for statistical significance with an ANOVA
at an alpha level of α = 0.05 with Bonferroni corrections. Prior to ANOVA
testing, the data was checked for the assumptions of normality and equal
variances (Levene’s test). If normality could not be assumed, non-
parametric Mann Whitney U tests were used. When normally distributed
but equal variances could not be assumed, Welch-ANOVA tests were used.
Additionally, two-tailed Pearson correlations were calculated between the
important features and symptom severity scores from the Hamilton
Depression Rating Scale (HAM-D) [30], Scale for the Assessment of
Negative Symptoms (SANS) [31], Scale for the Assessment of Positive
Symptoms (SAPS), and the subscales for alogia, flat affect, and formal
thought disorder (FTD) [32]. The two-sided Pearson correlations were
tested for significance at an alpha level of α = 0.05 with Bonferroni
corrections.

RESULTS
Model accuracies
The performance metrics (validation accuracy, precision, recall,
and F1 score) from the repetitions were averaged for each model.
Table 2 summarizes these metrics for each pairwise comparison
for the three degrees of polynomial kernel. The box constraints for
each model are in Table S2.

Feature importance
For each ML classification model with each kernel, the relative
importance of the features was computed. Figure 1 shows the
features that were in the top 25% of important features for any of
the three pairwise models with the best performing model, the
SVM with 3-degree polynomial kernel. See supplementary material
figures S1-S5 for relative importance of all features for each
pairwise model with each kernel as well as the top 25% of
important features for the models with the linear and 2-degree
polynomial SVM kernels. The same features were included in the
top 25% for each SVM kernel. Of the top 25% of features, the
features that were relatively important (top 25%) for all pairwise
models included (in order of total relative importance for the best
performing kernel) ACF2, ACF1, intensity kurtosis, MFCC1, PPM,
CPPs skewness, fo SD, LHR SD, and LHR. Three features that were
uniquely important (top 25% for only one model) were CPPs SD
for HC x SSD, talking rate for HC x MDD, and MFCC2 for SSD x
MDD.

Descriptive statistics
For each of the most important features, the differences between
HC and SSD, as well as HC and MDD were calculated. Table 3
summarizes the percent difference for each measure, the F-
statistic and the P-value for the corresponding ANOVA test. The
data met the assumption of normality. Additionally, for the group
comparison of MDD and HC, all features met the assumption of
equal variance except LHR SD. For the group comparison of SSD
and HC, all features met the assumption of equal variance except
ACF1, ACF2, and fo SD.
The acoustic features that had statistically significant (P < 0.05)

changes from HC to both patient groups were ACF2, ACF1, MFCC1,
PPM, talking rate, and CPPs SD. The acoustic features that only had
statistically significant changes from HC to MDD were intensity
kurtosis, CPPs skewness, and LHR. The acoustic features that only
had statistically significant changes from HC to SSD were fo SD and
LHR SD. MFCC2 had no statistical differences between HC and
either patient group.
In addition to differences of the acoustic features between the

patient groups, the correlations between the acoustic features and
symptom severity scores were computed. Table 4 summarizes
two-tailed Pearson correlations between the top 25% important
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features and the symptom severity scores from the HAM-D as well
as SANS and SAPS with their subscales for alogia, flat affect, and
FTD. Following multiple testing corrections, moderate positive
correlations were found for LHR SD and HAMD (r= 0.50) and SAPS
(r= 0.40) for SSD. There were also moderate positive correlations
between CPPs Skewness and SANS (r= 0.47) and SAPS FTS
(r= 0.42) for SSD. There was a negative correlation between
intensity kurtosis and SAPS for SSD (r= -0.39). Finally, there was a
moderate positive correlation for MFCC1 (r= 0.46) and a
moderate negative correlation for PPM (r= -0.42) with SAPS FTD
for SSD.

DISCUSSION
The important differences in speech patterns between the patient
groups provide evidence for the use of speech as a potential
biomarker for psychiatric disorders, specifically SSD and MDD. In
this proof of principle study, pairwise SVM learning models, which
used a limited number of hypothesis-driven speech and voice
features, classified speech samples between HC and two different
patient groups—SSD and MDD. All three models had high testing
accuracies ( >0.90) for the 2-degree and 3-degree polynomial
kernels. This supports the hypothesis that the models could

accurately classify speech samples among SSD, MDD, and HC
groups with a set of interpretable features. The secondary
hypothesis that important features would correlate with symptom
scores was partially supported by moderate correlations for SSD
speech samples.

Classification performance
The testing accuracies of the classification of SSD were slightly
higher than previously reported. A systematic review [10] reported
five ML studies classifying schizophrenia with acoustic features
and reported accuracies from 0.75 to 0.875. Siriwardena, Espy-
Wilson, Kitchen, and Kelly [33] reported classification accuracy
using the ACFs of 0.722 but showed increased accuracy of 0.833
when using a multimodal approach that included features derived
from facial images. Espinola, Gomes, Pereira, and dos Santos [17]
had a similar sample size (n= 20 schizophrenia) and feature set
(33 extracted acoustic features) and reported similar performance
changes with different polynomial kernels for SVM classification of
HC vs. schizophrenia (0.78, 0.89, and 0.90 for linear, 2-degree
polynomial, and 3-degree polynomial respectively).
One potential reason for the slightly higher performance in

the present study is the inclusion of a variety of features at the
sample level that represent varied paralinguistic aspects of
speech. Another potential reason is the use of the picture-
description task. The aforementioned studies contained either
reading samples or recorded interviews. The speech samples
here allowed for structured extemporaneous speech produc-
tion, which preserves altered speech and language production
but also is consistent enough to be comparable across
participants.

Important features across all models
Post hoc model-agnostic evaluation of the importance of the
features shows that some of the features were important for all
models. Two of these features were ACF1 and ACF2. These two
features represent the complexity of articulation of the speech.
Additionally, both features were significantly (p < 0.05) different
between each disorder group and HC (see Table 3). There was an
increase in ACF1 and a decrease in ACF2 for both disorder groups
compared to the controls. This relationship is consistent with
previously reported work using ACFs and classifying the speech of
people with depression [29, 34]. However, an inverse relationship
was expected for speech in schizophrenia [35], specifically with
subjects with strong positive symptoms [33]. Table 4 shows that
ACF2 has an inverse relationship between patients with MDD on
the SANS alogia subscale and patients with SSD on the SAPS FTD
subscale. These relationships are consistent with previous work
and suggest competing influences on the articulation coordina-
tion in SSD implying a potential value in ACF as a speech feature
to distinguish positive and negative symptoms.

Table 2. Summary of 5-fold cross-validation accuracy, precision, recall, and F1 score for each classification model.

Model Pairwise comparison Accuracy Precision Recall F1 Score

SVM Linear HC and SSD 0.793 0.798 0.791 0.794

HC and MDD 0.736 0.718 0.742 0.730

SSD and MDD 0.653 0.659 0.656 0.657

SVM 2-degree Polynomial HC and SSD 0.933 0.944 0.925 0.934

HC and MDD 0.900 0.895 0.905 0.900

SSD and MDD 0.916 0.923 0.912 0.918

SVM 3-degree Polynomial HC and SSD 0.947 0.965 0.933 0.949

HC and MDD 0.920 0.921 0.920 0.920

SSD and MDD 0.932 0.943 0.924 0.933

SVM support vector machine, HC healthy control, SSD schizophrenia spectrum disorder, MDD major depressive disorder.

Fig. 1 Comparison of the top 25% of features ranked by
aggregate feature importance across all pairwise models with
the 3-degree SVM polynomial kernel. Feature importance was
computed as the post hoc permutation feature importance. For
each model, there were twenty participants per group (HC healthy
controls, SSD schizophrenia spectrum disorder, MDD major depres-
sive disorder) and four speech samples per participant.
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Differences in articulatory coordination between patient groups
related to negative symptoms are consistent with psychomotor
slowing, which would directly affect speech kinematics [36].
Psychomotor slowing has been described as psychomotor
retardation in MDD [37] and psychomotor poverty in SSD [38].
The differential contribution of cognitive and motor deficits to the
slowing is of theoretical interest as it should provide further
insights into the pathophysiology of SSD. Previous work has
suggested that psychomotor slowing may serve as an endophe-
notype and biomarker of SSD with planning and response
selection particularly affected [39]. As neurobiological regions for
motor planning intersect with regions for (emotional) voice and
speech production, the effects on speech production are not
surprising [40].
Another feature that was important for all three models was

PPM. Additionally, PPM has similar percent decreases ( >16%) from
HC in both patient groups (see Table 3) and significant moderate
correlation (r= -0.42; P < 0.001) with the SAPS FTD subscale (see
Table 4), which is consistent with previous work [7, 41].
Other major features that were important for all models relate

to measures of voice and speech variability (intensity kurtosis,
CPPs skewness, fo SD). CPPs skewness and fo SD had correlations
with SANS alogia in MDD and intensity kurtosis had a moderate
correlation with SANS alogia in SSD. This result is not surprising as
the negative symptoms of MDD and SSD can manifest as a lack of
variability or dynamics of speech [42–44]. Table 3 shows that fo SD
decreased with the patient groups and the intensity kurtosis
increased, which can be interpreted as an increase in the number
of data points away from the mean (e.g. outliers). In other words,
this speech pattern is more consistent with monotone speech
than typical speech, with occasional brief changes in loudness.

Transdiagnostic similarities and differences
The two patient groups shared similar differences from HC in the
important features. Both groups had significant changes (p < 0.05)
and in the same direction for the ACF features, MFCC1, PPM, and
talking rate (see Table 3). However, there was a unique difference
between MDD and SSD patients in speech variability, specifically
for fo SD and LHR SD. For both features, there was reduced
variability compared to controls but for SSD the difference was
greater and significant compared to controls (see Table 3). As

Table 3. Provides a summary of the mean difference (percent
change), the F-statistic, and the P-value for the corresponding ANOVA
test for the differences of the top 25% of important features between
the three classification groups, healthy controls (HC), major depressive
disorder (MDD), and schizophrenia spectrum disorder (SSD).

Feature Group
comparison

Mean
difference (%)

F P

ACF2 MDD-HC −4.7 7.29 0.008

SSD-HC −4.1 4.14 0.044

ACF1 MDD-HC 3.8 6.73 0.010

SSD-HC 3.6 4.65 0.033

Intensity
kurtosis

MDD-HC 29.7 7.83 0.006

SSD-HC 13.3 1.55 0.215

MFCC1 MDD-HC −2.6 7.16 0.008

SSD-HC −3.1 11.10 0.001

PPM MDD-HC −16.3 19.47 <0.001

SSD-HC −17.2 20.81 <0.001

CPPs
skewness

MDD-HC 345.4 5.39 0.022

SSD-HC 28.2 0.04 0.845

fo SD MDD-HC −1.4 0.04 0.849

SSD-HC −14.5 6.56 0.011

LHR SD MDD-HC −2.3 1.35 0.248

SSD-HC −6.7 7.37 0.007

Talking
rate

MDD-HC −8.0 5.83 0.017

SSD-HC −10.2 8.97 0.003

LHR MDD-HC −5.8 6.76 0.010

SSD-HC −2.8 1.29 0.257

CPPs SD MDD-HC −10.3 22.95 <0.001

SSD-HC −7.7 11.29 0.001

MFCC2 MDD-HC −1.7 0.45 0.503

SSD-HC 3.6 1.58 0.211

P-values that are significant at α = 0.05 are bolded.

Table 4. Two-tailed Pearson correlations between the top 25% important features and symptom severity scores for the two patient groups, major
depressive disorder (MDD) and schizophrenia spectrum disorder (SSD).

HAMD SANS SAPS SANS Alogia SANS flat affect SAPS FTD

SSD MDD SSD MDD SSD MDD SSD MDD SSD MDD SSD MDD

ACF2 −0.02 −0.12 −0.21 0.13 0.03 0.15 −0.19 0.39 −0.12 0.20 −0.26 0.04

ACF1 −0.03 −0.06 0.13 −0.15 0.06 −0.18 0.24 −0.12 −0.05 −0.32 0.19 −0.09

Intensity Kurtosis −0.32 −0.06 −0.12 0.12 −0.39 0.14 −0.33 −0.14 −0.14 −0.29 −0.24 0.06

MFCC1 0.01 0.04 −0.09 −0.11 0.27 −0.15 0.16 0.25 −0.05 −0.01 0.46 0.01

PPM −0.13 0.31 −0.35 −0.10 −0.06 0.03 −0.24 −0.23 −0.26 −0.19 −0.42 0.16

CPPs Skewness 0.08 −0.32 0.47 0.01 0.05 −0.10 −0.03 0.25 0.37 −0.08 0.42 −0.22

fo SD 0.01 0.08 0.08 −0.20 −0.08 −0.14 −0.12 −0.28 0.01 0.08 −0.03 0.02

LHR SD 0.50 −0.31 0.03 −0.18 0.40 −0.17 0.16 −0.12 −0.05 0.29 −0.25 −0.20

Talking Rate −0.11 0.10 −0.05 0.17 −0.06 0.15 −0.30 −0.04 0.18 −0.06 0.23 −0.02

LHR 0.06 0.00 0.03 −0.32 0.09 −0.26 0.24 −0.08 0.22 0.18 −0.02 0.05

CPPs SD 0.01 −0.12 −0.09 0.08 0.07 0.14 −0.08 −0.02 −0.29 0.19 −0.36 −0.08

MFCC2 −0.02 0.11 −0.05 −0.03 −0.04 0.04 0.09 0.01 0.08 0.26 −0.18 0.16

HAM-D Hamilton Depression Scale, SANS Scale for the Assessment of Negative Symptoms, SAPS Scale for the Assessment of Positive Symptoms, FTD formal
thought disorder.
Correlations that are significant at α = 0.05 with Bonferroni correction are bolded.
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previously mentioned, the lack of variability and dynamics of
speech is expected. In the present data set it is more pronounced
for SSD.

Voice pathology features
Our study uniquely sheds a light on voice pathology features
largely neglected in previous research on vocal features in
psychiatric disorders. Voice pathology features such as the
dysphonia measures CPPs and LHR [45], which have not been
previously used in classification, were relatively important in the
differentiation between MDD and SSD. These features highlight
degradations in voice quality, which may stem from physiological
aspects of vocal fold vibration including diminished mucosal
hydration (vocal tract drying) to altered posturing of the vocal
folds leading to hypoadduction [46]. Lowered voice fundamental
frequency and intensity have been typical in MDD [46]. Moreover,
introversion and neuroticism have been found to be elevated in
MDD compared to controls [47], which is a personality mix that is
thought to contribute to inhibited voice production in novel or
threatening situations [48]. Including voice pathology features
may help to better classify between MDD and SSD groups as LHR
SD was the most important feature for the SSD vs. MDD model
and LHR was uniquely important for the MDD binary models.
Moreover, cepstral-spectral measures have held a significant
advantage over so-called traditional perturbation measures of
voice such as jitter and shimmer [49]. They can be applied to
running speech as well [45, 50]. Typically, classification studies
focus on one particular task, but in the interest of uncovering the
pathophysiology of SSD a set of tasks with differing speech
complexity (sustained vowels to spontaneous speech, parsing
voice and speech) and varying cognitive, emotional, and social
demands will be revealing [10]. Systematically studying speech
and voice features in research across psychiatric disorders also
aligns with a call to carefully study motor behavior in general as a
key to better understanding underlying mechanisms across
psychiatric disorders [51]. Specifically, deeper insights into the
mechanisms for altered speech and voice motor behavior in SSD
must be pursued as proposed by Parola et al. [10]. who have
suggested looking at auditory processing, pitch control, neuro-
motor disorders, and antipsychotic medication.

Medication use
Medication use has had potential impacts on the voice. A little
over half of the participants in the MDD group used antidepres-
sants whereas a little over half of the participants in the SSD group
used antipsychotic medications. Medication use was not specifi-
cally controlled for due to its differing distribution in our
transdiagnostic sample and therefore differential effects on
acoustic features and psychopathology. Additionally, given the
nearly equal distribution of medication use in the patient groups,
significant group effects due to medication are minimized in the
classification. Supplemental Table S3 includes a report for one-way
ANOVA tests on medication use (antidepressants for MDD and
antipsychotics for SSD) in the patient groups for all of the speech
features. Two notable results from this table include a significant
decrease in CPPs for medication use in MDD, which is consistent
with previous work that showed a relationship between anti-
depressants and voice quality measured by CPPs [52]. Additionally,
there were increases in fo SD for both patient groups with
medication, which suggests an effect of medication to dampen
the impact of psychiatric disorders on the monotonicity of speech.

Limitations
The speech samples used were from patients in inpatient and
outpatient clinical settings. As a result, there are inherent
limitations such as the participants being in various stages of
illness, which can have varying influences on speech and voice
parameters. For example, positive symptoms dominate in the

acute phase whereas negative symptoms dominate in the chronic
phase. Additionally, while the groups were closely matched on
age and sex, other confounders are possible. For example, there
was a difference in education level between the groups which has
been previously shown to be associated with verbal performance
and processing acoustic information [53]. A single modality of
speech task was used in the study (e.g., continuous speech from
picture descriptions). Other speech tasks such as sustained vowels
have been used in previous work and have provided other
insights to vocal function [9]. Furthermore, speech tasks with
varying levels of linguistic complexity could elicit additional
acoustic abnormalities that could be used to improve the
classification. Additionally, the study is limited through using a
single language. Recent research has revealed significant varia-
tions in vocal patterns in SSD when comparing different
languages [41], therefore it is important to expand the work to
include a variety of speech and languages. Finally, the study is
limited by the number of participants. A larger sample size and an
independent testing set would improve the confidence in the
machine learning results.

Future directions
One advantage of the model-agnostic feature importance
approach is that it allows for the scalability of future work in
terms of data size and complexity. One potential future
application is multi-class classification, which presents a difficult
but potentially insightful challenge [54]. Additionally, future work
looks to expand beyond binary classification of the disorders
towards severity of symptoms relating to the disorders and
subtypes. In these cases, feature importance related to the severity
of the symptoms can be computed to investigate the potential
relationships between voice and speech and these symptoms
beyond correlations. This has the potential to lead towards
tracking symptom severity and changes in patients. This approach
takes advantage of the benefits of using speech features for
analysis as they are easy to obtain, in particular in voice centers or
laryngology clinics as suggested by Low, Bentley, and Ghosh [9],
which could facilitate the interdisciplinary automated assessment
of psychiatric disorders within ethical limits. Additionally, psychia-
tric care facilities can easily implement speech sampling to be
used for future application such as monitoring. However,
replication in a large, independent sample is essential for
successful future application.

CONCLUSION
Speech recordings offer a noninvasive and inexpensive evaluation
of psychiatric disorders such as SSD and MDD. To determine
potential differences in speech patterns between HC and patients
with SSD or MDD, classification models with interpretable features
were developed and applied to speech recordings of these
groups. A model-agnostic approach to feature importance was
used to determine which of the features were most important to
the classification of the psychiatric disorders. These important
features were compared across the patient groups and symptom
scores and suggest differences in how symptoms manifest in
speech. Aspects of the articulatory coordination and variability of
speech were most important in classifying clinical diagnoses and
have the potential to serve as speech biomarkers. Future work can
expand these findings in more transdiagnostic studies, both with
multimodal data and with more specific symptoms related to the
psychiatric disorders.
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