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The hypothalamus is critical for regulation of the hypothalamic-pituitary-adrenal (HPA) axis and response to stress. Adverse
childhood experience (ACE) can affect brain structure, which may contribute to development of posttraumatic stress disorder
(PTSD) after subsequent adult trauma. It is unclear, however, if ACE history is particularly associated with aspects of hypothalamic
structure which contribute to development of PTSD. To address this issue, the present study longitudinally assessed hypothalamic
volumes and their associations with ACE and early post-trauma stress symptoms in subjects who did or did not develop PTSD
during 12 months after adult trauma. 109 subjects (18–60 years, F/M= 75/34) completed the PTSD Checklist (PCL) questionnaire for
post-trauma stress symptoms, the Childhood Trauma Questionnaire (CTQ) for ACE assessment, and an initial MRI brain scan for
hypothalamic volume measurement, within 2 weeks after adult trauma. At post-trauma 12 months, subjects underwent a
subsequent PTSD diagnosis interview using the Clinician-Administered PTSD Scale (CAPS), and a follow-up MRI scan. Left and right
hypothalamus volumes at 2 weeks after adult trauma negatively correlated with CTQ scores. Right hypothalamus volume at this
early time mediated an association between ACE and PTSD symptoms 12 months later. Right hypothalamus volumes also remained
persistently smaller from 2 weeks to 12 months after trauma in survivors who developed PTSD. These results suggest that smaller
right hypothalamus volume may be related to ACE history in ways that contribute to PTSD development after trauma in adulthood.
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INTRODUCTION
About 7% of Americans suffer from posttraumatic stress disorder
(PTSD) at some point in their lives [1]. PTSD is debilitating and
characterized by intrusive memories of the traumatic event,
avoidance of trauma-associated circumstances, negative mood
and cognition, and hyperarousal symptoms that persist more than
one month after trauma [1, 2]. PTSD has serious impacts on public
health; however, effective PTSD treatment remains a clinical
challenge [3, 4]. New insight into brain conditions that underlie
PTSD development is clearly needed.
The hypothalamic-pituitary-adrenal (HPA) axis plays a critical

role in stress responses to traumatic events, and impairments in
HPA axis structure or function can lead to deficits in stress
response and development of PTSD [5, 6]. The hypothalamus, a
key component of the HPA axis, receives broad inputs from the
brain, including from, e.g., hippocampus, amygdala, frontal cortex,
thalamus, and brainstem [5, 7, 8]. High numbers of corticotropin-
releasing hormone (CRH) neurons are found in the paraventricular
nucleus (PVN) of the hypothalamus. With acute stress, CRH is
rapidly released to the anterior pituitary from which adrenocorti-
cotropin hormone (ACTH) is secreted to stimulate adrenal cortisol
synthesis and release to manage stress. Hypothalamic CRH
neurons are targets of cortisol negative feedback that inhibits
HPA axis activation [9, 10]. Associations between cortisol levels

and PTSD have been studied extensively but remain incompletely
understood [11, 12]. For example, urinary or salivary cortisol levels
have been reported to be lower [13, 14], higher [15], or not
changed [16] in PTSD groups compared to control groups. The
role of the hypothalamus in regulation of cortisol in PTSD patients
remains unclear.
Adverse childhood experiences (ACEs) appear to increase risk

for PTSD after subsequent trauma in adulthood [17–19]. ACEs
involving, e.g., physical, emotional and sexual abuse or physical
and emotional neglect are known to affect 7–60% of children
[17, 20–22]. Further studies suggest that ACEs may lead to
dysregulation of cortisol levels [23] that contribute to PTSD
development [24, 25]. However, particular ways by which ACEs
affect the HPA axis and lead to PTSD development in adulthood
remain unclear.
ACEs are thought to influence changes in brain development

that may be associated with impairments in emotion regulation,
attention, learning, and mental health [26–32]. Structural MRI
(sMRI) studies suggest that chronic PTSD patients with an ACE
history have smaller volumes of prefrontal and insular cortices,
hippocampus, and amygdala, thus suggesting that ACE-related
abnormal development of brain structure may contribute to PTSD
[30, 33–36]. Our recent work has reported that ACE history was
negatively associated with thalamic volume within two weeks
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after adult trauma and positively associated with subsequent
PTSD symptom severity [37]. An early post-trauma smaller
thalamic structure raises the possibility that ACE may increase
risks for PTSD development by involvement of structural effects in
other diencephalic components including the hypothalamus.
Animal studies suggest early life stress may cause hypothalamic
cell loss, genetic changes, and malfunctions [38–40]. These
findings suggest a possibility that ACE may affect development
of hypothalamic structure in ways that contribute to PTSD risk
after adult trauma. Human MRI studies have found that
hypothalamus volumes are smaller in patients with generalized
anxiety disorder (GAD) [41] and in postmortem brains of patients
who had major depressive disorder (MDD) [42], however, there are
no human studies of potential associations between ACE,
hypothalamus structure, and PTSD.
To address this possibility, the present longitudinal study

assessed hypothalamic volumes in adult trauma survivors with
ACE histories to investigate potential associations between ACE
and hypothalamus volume, stress, and PTSD development over
the initial 2 weeks – 12 months after trauma. FreeSurfer
automated segmentation of the hypothalamus has been validated
[43] and increasingly applied in research on neurological and
psychiatric disorders [44, 45]. We used FreeSurfer hypothalamic
volume measures to test the hypothesis that hypothalamic
volume may mediate an association between ACE history and
PTSD development after adult trauma.

MATERIALS/SUBJECTS AND METHODS
Subject enrollment and procedures
The procedures have been previously described in detail [37] and
are briefly outlined here. Adult subjects (18–60 years) who were
sent to a hospital Emergency Department (ED) within 48 hours
after a life-threatening traumatic event were recruited. Traumatic
events involved motor vehicle collision (MVC), physical assault,
sexual assault, or other trauma. Excluded from the study were
subjects who: (1) were severely injured or had other contra-
indications for MRI scanning, (2) were diagnosed with severe
psychiatric or neurological problems including history of moder-
ate or severe traumatic brain injury, (3) were under the influence
of alcohol or substances at the time of trauma, or (4) reported a
low level of acute pain in MVC trauma survivors (Numeric Pain
Rating Scale (NPRS) < 6) [46]. All subjects included in the study
gave written informed consent. Consenting subjects completed
the DSM-V PTSD Checklist (PCL) [47] to assess acute post-trauma
stress severity. Only survivors with high stress symptoms (PCL
score ≥ 28) were enrolled to increase possibility of PTSD
occurrence at 12 months after trauma. All participants completed
the Childhood Trauma Questionnaire (CTQ) to retrospectively
identify ACE history, and an MRI brain scan for hypothalamic
volume measures, within 2 weeks after trauma. For follow-up at
12 months, survivors completed a second MRI brain scan and were
interviewed by an experienced clinical psychologist for PTSD
diagnosis using the Clinician-Administered PTSD Scale (CAPS). All
study procedures were approved by Institutional Review Boards.

Psychological assessments
The PCL survey is a 20 item symptom assessment [47]. The total
score range of 0 – 80 reflects low to high stress symptom severity.
Subjects were instructed to rate symptoms on the PCL survey with
specific regard to the trauma which brought them to the ED and
subsequent enrollment in the current study.
The 28 item CTQ survey was used to quantitatively and

qualitatively assess ACE throughout childhood up to 18 years of
age [48]. CTQ evaluates 5 types of childhood maltreatments,
including emotional, physical, and sexual abuse, and emotional
and physical neglect. Total CTQ score was used to reflect overall
ACE history.

PTSD was diagnosed with the CAPS interview at 12 months
after trauma using DSM-V criteria: at least 1 re-experiencing, 1
avoidance, 2 negative feeling, and 2 hyperarousal symptoms [49].
Survivors with at least 1 symptom in each of these symptom
clusters were diagnosed with partial PTSD [50]. Survivors with full
or partial PTSD diagnoses at 12 months post-trauma were
included in the PTSD group. Survivors who didn’t meet PTSD
diagnosis criteria at 12 months were included in the non-PTSD
group as trauma-exposed controls.

Structural MRI acquisition and processing
Survivors were scanned using a 3 T General Electric Signa HDx MRI
scanner (GE Healthcare, Chicago, IL). A high-resolution T1-
weighted structural MRI (sMRI) image was obtained using a
previously validated high-resolution 3D FSPGR structural MRI
image protocol (TR= 7.836ms, TE= 2.976 ms, FA= 9°, NEX= 1,
field of view= 256 × 256mm, matrix= 256 × 256, slice thickness=
1mm, voxel dimensions= 1 × 1 × 1mm3, 164 contiguous axial
slices) [37].
Brain sMRI images were processed using FreeSurfer program

(Verson 7.2) (https://surfer.nmr.mgh.harvard.edu). The FreeSurfer
automated segmentation procedure for hypothalamus was used
to measure hypothalamus volumes. This procedure is based on a
convolutional neural network using deep machine learning
methods [43]. These automated measures have been validated
to show good consistency (high Dice coefficient of 0.83 and low
boundary distance) with intra-rater manual segmentation mea-
sures and to be superior to inter-rater reliabilities of manual
segmentation. This approach significantly outperformed (0.07
difference in Dice scores) a commonly used multi-atlas automated
segmentation approach, and was validated (low rejection rate of
0.89%) with an independent large heterogeneous dataset of
675 scans collected from a variety of MR scanners using different
sequences [43]. An increasing number of studies has applied this
procedure in research on neurological and psychiatric disorders
[44, 45]. Intracranial volume (ICV) was also reported by FreeSurfer.
FreeSurfer image processing and segmentation was visually
checked by the researcher blinded to psychological assessments
and CAPS interview for PTSD diagnosis.

Statistical analyses
Distributions of the data, within-group variation, and between-
group variance were inspected. Differences on hypothalamic
volumes of the PTSD and non-PTSD groups were assessed using
analysis of covariance (ANCOVA) with scan days since trauma as a
covariate factor. In addition, trauma type was added to test the
type of trauma effect on hypothalamic volume. Comparison
analyses of the PTSD vs non-PTSD groups were also done for PCL,
CAPS and CTQ scores using ANCOVA. Relationships between CTQ
scores, hypothalamus volumes, and PTSD symptom severity were
examined using partial correlations. A simple mediation model
was used to test for a potential mediation effect of hypothalamus
volume at post-trauma 2 weeks on the association of pre-trauma
CTQ scores with CAPS scores at post-trauma 12 months. Repeated
measure ANCOVA (RM-ANCOVA) was used to test the effects of
time and time × group interaction on hypothalamic volume
change during the post-trauma first year, adjusting for interval
days between the two scans. All above tests were adjusted for the
effects of age and sex as covariates, and ICV was also included as a
covariate in brain volume analyses. Group comparisons of age,
days since trauma until scans, and interval between scans were
done using T tests. Group comparisons of sex of subjects (male
and female) and trauma type were done using Chi-Square tests.
Based on our previous work showing medium effect sizes of
associations between ACEs, thalamic volumes, and PTSD symptom
severity [37], along with an extensive simulation study on required
sample size for detecting mediating effect conducted by Fritz and
MacKinnon [51], a sample size of 78 was needed for detecting the
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expected mediation effect using percentile bootstrap test at 0.80
power. Statistical analyses were conducted using SPSS version 28
(IBM Corp., Armonk, NY) and the ‘PROCESS’ macro for SPSS [52].
Data are reported as mean ± standard deviation, with p < 0.05 as
the significance level.

RESULTS
109 acute trauma survivors of MVC, physical or sexual assault, or
other acute trauma completed an initial sMRI scan, longitudinal
symptom assessments, and PTSD diagnosis interview at 12 months
post-trauma. Subjects (n= 41) who were diagnosed with PTSD
met full (n= 31) or partial (n= 10) PTSD diagnosis criteria and
were included in a PTSD group. The remaining subjects (n= 68)
did not meet full or partial PTSD diagnosis and were included in a
non-PTSD group (Table 1). A subsample of 76 subjects (30 PTSD;
46 non-PTSD) who had a follow-up sMRI scan at 12 months after
trauma were included in longitudinal analyses. There was a 27%
(11 of 41) loss of follow-up scans in the PTSD group, and a 30% (22
of 68) loss of follow-up scans in the non-PTSD group due to scan
incompletion during the study period or to image quality issues.
Skewness tests indicated hypothalamic volumes at post-trauma

2 weeks and 12 months were normally distributed (Supplemental
Table 1). Within-group variance of hypothalamic volume was
estimated and homogeneity of variances between groups was
assessed by Levene’s tests (all p > 0.05, Supplemental Table 1).
PTSD and non-PTSD groups did not differ with respect to age, sex,
days since trauma for scans, interval days between scans, or
trauma type (Table 1). PCL scores at 2 weeks and CAPS scores at
12 months were significantly higher in the PTSD than non-PTSD
group (Table 1). CTQ scores did not significantly differ across
groups (Table 1).

Hypothalamus volumes at 2 weeks after trauma in subjects
who were or were not subsequently diagnosed with PTSD
12 months later
At 2 weeks after trauma, right hypothalamus volume was
significant smaller in the PTSD group as compared to the non-
PTSD group (Table 1; Fig. 1; adjusted for age, sex, ICV and days
after trauma). This difference remained significant when type of
trauma was also considered (F(1, 102)= 8.360, p= 0.005). In
contrast, left hypothalamic volume was not significantly different
in the PTSD vs non-PTSD group at 2 weeks after trauma (Table 1,
Fig. 1).

Table 1. Demographics, psychological assessments, trauma types and hypothalamus volume measurements.

PTSD non-PTSD diff.a p

Subject N 41 68

Sex (Female/Male) 30/11 45/23 0.583 0.445

Age (year)b 35.4 ± 11.7 32.8 ± 9.8 −1.255 0.212

Post-trauma daysb

1st Scan 11 ± 5 10 ± 4 −1.35 0.18

2nd Scan 403 ± 60 427 ± 110 1.131 0.261

Scan interval 393 ± 60 413 ± 109 0.933 0.354

CTQ scoresb 63.7 ± 25.2 54.0 ± 23.7 2.695 0.104

2-week PCL scoreb 55.2 ± 13.3 48.2 ± 12.2 7.639 0.007*

12-month CAPS scoreb 32.5 ± 12.4 8.0 ± 7.2 166.744 <0.001*

Trauma Type (N)c

MVC 15 40 6.079 0.108

PA 20 24

SA 4 2

other 2 2

Hypothalamus volume (mm3)d

within 2 weeks after trauma

Left hypothalamusb 416.4 ± 45.0 429.5 ± 40.1 1.466 0.229

Right hypothalamusb 397.9 ± 43.0 418.6 ± 35.2 7.786 0.006*
aχ2 test for sex and trauma type; T test for age and post-trauma days; ANCOVA for PCL, CAPS and CTQ with adjustment for age and sex; ANCOVA for
hypothalamus volume with adjustment for age, sex, ICV and scan days since trauma.
bmeans ± standard deviation.
cthe number of subjects in each trauma type. MVC motor vehicle collision, PA physical assault, SA sexual assault.
dANCOVA, η2= 0.01 (in left) and η2= 0.07 (in right).
* significant at p < 0.05 level.

Fig. 1 Comparison of left and right hypothalamus volumes at
2 weeks after trauma for PTSD and non-PTSD groups. Volume of
right hypothalamus was significantly smaller in the PTSD (N= 41)
than non-PTSD (N= 68) group. *significant level p < 0.05.
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Relationships between preceding ACE history, post-trauma
hypothalamic volumes, and PTSD symptoms
CTQ scores indicating ACE history were significantly positively
correlated with PCL scores at 2 post-trauma weeks (r(96)= 0.250,
p= 0.013, Fig. 2A), and with CAPS scores at post-trauma 12
months (r(96)= 0.274, p= 0.006, Fig. 2B), adjusting for age and
sex. These results suggest greater ACE was related to more severe
PTSD symptoms over one year after trauma. The positive
correlations with post-trauma 2-week PCL and 12-month CAPS
scores particularly held for trauma survivors who experienced
childhood emotional, physical, or sexual abuse (Supplemental
Table 2).
CTQ scores were significantly negatively correlated with both

right and left hypothalamic volumes at 2 weeks after trauma
(right: r(95)=−0.272, p= 0.007; left: r(95)=−0.240, p= 0.018;
Fig. 2C, D). CTQ scores significantly negatively correlated with
hypothalamic volumes at 12 months after trauma on the right
(r(66)=−0.264, p= 0.030, Fig. 2E) but not left side. These results
suggest more severe ACE history was associated with smaller right
and left hypothalamus volumes at two weeks, and smaller right
hypothalamus volume at a year, after trauma. With respect to
different types of childhood trauma, childhood abuse and neglect
were significantly negatively associated with post-trauma 2-week
right and left hypothalamus volumes (Supplemental Table 2). At
12 months, types of childhood abuse but not neglect significantly

negatively correlated with right hypothalamic volume whereas
neither abuse nor neglect correlated with left hypothalamic
volume (Supplemental Table 2). This suggests that different types
of childhood trauma may have different effects on left and right
hypothalamic volumes at different times after adult trauma.
Right hypothalamic volumes at 2 weeks after trauma signifi-

cantly negatively correlated with CAPS score at 12 months after
trauma (r(104)= −0.241, p= 0.013, Fig. 2F). This association did
not hold for left hypothalamus. This suggests early post-trauma
right hypothalamic volumes were associated with subsequent
PTSD symptom severity.

Hypothalamus volume at post-trauma 2 weeks mediated the
association of preceding ACE with PTSD symptoms at post-
trauma 12 months
In a simple mediation model, the total effect of CTQ score on the
CAPS score was significant (βc= 0.177, SE= 0.063, p= 0.006, 95%
CI [0.051, 0.303]), and the direct effect of CTQ score on the CAPS
score was significant when holding right hypothalamic volume
constant (βc’= 0.143, SE= 0.065, p= 0.030, 95%CI [0.014, 0.272],
Fig. 3). Additionally, the indirect effect of right hypothalamic
volume on the association between CTQ score and CAPS score was
significant (βab= 0.034, SE= 0.020, 95% CI [0.001, 0.080], Fig. 3).
The model accounted for a significant amount of variance in PTSD
symptom severity (R2= 0.132, p= 0.019). These results suggest

Fig. 2 Correlations between hypothalamus volumes, PCL, CTQ and CAPS scores. CTQ scores significantly positively correlated with PCL
scores at post-trauma 2 weeks A, and with CAPS scores at post-trauma 12-months B. CTQ scores significantly negatively correlated with
volumes of right C, and left D hypothalamus at post-trauma 2 weeks, and with volumes of right hypothalamus E at post-trauma 12 months.
Volumes of right hypothalamus at 2 weeks after trauma negatively correlated with CAPS scores at 12 months after trauma F. All correlations
were adjusted for age and sex, and ICV was additionally adjusted for in hypothalamic volume analyses.
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early post-trauma right hypothalamus volume mediated an effect
of preceding ACE on PTSD symptoms 12 months after trauma.
In contrast to the above findings for right hypothalamus, the

indirect effect of left hypothalamic volume at 2 weeks after trauma
on the association between CTQ scores and CAPS scores at post-
trauma 12 months was not significant (βab= 0.008, SE= 0.017,
95% CI [−0.024, 0.045]), although the total effect between CTQ
and CAPS scores was significant (βc= 0.177, SE= 0.063, p= 0.006,
95% CI [0.051, 0.303]) and the direct effect between CTQ and CAPS
scores was significant when holding left hypothalamic volume
constant (βc’= 0.169, SE= 0.066, p= 0.011, 95%CI [0.039, 0.300]).
This model accounted for a significant amount of variance in PTSD
symptom severity (R2= 0.097, p= 0.045). These findings suggest
that early post-trauma left hypothalamus volume did not mediate
the association between ACE and PTSD symptoms at 12 months
after trauma.
In summary, the mediation analyses corroborated and extended

findings by providing further indications that right hypothalamic
volume mediated the association between CTQ scores and
subsequent CAPS scores at post-trauma one year.

Longitudinal progression of hypothalamic volumes over
12 months after trauma in subjects who were or were not
diagnosed with PTSD
For right hypothalamus, RM-ANCOVA analysis of 76 subjects with
both initial and follow-up sMRI scans revealed an overall
significant PTSD diagnosis group effect for right hypothalamic
volume (F(1, 70)= 4.205, p= 0.044, µ2= 0.06; Table 2; adjusted for
age, sex, ICV and interval days between scans). Post
hoc comparisons indicated right hypothalamic volumes were
smaller in the PTSD than non-PTSD group at both 2 weeks
(F(1, 70)= 4.405, p= 0.039, µ2= 0.06) and 12 months (F(1,
70)= 4.052, p= 0.048, µ2= 0.06) after trauma (Fig. 4A).
After adjusting for trauma type, group differences remained

significant at 12 months (F= 4.204, p= 0.044) and at a trend level
at 2 weeks (F= 3.908, p= 0.052) after trauma. Time and time ×
group interaction effects were not significant for right hypotha-
lamus volume over the first post-trauma year (Fig. 4A).
For left hypothalamus, group and time effects were not

significant, but the time × group interaction was significant (F(1,
70)= 5.658, p= 0.020, µ2= 0.08; Table 2; Fig. 4B; adjusted for age,
sex, ICV and interval days between scans). However, post hoc RM-
ANCOVA did not show significant changes over time in left
hypothalamus volume from post-trauma 2 weeks to 12 months in
either the PTSD group (F= 0.155, p= 0.697), or non-PTSD group
(F= 0.373, p= 0.545).

DISCUSSION
Potential associations between ACE and hypothalamic structure,
stress, and PTSD after adult trauma have not been previously
investigated. The present study provides the first longitudinal
tracking of hypothalamus volume beginning early after adult
trauma and its potential relationships to ACE and post-trauma
PTSD development. Main findings are that at 2 weeks and

Table 2. Hypothalamus volume changes between 2 weeks and 12 months after trauma.

Hemi-
sphere

post-
trauma
time

Volume (mm3) PTSD effecta Time effecta Time*PTSDa

PTSD non-PTSD F p η2 F p η2 F p η2

Right 2 weeks 397.2 ± 41.9 419.2 ± 36.1 4.205 0.044* 0.06 1.046 0.310 0.02 0.019 0.889 <0.01

12 months 395.1 ± 33.0 418.5 ± 39.1

Left 2 weeks 417.4 ± 43.2 429.5 ± 41.5 0.153 0.697 <0.01 0.002 0.963 <0.01 5.658 0.020* 0.08

12 months 421.4 ± 43.5 423.9 ± 40.8
aRM-ANCOVA, age, sex, ICV and days between scans as covariates.
*significant at p < 0.05 level.

Fig. 4 Longitudinal analysis of hypothalamus volumes at 2 weeks and 12 months after trauma in PTSD and non-PTSD groups. A There
was a significant PTSD group effect in right hypothalamus volume, and post-hoc comparisons indicated significant smaller volumes in the
PTSD vs non-PTSD group at both time points. B There was a significant time by PTSD group interaction in left hypothalamus volume.
Repeated measure ANCOVA with age, sex, ICV and days between scans included as covariates. Group effect (*) and group x time interaction
effect (#) were significant at p < 0.05 level.

Fig. 3 Mediation effect of right hypothalamus volumes. Analysis
indicating a mediation effect of right hypothalamic volumes at post-
trauma 2 weeks on an association between CTQ scores and CAPS
scores at 12 months after trauma, adjusted for age, sex, and ICV.
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12 months post-trauma, right hypothalamic volumes, which were
significantly negatively associated with both preceding ACE and
post-trauma stress symptoms, were significantly smaller in trauma
survivors who developed PTSD. Moreover, right hypothalamus
volume at post-trauma 2 weeks mediated an association between
preceding ACE and PTSD symptoms 12 months after trauma. Left
hypothalamus volume at 2 weeks after trauma also negatively
associated with ACE, and changes in left hypothalamus volumes
over one year post-trauma differed in the survivors who did vs did
not develop PTSD. These results provide evidence that the
hypothalamus plays a role in development of PTSD in adult
trauma survivors with an ACE history, and that right hypothalamus
may be particularly important.
Taken together, the findings that right hypothalamus volume

remained smaller from 2 weeks to 12 months after trauma in
survivors with PTSD and that right hypothalamus volumes at
2 weeks negatively associated with PTSD symptoms at 12 months,
suggest smaller right hypothalamus volume may contribute to
development of PTSD over the initial year after trauma. This raises
a possibility that smaller hypothalamus may be indicative of
alterations in hypothalamus states. This may include, for example,
loss of hypothalamic CRH neurons and related impairment of HPA
axis reactions to stressful traumatic experiences. Impairment of
HPA axis reactions to stress may change post-trauma emotion
regulation and/or fear learning and memory consolidation that
contributes to PTSD [5, 6].
Smaller right hypothalamus volume at post-trauma 2 weeks in

the trauma survivors with PTSD is consistent with possibilities that
volume reduction may have occurred prior to and/or soon after
adult trauma. CTQ scores were negatively associated with both
right and left hypothalamus volumes at post-trauma 2 weeks,
which suggests ACE may have linked to hypothalamus volume
reduction prior to the adult trauma. The HPA axis develops during
gestation and childhood, especially in critical developmental
windows during preschool and adolescence, and environmental
stressors may affect development of the HPA axis over a broad
age range depending on stress duration and severity [53]. This
may include hypothalamus development. Stress studies suggest
that long-lasting elevated cortisol due to stress may induce
neuron loss, demyelination, synaptic pruning, or abnormal
neurogenesis which, in turn, may be associated with HPA axis
hypo-reaction to stress [38, 54–56]. For example, early life stress
may have long-lasting inhibitory effects on proliferation of neural
stem or precursor cells that lead to functional changes in
hypothalamus [38]. Prolonged cortisol-induced glucocorticoid
receptor (GR) expression and functional alterations are also
associated with hypothalamic changes [54, 57]. A human
magnetic resonance spectroscopy (MRS) study reported lower N-
acetyl- aspartate/creatine ratios in pediatric PTSD patients. N-
acetyl- aspartate (NAA) is a marker of neural integrity, and a low
NAA/creatine ratio may reflect neuron loss in brain regions
including hypothalamus [58]. It is feasible that long-lasting
alterations in HPA axis neuron loss and functions may be part of
ACE contributions to abnormal hypothalamus development. As an
alternative to developmental changes prior to adult trauma, there
is evidence that volumes of brain structures other than
hypothalamus can change during initial weeks after trauma [59].
Further studies are needed to distinguish pre-trauma develop-
mental vs post-trauma rapid changes in hypothalamus structure in
trauma survivors with ACE history.
Right hypothalamus volume at 2 weeks after trauma

mediated a positive association between ACE and PTSD severity
at one year after trauma. Positive association between ACE and
PTSD symptoms has been consistently reported in previous
work [17]. The mediating effect of right hypothalamus on this
association supports the possibility that ACE related changes in
hypothalamic structure increase risk for PTSD development
after adult trauma.

In contrast to the right hypothalamus, left hypothalamus
volume did not differ in trauma survivors who did vs did not
develop PTSD. A significant time × group interaction raised the
possibility that left hypothalamus volume increased in the PTSD
group and decreased in the non-PTSD group over the year after
trauma; however, these different directions of changes over
time were not significant when tested separately in each group.
The possibility of post-trauma progressive change is arguably
consistent with the finding that the negative association
between ACE and left hypothalamus volumes was significant
at 2 weeks but was not significant at 12 months. The difference
in findings for left vs. right hypothalamus volumes suggest the
two sides of the hypothalamus may play different roles in PTSD
development after adult trauma. Consistent with the possibility
of different roles, right vs left hypothalamic dominance has
been seen in some studies. For example, right hypothalamus is
dominant for reproduction and left hypothalamus for food
seeking and energy homeostasis [60]. Right hypothalamus has
been reported to be dominant in regulating cardiovascular
responses evoked by stressors [61]. It has been proposed that
the right hemisphere mediates greater physiological response
to stress [62, 63], thus, raising the possibility that right
hypothalamus may be more involved in stress reactions to
ACE and adult trauma. Current understanding provides limited
explanation for a possible difference in left hypothalamus
volume alterations over the year after trauma in survivors who
did vs did not develop PTSD. Speculations are possible. For
example, right hypothalamus impairments may have reduced
cortisol reactions in trauma survivors with PTSD, and related
decreased cortisol feedback on CRH neurons may have
disinhibited left hypothalamus activation related, in turn, to
enlargement of the left hypothalamus to partially compensate
for a smaller right hypothalamus. However, alternative spec-
ulations are also possible and require study.
This study has several limitations. (1) Only trauma survivors

with high acute stress symptoms were enrolled; therefore, the
generalizability of the findings needs consideration. (2) All
subjects had undergone trauma. A trauma-unexposed control
group would be useful to study possible effects of trauma
exposure or ACEs per se. (3) The present study does not address
age at which ACE occurred or ACE duration. Normal brain
development varies with age; thus, ACE associations with
hypothalamic volume may vary with age at which ACE occurs.
(4) ACE is associated with, e.g., depression, addiction, and other
mental problems that can be comorbid factors for PTSD and
that should be considered in future research. (5) Stress
hormone levels were not measured. Relationships between
hypothalamus volume and stress hormone levels require
attention.
In conclusion, the present investigation provides the first

evidence that smaller right hypothalamus volumes may
mediate PTSD development in adult trauma survivors with an
ACE history. Reduced volume of the hypothalamus may
contribute to impairments of HPA axis reactions to stress after
adult trauma and early development of PTSD. The findings
suggest the hypothalamus plays an interesting role in mediat-
ing adverse childhood experiences and adult trauma associa-
tions to PTSD.
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