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Consequences of adolescent drug use
Michael R. Steinfeld 1,2✉ and Mary M. Torregrossa 1,2

© The Author(s) 2023

Substance use in adolescence is a known risk factor for the development of neuropsychiatric and substance use disorders in
adulthood. This is in part due to the fact that critical aspects of brain development occur during adolescence, which can be altered
by drug use. Despite concerted efforts to educate youth about the potential negative consequences of substance use, initiation
remains common amongst adolescents world-wide. Additionally, though there has been substantial research on the topic, many
questions remain about the predictors and the consequences of adolescent drug use. In the following review, we will highlight
some of the most recent literature on the neurobiological and behavioral effects of adolescent drug use in rodents, non-human
primates, and humans, with a specific focus on alcohol, cannabis, nicotine, and the interactions between these substances. Overall,
consumption of these substances during adolescence can produce long-lasting changes across a variety of structures and networks
which can have enduring effects on behavior, emotion, and cognition.
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Adolescence is a period of critical development in the brain and
body. Developmental changes in the brain lead to adolescents
exhibiting heightened impulsiveness, which can lead to risky
behaviors that may have long-term consequences [1, 2]. In
particular, the use of both licit and illicit substances in adolescence
can produce both acute and enduring effects on brain function
and behavior. Of great concern is the fact that the prevalence of
substance use disorders as an adult is greater if substance use is
initiated during adolescence [3], however, other issues can persist
into adulthood both related and unrelated to continued use.
Alcohol, cannabis, and nicotine are among the most commonly
used substances in adolescents, in part due to their availability,
perceived lack of risk, and use in social settings [4].
Importantly, these substances act on receptors widely

expressed in the brain (i.e. dopamine, GABAergic, and glutamate
receptors), particularly in regions important for reward and
cognition. Moreover, these receptor systems and brain regions
undergo critical developmental changes during adolescence
including a reduction in gray matter volume (GMV) [5] accom-
panied by an increase in white matter volume [6], changes in
connections from subcortical to cortical circuits for emotional
control [7], elimination of excess neural connections [8], refine-
ment of the GABAergic system in the neocortex [9, 10], increases
in dopamine (DA) receptor expression [11, 12], and development
of the mesocorticolimbic system [13], to name a few. The
molecular and structural changes in the brain are accompanied
by changes in mood, behavior, and cognition, including heigh-
tened reward sensitivity [14], reduced inhibitory control [15, 16],
and deficits in executive function relative to adults [17].
Furthermore, increases in sex hormones, such as testosterone
and estrogen, have been shown to influence the brain’s response
to reward [18, 19]. These changes in the brain and behavior make
adolescents particularly likely to engage in substance use and

susceptible to the long-term negative consequences of drug use.
Given the potential societal impact of adolescent drug use, a
number of researchers have investigated the long-term conse-
quences of adolescent drug exposure in both clinical and
preclinical studies. Indeed, several recent reviews have highlighted
much of this research [20–25], so the present review is focused on
the most recent work investigating the consequences of
adolescent use of alcohol [Tables 1 & 5], cannabis [Tables 2 & 5],
nicotine [Tables 3 & 5], or polysubstance combinations [Tables 4 &
5] in the human, non-human primate, and rodent literatures.

ALCOHOL
Alcohol is one of the most commonly used recreational drugs in
the world, with adolescents constituting a large group of
consumers. However, alcohol has neurotoxic effects and can
modify a number of structures and circuits in the brain, including
the mesocorticolimbic and striatal systems [26–28]. During
adolescence, important changes occur in brain circuits that
respond to stress and emotional stimuli, which are sensitive to
alcohol exposure [29]. Furthermore, there is a well-established
relationship between adolescent alcohol exposure (AAE), brain
development, and cognitive functioning [20, 30], as well as data
indicating that AAE is associated with increased rate and severity
of stress-related psychopathologies [31]. AAE also increases future
alcohol consumption in rodents [32, 33], as well as humans [34].
Importantly, adolescents are less sensitive than adults to many of
the intoxication cues that suppress drinking, such as motor-
impairment, sedation, and hangover, and are more sensitive to the
reinforcing effects of alcohol, such as social facilitation [35], which
may explain why both human and laboratory animal adolescents
will consume more alcohol (relative to body weight) per session of
drinking than their adult counterparts [36]. Of equal importance is
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that repeated AAE can cause neuroinflammation via the release of
pro-inflammatory cytokines, which can disrupt synaptic plasticity
and lead to neuropathology and cell death [37–39].
In addition, AAE is known to trigger a series of behavioral effects

than can often persist into adulthood, many of which are related
to anxiety- and depression- like behavior [40–44]. For example,
AAE is associated with increased rates of major depressive
disorder [45, 46], particularly in females [47]. Studies in animal
models suggest that these effects may have multiple sources, one
of which is changes in glucocorticoid receptor density and
corticotropin-releasing factor (CRF) expression [48]. For example,
AAE via two-bottle choice has been shown to increase gluco-
corticoid receptor densities in the prelimbic cortex (PL), the
paraventricular nucleus (PVN), the central amygdala (CeA,) and the
basolateral amygdala (BLA) in both late adolescent and adult mice,
as well as lead to higher levels of CRF expression in the PVN and
CeA in male mice [42]. In addition to directly contributing to the
development of anxiety- and depression-like behaviors, AAE can
indirectly contribute to the development of anxiety- and
depression-like behavior by altering the effect of stress on the
brain, particularly in the nucleus accumbens (NAc). Voluntary AAE
in rats has been reported to increase dopamine (D)1 receptor
expression while decreasing D2 receptor expression in the NAc
and alter postsynaptic excitatory signaling following stressors [49].
Epigenetic modifications have also been linked to AAE’s long-
lasting effects on anxiety- and depression-like behavior. For
example, AAE can lead to long-lasting histone modifications that
alter synaptic function in the amygdala and likely contributes
anxiety-like behavior [50]. Recent evidence points to AAE-induced
epigenetic repression of the synaptic activity response element
(SARE) within the immediate-early gene activity-regulated cytos-
keleton-associated protein (Arc) in the central amygdala (CeA)
[51, 52] as a critical mediator for anxiety-like behavior. Bohnsack
and colleagues [52] found that restoring histone acetylation at the
Arc SARE site of the CeA following voluntary AAE in male rats
caused a reduction in anxiety-like behavior and excessive drinking
to control levels.
AAE also has long-lasting effects on cognitive abilities [53].

Recent studies have reported deficits in recall of an extinguished
fear response [54], deficits in reversal learning [43], and impaired
working memory [55, 56] following AAE. Unsurprisingly, alcohol’s
effect on the medial prefrontal cortex (mPFC) is an important
factor in producing these cognitive deficits [57]. Indeed, AAE has
been reported to cause a myriad of effects in the mPFC, including
greater PL spine density [54], decreased infralimbic cortex (IL)
spine density [58], altered PL pyramidal neuron excitability
[55, 59], activation of microglia and pro-inflammatory factors
[60], decreases in resting state connectivity between PFC
subregions [61], and decreases in myelinated fiber density (in
males but not females) [62]. AAE also impacts the hippocampus,
which is critical in supporting cognitive abilities [63]. Researchers
have found that AAE inhibits neurogenesis throughout the
hippocampus [64, 65], produces long-lasting reductions in
dendritic spine density and alterations in morphology [66],
increased levels of astrocytic glial fibrillary acidic protein (GFAP),
and decreased levels of brain-derived neurotrophic factor (BDNF)
[56].
Potential mechanisms underlying the long-lasting effects of AAE

have begun to emerge, one of which is glial functioning and
morphology [67, 68]. Astrocyte morphology and astrocyte-
neuronal proximity undergo developmental changes, which may
make astrocytes vulnerable to AAE [69]. The hippocampus seems
to be a critical target for these effects. AAE produces long-lasting
alterations to astrocyte activity in the hippocampus [70, 71] and
diminishes astrocytic synaptic contact in hippocampal CA1 [72].
Furthermore, AAE elevates levels of astrocytic glutamate trans-
porter (GLT)-1 in the dorsal hippocampus (DH), as well as the
ventral hippocampus (VH), in both male and female rats [68]. This

finding is particularly relevant given the evidence suggesting AAE
alters glutamatergic function [73, 74], and increases in hippo-
campal glutamate have been linked to schizophrenia [75] and
psychosis [76]. However, the effects of AAE are not limited to the
hippocampus. Adolescent injections of alcohol in rats also cause
changes in PFC subregion astrocyte morphology in the anterior
cingulate cortex (ACC) and ventral orbital frontal cortex (vOFC)
[77], implying that AAE’s cognitive effects come from changes to
multiple brain regions.
Microglia have also been shown to be important mediators of

alcohol’s neurotoxic effects [78], in addition to their known role in
adolescent brain development [79]. Thus, alcohol’s effects on
microglia signaling could lead to a wide array of long-lasting
effects. Similar to astrocytes, hippocampal microglia seem to be
particularly vulnerable to alcohol. AAE via gavage in adolescent
male rats has been shown to produce dramatic increases in
microglial activation markers in the entorhinal cortex (EC) and the
hippocampus [80]. In another recent example, injections of
alcohol in male adolescent mice caused significant loss and
dystrophy of microglia in the dentate gyrus (DG) [81] and similar
results have been reported in the perirhinal cortex and ECin adult
and adolescent male rats [82]. While the long-term consequences
of AAE’s effect on microglia are still being determined, it is known
that microglia-induced systemic inflammation has many conse-
quences including contributing to long-term neurodegenerative
disease [83].
Another consequence of AAE may be long-lasting dysregulation

of the endocannabinoid system (ECS). The ECS is widespread
throughout the central nervous system and is known to play
important roles in many cognitive and behavioral processes
[84, 85]. Importantly, the ECS has been implicated in alcohol
consumption as well as alcohol addiction [86]. There is some
evidence to suggest that cannabinoid (CB)1 receptors may be
particularly important in adolescent alcohol consumption. Inhibi-
tion of CB1 receptors reduced adolescent alcohol intake in male
mice down to adult levels, but did not affect alcohol intake in
adults [87]. Moreover, Sánchez-Marín and colleagues have
reported several effects of AAE via injections on the ECS. Some
of their findings include brain-region dependent changes in
mRNA levels of endocannabinoid synthetic enzymes in the PFC
and amygdala [44], higher mRNA expression of EC signaling in the
mPFC and hippocampus [88], and increases in amygdalar CB1 and
CB2 receptor expression (all in male rats) [89]. Furthermore,
voluntary AAE in male mice produces long-term deficits in CB1
expression in the hippocampus and interferes with CB1-
dependent long-term depression (LTD) [90]. These data suggest
that AAE has wide-spread effects on the developing ECS, which
could contribute to a wide array of behavioral and cognitive
effects.
Research in humans is also producing novel evidence of the

harmful effects of AAE. It has been known from some time that
AAE disrupts changes in neurodevelopmental trajectories [91].
Specifically, there are accelerated decreases in gray matter and
attenuated increases in white matter [92, 93] following AAE. One
recent analysis of GMV decline in college students found that,
over a two-year period, heavy drinkers had more GMV decline
than low drinkers in several brain regions, including the inferior/
medial gyrus, parahippocampus, and ACC [94]. Others have
recently reported similar results regarding cortical and cingulate
GMV [95, 96]. Critically, Sun and colleagues [97] reported that
AAE accelerated GMV decline particularly in young adolescents
relative to older adolescents. Other recent reports have
confirmed that AAE has deleterious effects on white matter
microstructural integrity [98, 99]. Furthermore, AAE can alter the
overall volume of some brain structures. For example, AAE has
recently been linked to smaller whole hippocampal volume and
increased volume of the right basal nucleus of the amygdala
[100].
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Human electroencephalography (EEG) research has also found
impairments in overall cognitive functioning following AAE. A
recent systematic review reported that AAE increases P3 (an
event-related potential related to decision making) amplitude
during attention, working memory, and inhibition tasks, suggest-
ing that additional resources were needed to correctly complete
these tasks [101]. Together these changes in cortical volume and
neural functioning are likely to decrease the overall efficiency of
the brain, which could potentially lead to long-lasting cognitive
and emotional consequences.

CANNABIS
Cannabis is one of the most popular drugs worldwide and
initiation of cannabis use commonly occurs in adolescence. Its
availability is rapidly increasing with both medical and recreational
legality, and its perception as a potentially addictive and harmful
substance is decreasing [102]. Despite this, cannabis still has the
potential for misuse, which has been shown to have long-term
behavioral and biological consequences [103]. While perceived
risk has decreased, evidence for a corresponding increase in
adolescent use is mixed, with some studies showing increases in
adolescent use [104] and others showing no changes [105]. The
primary psychoactive effects of cannabis are thought to be
mediated by delta-9-tetrahydrocannabinol (THC), while some
nonpsychoactive effects may be mediated by cannabidiol (CBD)
and other minor cannabinoids and terpenes [106]. Importantly,
the concentration of THC in cannabis products has been
increasing over the years, leading to a much more potent product
than what has previously been available [107], which could also
have greater long-term consequences that are yet to be under-
stood. Furthermore, a recent systematic review found increases in
both life-time prevalence and past 12-month use of cannabis
vaping among adolescents in the United States and Canada [108],
emphasizing a need for continued research in this area.
THC primarily acts on the ECS by binding to CB1 and CB2

receptors. As described above, the ECS undergoes important
changes during adolescence that are critical to normative
development, such that over-use of cannabis during adolescence
might interfere with these changes. Adolescent cannabis exposure
(ACE) has also been linked to multiple psychiatric disorders. Of
great interest to researchers is its role as a risk factor in
schizophrenia and psychosis [109], but it has also been linked to
depression, anxiety, and addiction [110]. Furthermore, cannabis
use has been shown to have stronger acute behavioral and
cognitive effects in late adolescent humans (18–20) than in adults
(30–40) [111]. In addition, ACE has been noted to have effects on
several brain regions, including the PFC, hippocampus, ventral
tegmental area (VTA), and striatum (see [22] for a review).
One of the most concerning potential consequences of ACE is

its propensity to precipitate first episode psychosis and the
development of schizophrenia [112]. A recent report suggests that
the risk of psychosis is elevated in adolescents who have
consumed cannabis at least five times [113]. ACE may contribute
to the development of schizophrenia by interfering with natural
changes in GMV that occur throughout adolescence [114]. One
recent investigation found that early cannabis use was associated
with greater GMV in the cerebellar schizophrenia-related network
as well as more severe positive symptoms of recent onset
psychosis (ROP) [115]. Interestingly, some argue that microglia
could be important contributors to ACE-induced psychosis
[116, 117]. Indeed, ACE is known to activate microglia [118, 119],
which are responsible for much of the synaptic pruning that
reduces GMV during adolescence [120], potentially leading to
unhealthy amounts of synaptic pruning and loss of cortical gray
matter [117]. Further research is needed in order establish if
microglial effects can explain ACE’s relations with schizophrenia.
Importantly factors that moderate the relationship between ACE

and psychosis are being identified, and include age of onset,
frequency of cannabis use, exposure to childhood trauma,
concurrent use of other substances, and genetic factors [121].
On the other hand, recent evidence has also emerged suggesting
that genetic risk for schizophrenia may be a risk factor for ACE
[122], making causal conclusions about the role of ACE in
psychosis difficult to determine. More research is needed to
clarify how genetic predisposition and ACE interact to increase risk
of schizophrenia and psychosis.
One important target of ACE that may influence risk for

schizophrenia is GABAergic signaling in the PFC [123], with ACE
generally inhibiting GABAergic activity [124]. Renard and collea-
gues [125] found that adolescent injections of THC reduced levels
of the GABA synthesizing enzyme GAD67 in the mPFC in adult
male rats, which was coupled with a hyperactive dopaminergic
state. Reductions in PFC GABA levels were also observed in female
rats following adolescent injections of THC [126], and adolescent
cannabis users have been shown to have significantly reduced
GABA levels in the anterior cingulate cortex (ACC) [127].
Interestingly, one recent report has shown that while adolescent
injections of pure THC in female rats reduced expression of GAD67
in the PFC, injections of THC-CBD combinations actually increased
expression [128], suggesting that the interactions between THC
and CBD can have complex effects which need further study.
The mesolimbic pathway is also an important target for the

effects of cannabis, and the ongoing reorganization of this
pathway in adolescence makes it particularly vulnerable to ACE.
Mesolimbic activity is critical for reward learning and is involved in
the development of substance use disorders [129]. The VTA in
particular may be critically important for changes in reward
processing induced by ACE. For example, there is evidence that
ACE induces a hyperdopaminergic state in the VTA [130].
Conversely, repeated CB1 receptor activation during adolescence
has been found to reduce firing of DA neurons in the VTA and DA
release in the NAc shell [131]. CB1 receptors in the VTA are located
on both GABAergic and glutamatergic synapses [132], meaning
both systems have important roles in modulating dopaminergic
activity and reward learning. One recent study reported down-
regulation of VTA CB1 expression in glutamatergic terminals
following ACE via THC-containing gelatin consumption in male,
but not female adolescent rats, which was affiliated with an
increase in the value of reward predictive cues. These authors
argued that loss of CB1 receptors on glutamatergic terminals
resulted in greater VTA dopamine firing and increased dopamine
release in the NAc [133]. Enhanced VTA dopaminergic activity
following ACE is also related to inhibition of GABAergic CB1
expressing neurons. Adolescent injections of THC induce synaptic
depression of excitatory synapses onto VTA GABAergic neurons,
disinhibiting VTA dopamine neurons in male mice. More work
needs to be done to understand to complicated balance between
dopamine, glutamate, and GABA in the mesolimbic system,
particularly after ACE.
In addition, a number of studies report sex differences in the

effects of ACE. For example, there are sex-specific disruptions in
long-term potentiation (LTP) of the Schaffer-commisural projec-
tion to CA1 and in the lateral perforant pathway (LPP) in
adolescent mice and rats following injections of THC, with females
showing greater LTP impairment than males [134]. The sex
differences in the effects of cannabis may be explained by
differences in the metabolism of THC [135, 136], and/or by
different ACE-induced changes in gene expression networks in the
brain. For example, Zuo and colleagues [137] reported that female
mice exhibited a larger number of differentially expressed genes
(DEGs) across the amygdala and dorsal medial striatum (DMS)
compared to males. Differences in DEGs following adolescent THC
exposure have also been shown in the NAc [138]. These studies
represent just a part of the growing literature on sex differences in
outcomes related to cannabis [139].
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ACE also has important implications for cognitive function [140].
Many demonstrations of impaired working memory have been
observed in rodents. For example, male and female mice show
deficits in working memory in adulthood following ACE via
experimenter-administered injections [141]. ACE-induced cogni-
tive impairments have also been observed in nonhuman primates.
Injections of THC in adolescent male squirrel monkeys impaired
performance in a working memory task [142] and injections of
THC in adolescent rhesus monkeys impaired spatial working
memory [143]. In humans, studies have reported effects of ACE on
academic achievement [144], IQ [145], and performance on
specific cognitive tasks [146, 147] (but see also [148]). A systematic
review of recent papers investigating the cognitive impacts of ACE
found significant effects on outcomes such as executive control,
working memory, and academic performance [149]. As is often the
case in human studies, baseline differences in cognitive perfor-
mance are also predictive of early cannabis use [150], meaning
that trait level cognitive ability and ACE may interact with
each other.
In clinical populations, a 5-year longitudinal study found that

cannabis use was negatively associated with thickness in the left
and right PFC. Furthermore, thinning in the right PFC was
associated with attentional impulsiveness [151, 152]. Moreover, a
recent systematic review of the neuroimaging literature on
adolescent cannabis users noted preliminary evidence for func-
tional and structural alterations in frontoparietal, frontolimbic,
frontostriatal, and cerebellar regions [153]. However, other studies
have failed to find effects of adolescent cannabis use on brain
volume. A recent meta-analysis of 16 studies that examined global
brain volume (GBV) of 12–16 year-olds found no evidence of
differences in GBV between cannabis users and non-users [154].
Therefore, it will be important for future research to identify
underlying causes for these disparate results, such as frequency of
use, total years of use, the potency of the cannabis used, and
other confounding factors, such as use of other substances.
The mechanisms by which ACE produces long-term effects are

not well established, but recent research suggests that epigenetic
factors may play a role. For example, ACE in female rats produced
age-dependent alterations in histone modifications in several
brain regions, including the PFC, amygdala, and hippocampus
[155]. The same group has also reported chromatin modifications
in the PFC following ACE in female rats, which was associated with
cognitive deficits [156]. ACE in male rats causes a disruption in the
developmental trajectory of PL pyramidal neuron transcriptomes
along with premature pruning of synaptic spines. Furthermore,
the alterations in PFC networks observed in the THC-exposed
animals were common to subjects with schizophrenia [157]. There
have also been reports of age-dependent alterations in the
hippocampal transcriptome following acute administration of THC
[158]. Evidence of epigenetic changes have also been shown in
humans, as Clark and colleagues reported alterations in several
DNA methylation sites following ACE [159].
It should be stated that not all of the literature on ACE has

produced evidence of deleterious effects. There is emerging
evidence that, at least in rodent studies, that detrimental effects of
ACE on working memory could be due to the experimenter-
administration of high doses of cannabinoids. Studies from our lab
were the first to use adolescent self-administration of cannabi-
noids (THC or the full agonist WIN55,212-2) to investigate long-
term effects on adult working memory performance. We found
that adolescent THC or WIN55,212-2 self-administration actually
led to improved working memory performance in males, while
having no effect or a tendency to decrease performance in
females [160–162]. Importantly, self-administration versus
experimenter-administration of drugs can often produce very
different effects based on the stress of injections and having
volitional control over the dose consumed [22]. Further research
should be conducted in order to solidify our understanding of the

role of dose and administration methods regarding ACE and
working memory. There have been conflicting reports of the
effects of ACE in other domains as well. There are failures to find
any effects of cannabis smoke or THC vapor exposures in male
and female rats during adolescence using assays for cognition and
anxiety-like behaviors [163, 164]. In humans, moderate adolescent
cannabis users have reported less anhedonia than nonusers [165].
Another study found no effect of moderate adolescent cannabis
use on ventral striatum activity in a test of reward anticipation
[166], again indicating the importance of considering dose in
analyses of the effects of all drugs.

NICOTINE
While researchers have been addressing the effects of adolescent
nicotine exposure (ANE) for decades, the advent of electronic
cigarette products has led to a resurgence of nicotine use among
adolescents [167, 168], resulting in the development of a new
domain in adolescent nicotine research. In addition to the harmful
effects of electronic cigarette products on the body [169, 170],
nicotine has a myriad of harmful effects on adolescent develop-
ment, mood, and behavior. ANE is associated with increased
mood and anxiety disorder risk [171–174], in part through
alterations in mescorticolimbic dopaminergic transmission [172].
Furthermore, there are known impairments in cognitive abilities
[175–177]. ANE also increases the likelihood of continued nicotine
use [178], cannabis use [179], and alcohol use in humans [180], as
well as other drugs in rodents such as methamphetamine [181],
alcohol [182], cocaine [183, 184], and fentanyl [183]. Nicotine also
modulates multiple neurotransmitter systems, including dopa-
mine, GABA, glutamate, serotonin, and acetylcholine, all of which
require regulation by precise neurodevelopmental mechanisms
[185].
Nicotine produces reinforcing effects primarily through its

action on the nicotinic acetylcholine receptor (nAchR) system,
which is still immature during adolescence [186]. For example,
α4β2 and α7 nAchR expression and binding are higher in
adolescents than adults [187, 188]. This suggests that adolescents
may be particularly vulnerable to the reinforcing properties of
nicotine, which are likely mediated through mesocorticolimbic
structures. Nicotine injections induce greater DA release in the
NAc shell (NAcSh) and NAc core of adolescents relative to adults
[189] and adolescents of both sexes show stronger conditioned
place preference (CPP) than adults following nicotine injections
[190], as well as enhanced locomotor activity following nicotine
self-administration [191]. Furthermore, nicotine self-administration
has been shown to be greater in male adolescent mice than in
adults, which correlated strongly with α4 nAchR expression in the
VTA [192]. In humans, adolescent smokers display increased
reward-related activity in the NAc, insula, and mPFC [193].
However, studies using self-administration models do not always
support the conclusion that nicotine is more reinforcing for
adolescents than adults. For example, there is a report of
adolescent male and female rats self-administered less nicotine
than adults at a low dose [194], and that there are minimal long-
term impacts of ANE on reinforcement enhancement [195]. The
discrepancy in these results again highlights the importance of
considering the method of drug administration and drug dose in
interpreting experimental results.
ANE has also been implicated in the development of anxiety-

and depression-like symptoms [172, 196–198]. Many of ANE’s
effects on anxiety and depression-like behavior are thought to be
related to changes in mesolimbic function [185]. One important
report comes from Jobson and colleagues [172]. These authors
injected male rats with nicotine during adolescence or adulthood
and found increases in anxiety-like behavior specifically in
adolescent-exposed animals. Furthermore, they reported that
ANE resulted in a hyperdopaminergic state during adulthood in
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the VTA and hyperexcitability of PFC pyramidal neurons (PNs).
Importantly, disturbances in mesolimbic DA transmission and
hyperexcitability of PFC PNs are both associated with mood and
anxiety disorder symptoms [199, 200]. In addition, the authors
reported that ANE produced a downregulation in D1 receptor
expression and upregulation in phosphorylated extracellular-
signal-related kinase (pERK) 1–2 molecular signaling pathways in
the PFC, both of which have been associated with increases in
anxiety-like behavior [201, 202].
Hudson and colleagues [198] expanded on this by providing

evidence for upregulation of NAcSh biomarkers of ANE-induced
anxiety-like behavior. The authors gave male rats injections of
nicotine during adolescence or adulthood and found several
consequences that were only present in adolescent-exposed
animals. In addition to increases in anxiety-like behavior, the
adolescent-exposed animals displayed several anxiety-related
biomarkers, including upregulation of the ERK 1–2 and the
protein-kinase B (Akt) glycogen-synthase-kinase-3 (GSK-3) signal-
ing pathways in the NAcSh, as well as a large decrease in D1
receptor expression. Critically, these authors found that selectively
targeting the Akt-GSK-3 and ERK 1–2 signaling pathways in the
NAc was sufficient to ablate the effects of ANE on anxiety-like
behavior, implying that these signaling pathways could be
important targets for therapeutic interventions.
ANE has also been shown to produce cognitive deficits,

including effects in humans on working memory, attention, and
PFC activation [176, 203, 204]. Many of the cognitive effects of
ANE are likely mediated by its effects on the mPFC. ANE has been
reported to cause short-term increases and long-term decreases in
synaptic metabotropic glutamate receptor (mGluR)2 in the rat
mPFC, which was associated with deficits in attention [205]. These
changes in mGluR2 expression are also thought to mediate
changes in pre and postsynaptic activity in the mPFC [206]. Other
research points to a role for the hippocampus in ANE-induced
cognitive deficits [196, 207, 208]. For example, subcutaneous
nicotine delivery in male rats via osmotic pump reduced dendritic
length and complexity in CA1 branches of pyramidal cells at
adulthood [196]. Moreover, in male mice ANE was shown to alter
hippocampal gene methylation and expression in adulthood.
Interestingly, administration of the essential nutrient choline
ameliorated the ANE-induced decrements in fear conditioning as
well as the epigenetic changes in the hippocampus [209],
suggesting that choline may have potential as a ANE therapy.
Research in humans generally corroborates the findings from

the preclinical literature. ANE is associated with long-lasting
effects on attention [210], risky sexual behavior [211], and
progression to traditional cigarettes [212]. However, as is the case
with much human research, directionality of the effect is subject
to debate and more research is needed. In terms of the effects of
ANE on the brain, initiation of tobacco use in late childhood has
been associated with inferior cognitive performance and smaller
cortical volume in frontal, parietal, and temporal lobes at a 2-year
follow-up [213]. Moreover, even exposure to low doses of nicotine
have been linked to volume reductions in the ventral medial PFC
(vmPFC) and altered connectivity in the corpus callosum [214].
There are also reductions in thalamus volume following ANE [215].
In addition, there are alterations in both right dorsal and left
ventral frontostriatal tracts in young adult male smokers, which
corresponded with poorer performance in cognitive tasks
[187, 188]. All of these alterations in brain structure and volume
are likely to contribute to the long-lasting effect of ANE on
cognition and mood disorders.
In addition, microglial signaling is emerging as an important

participant in the long-term effects of ANE, and there are
important differences in the effects of ANE on adults versus
adolescents. For example, while nicotine inhibits microglia
activation in adults, the opposite effect has been found in
adolescents [186]. Linker and colleagues [216] reported a myriad

of differences in how microglia in adult and adolescent rats
respond to injections of nicotine, including differences in IBA1
expression in the NAc and BLA and microglial morphology.
Importantly, the authors reported that NAc D2 receptors were
responsible for nicotine-induced increases in microglial activation
in adolescent rats, as well as the increased cocaine self-
administration that was also observed. Furthermore, the effects
of ANE on microglia may not be limited to reward-related circuitry.
Exposure to nicotine and e-cigarette aerosols during pregnancy
have been shown to upregulate hippocampal microglia [217, 218],
which is likely to have long-lasting impacts on learning and
memory. However, whether these results will hold with ANE is still
unknown.
Finally, sex differences surrounding adolescent nicotine have

been a subject of interest for some time, with results generally
suggesting that females are more susceptible to nicotine’s effects
than males [219]. One recent study reported that adolescent
nicotine injections reduced brain reward threshold (via intracranial
self-stimulation) more in adolescent female rats than males [220].
Another study found that exposure to high-nicotine tobacco
smoke increased later nicotine self-administration in adolescent
female rats but not males [221]. In humans, adolescent females
that smoke are more likely to develop nicotine dependence than
males [222]. However, another study reported that male
e-cigarette users were more likely than female e-cigarette users
to report past 30-day cigarette use at a one-year follow up [223].
More research is needed to make sense of these conflicting
reports.

POLY USE
Researchers are increasingly studying the effects of drugs in
combination to better model the way humans consume drugs
[224–227]. However, this approach is still novel and there is much
that we do not know. Alcohol, cannabis, and nicotine use are often
directly related to each other [226, 228] with all three often used in
combination. Even use of one substance during adolescence can
be predictive of use of other substances later in life [229].
Moreover, these drugs can serve to augment the reinforcing
properties of each other and continued use of one drug is
predictive of relapse of another [230]. When taken in combination,
drugs can often have unexpected effects on the brain and body,
making it critical to examine the effects of these drugs when they
are taken in combination. However, the complexity and novelty of
the field has led to some contradictory and unexpected results.
Continued work is necessary to gain a full understanding of the
effects of polysubstance use.
One recent review of studies investigating individuals that use

both cannabis and alcohol reported mixed results, with some
findings suggesting that cannabis use may be protective of the
effects of alcohol use, while other studies find more negative
outcomes such as low academic performance [227]. As human
studies in this domain can be difficult to interpret due to factors
such as the ratio of alcohol to cannabis use and additional drug
use, rodent research has proven highly valuable given the
increased experiment control. One study exposed adolescent rats
to vaporized cannabis on alternating days while also allowing
them to self-administer both alcohol and water in a two-bottle
choice paradigm daily. Interestingly, on days when the rats were
exposed to cannabis, there was no preference between alcohol
and water. However, on days when cannabis was not adminis-
tered, the rats preferred the alcohol over water [231]. One
interpretation is that the rats were increasing their alcohol
consumption to compensate for the loss of cannabis, which
might replicate substitution effects observed in humans [232].
Other research has examined a possible role for alcohol-cannabis
poly use in the development of fear responding. While the
combination of THC and alcohol did produce heightened fear
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responding in male rats as well as greater glutamatergic activity in
the PFC, there were not any additive effects compared to cannabis
and alcohol alone [233].
There is mixed evidence in humans suggesting additive effects

of ACE and AAE. One investigation reported decreases in GMV
following poly use of alcohol and cannabis starting in early
adolescence, but did not observe this in participants who had
exclusively used alcohol or cannabis [234]. However, there is also
evidence that the two do not have additive effects in some
domains. A 14-year longitudinal study on youth who used both
alcohol and cannabis found that there were cognitive perfor-
mance decrements affiliated with both substances individually,
but did not observe additive effects of the two [235]. Furthermore,
one recent analysis of GMV and white matter integrity found that
alcohol use led to reduced GMV, but that cannabis use in the past
30-days did not have any additional impact on GMV or white
matter integrity [236]. Further studies are needed to determine
what additive effects AAE and ACE may or may not have.
Examinations of the interactions between alcohol and nicotine

are also emerging. Recent analyses of high school e-cigarette users
found that a large proportion of their samples reported poly
substance use, with alcohol being the most frequently reported
drug used in combination with e-cigarettes [237, 238]. There is
evidence from rodent studies suggesting that the combination of
nicotine and alcohol is more reinforcing in adolescents than adults.
One study has found that previous exposure to alcohol and
nicotine increased responding for alcohol and alcohol consump-
tion relative to only alcohol exposure, however, this effect was
limited to male rats [239]. Furthermore, administration of a low
dose of alcohol and nicotine to male adolescent and adult rats
produced an increase in locomotor behavior and a decrease in
anxiety-like behavior only in the adolescents [240]. Importantly,
this experiment did not compare alcohol and nicotine together to
the drugs separately, so it is difficult to determine if any additive
effects were present. Another study exposed male and female
adolescent rats to vaporized nicotine/vehicle vapor and voluntary
alcohol/water, which produced long-term changes in reward- and
cognition-based behaviors in males but not females, however, they
did not find any evidence for additive effects of the drugs [241].
While research examining cannabis-nicotine poly use is limited,

recent evidence suggests that e-cigarette use and cannabis use
develop in close parallel from middle to late adolescence [242]
Studies in rodents have produced interesting sex differences. For
example, Dukes and colleagues [243] reported that injections of
WIN55,212-2 and nicotine in adolescence increased nicotine self-
administration in adult males, but that it decreased nicotine self-
administration in females. Courtney and colleagues [244] recently
evaluated the effects of cannabis and nicotine poly use on white
matter microstructure in a cohort of late adolescents (ages 16–22)
and reported that cannabis was associated with white matter
reductions, but only when nicotine was also being used. Another
study in adults found that the use of both nicotine and cannabis
enhanced nAChR availability in the PFC and thalamus to a higher
degree than single substance-use alone [245]. More research is
needed to corroborate this finding in adolescents, as well as more
research on cannabis-nicotine poly use in general.

CONCLUSIONS
Adolescence is a period of both great developmental and
behavioral change, making it a particularly vulnerable period for
long-term effects of drug exposure. Over consumption of alcohol,
cannabis and nicotine, and combinations of these drugs can have
long-lasting effects on the brain and body. Continued research is
needed to isolate the predictors, mechanisms, and consequences
of adolescent drug use, as well as efficacious treatments and pre-
use interventions. In particular, many questions still exist around
polysubstance use. Further research is needed to establish how

these substances pharmacodynamically interact, and how acute
and long-term administration of one substance effects consump-
tion of another substance. An understanding of this will enable
the use of better models to understand the way that humans
consume these substances. Furthermore, we still lack a complete
understanding of how adolescent substance use promotes
sustained substance use in adulthood. Many theories have been
proposed, including dysregulation of the mesolimbic reward
system [129], loss of goal-directed control [246], and hyperkaitefia
[247], but other mechanisms are likely at work.
Going forward, it will be important to solidify our understanding

of the similarities, and the differences of different drug types on
adolescents to create therapies that work on the widest possible
range of substance use disorders. For example, it has become clear
that many drugs can cause proinflammatory central immune
signaling, including the acute activation of microglia [248]. This
neuroinflammation can have critical long-term effects [67, 249–251]
which may contribute to the development of substance-use
disorders (see [251] for a review). Targeting neuroinflammation
may prove to be an important target for therapies addressing
adolescent drug use [252–254]. The EC system also seems to be a
common factor related to all three substances. The EC system
contributes to the reinforcing effects of all three substances, and
undergoes changes following adolescent exposure to them [255].
EC- and inflammation-modulating therapies such as CBD
[49, 256, 257] and exercise [258–260] show promise, but more work
is needed to determine their efficacy in clinical populations as well
as optimal therapeutic protocols. Furthermore, researchers should
continue to be aware of potential differences between preclinical
studies that use self-administration models of drug taking and
studies that use experiment-administered drugs, as the differences
in these methods can lead to discrepancies in the dose of drug the
animal consumes and produce conflicting results [22, 161]. Further-
more, experimenter-administered methods of drug administration,
such as injection or gavage, could be a stressful experience with the
ability to induce immune effects in rodents [261], which must be
considered in the interpretation of results. Finally, while great
progress has been made in including both males and females in
research samples, many of the studies mentioned above exclusively
studied males (particularly the preclinical studies). Furthermore, an
often ignored factor in experimental designs is that male and female
rodents (particularly rats) can reach sexual maturity at different ages
[262], which can complicate the interpretation of results when male
and female adolescent rodents of the same age are compared.
Continued emphasis should be placed on the study of both sexes,
which has already yielded interesting and important sex differences,
and will help to develop more targeted therapeutic interventions.
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