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Autism spectrum disorder (ASD) is a highly heritable condition with a large variation in cognitive function. Here we investigated the
shared genetic architecture between cognitive traits (intelligence (INT) and educational attainment (EDU)), and risk loci jointly
associated with ASD and the cognitive traits. We analyzed data from genome-wide association studies (GWAS) of INT (n= 269,867),
EDU (n= 766,345) and ASD (cases n= 18,381, controls n= 27,969). We used the bivariate causal mixture model (MiXeR) to estimate
the total number of shared genetic variants, local analysis of co-variant annotation (LAVA) to estimate local genetic correlations,
conditional false discovery rate (cond/conjFDR) to identify specific overlapping loci. The MiXeR analyses showed that 12.7k genetic
variants are associated with ASD, of which 12.0k variants are shared with EDU, and 11.1k are shared with INT with both positive and
negative relationships within overlapping variants. The majority (59–68%) of estimated shared loci have concordant effect
directions, with a positive, albeit modest, genetic correlation between ASD and EDU (rg= 0.21, p= 2e−13) and INT (rg= 0.22,
p= 4e−12). We discovered 43 loci jointly associated with ASD and cognitive traits (conjFDR<0.05), of which 27 were novel for ASD.
Functional analysis revealed significant differential expression of candidate genes in the cerebellum and frontal cortex. To conclude,
we quantified the genetic architecture shared between ASD and cognitive traits, demonstrated mixed effect directions, and
identified the associated genetic loci and molecular pathways. The findings suggest that common genetic risk factors for ASD can
underlie both better and worse cognitive functioning across the ASD spectrum, with different underlying biology.
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INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by difficulties in social communication
and interaction as well as restrictive, repetitive patterns of
behavior, interest or activities [1]. Recent studies have shown
that the prevalence of ASD is 1–2% [2]. There is a large
heterogeneity in cognitive functioning in ASD; with severe forms
having poor cognitive functioning while others across the
spectrum have better and quite extraordinary cognitive skills
[3]. These large differences in cognitive ability are important for
outcome [4], but the biological underpinnings for this mixed
pattern of cognitive performance in ASD is not yet fully
understood. Further, there is also a notion that cognitive
characteristics of ASD are not necessarily deficits, but could be
regarded as normal human variation [5].
The pathogenesis of ASD is considered to originate from

complex interactions between environmental [6] and genetic

factors, with an estimated heritability of ~80% [7]. Previous studies
have shown a heterogeneous genetic architecture, with contribu-
tions from both common and rare genetic variants [8, 9]. Several
common genetic variants have been discovered for ASD. The
largest genome-wide association study (GWAS) of ASD to date
included n= 18,381 cases and n= 27,969 controls and identified
five genome-wide-significant loci [10]. By leveraging the associa-
tion between ASD and three other phenotypes (schizophrenia,
major depression, and educational attainment (EDU)), seven
additional loci were identified [10]. However, individually these
common variants have small effects, and collectively explain a
small portion of the overall liability, leaving a large fraction of the
heritability undiscovered [11]. Meanwhile, recent statistical tools
have enabled the calculation of an individual’s genetic risk for ASD
using polygenic risk scores (PGRS), which may have relevance for
clinical research [12] and show promise for clinical utility in the
future [13].
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Intelligence and EDU are highly heritable traits which are major
determinants of human health and well-being [14, 15]. Further-
more, there is phenotypic linkage between ASD and IQ/EDU and
evidence of potential shared genetics [10]. Common genetic
factors underlying variation in INT are also overlapping with those
associated with brain volumes [16]. Thus, it is likely that common
variants may relate to both the large variation in cognitive
function, as well as with the large variation in brain volumes that
characterize ASD [17]. Mean brain size is, however, often enlarged
[18], a trait that associates with high INT [19]. Furthermore, the
frontal cortex and cerebellum have been implicated in ASD
pathology [20] with a tendency of large frontal lobes associated
with small cerebellar volumes [21].
Recent studies suggest that 35% of ASD patients have an

intellectual disability [2]. Among these patients, more than 500
rare pathogenic mutations have been discovered [22]. However,
studies on rare variants may have been biased towards inclusion
of patients with intellectual disability and not high-functioning
ASD, which could explain why they have not offered insights into
mechanisms underlying the associations between ASD and high
INT [22, 23]. On the other hand, there are indications that high-
functioning ASD may have been overrepresented in GWASs
[23, 24], which have shown a positive genetic correlation (rg)
between ASD and cognitive abilities [10, 25], with rg= 0.2–0.3
[10, 26]. This is intriguing given that about one third of ASD
children experience developmental autistic regression [27, 28] and
about one third have intellectual disability [2]. Further, adults with
ASD have increased risk of early onset dementia [29]. Thus, despite
the overall positive genetic rg, between ASD and high INT, there
are likely variants with an opposite effect on ASD and INT as well.
We have previously reported large polygenic overlaps despite

low genetic correlation in mental disorders such as schizophrenia,
ADHD and depression [30–32] by using the statistical tool
bivariate causal mixture model (MiXeR) [33]. This method allows
for estimating a total number of shared genetic variants,
irrespective of genetic correlations between traits [33]. As such,
it allows for the detection of a mixture of effect directions that
would otherwise be missed with methods such as Linkage
disequilibrium score regression (LDSR) [34]. Furthermore, the
MiXeR results can be followed up with analysis to identify the
genetic risk variants jointly associated with two traits, using
conditional and conjunctional false discovery rate (condFDR/
conjFDR) which increases the statistical power compared to the
standard GWAS approach [33, 35]. By analyzing the molecular
function of overlapping genes [36], it is possible to shed light on
mechanisms underlying both high and low cognitive performance
in ASD. Furthermore, while INT and EDU traits are both related to
cognitive function, they have somewhat different genetic
architecture [37], and seem to be associated with different
characteristics among patients with ASD [38]. Thus, it is relevant
to include both INT and EDU when investigating overlapping
genetic architecture between ASD and cognitive traits.
Here, we took advantage of recent large GWAS data to

determine the degree of overlapping genetic architecture
between ASD and cognitive traits (INT and EDU) by applying
MiXeR method. Second, we identified risk loci shared between
ASD and the cognitive traits using the cond/conjFDR method.
Third, we applied FUMA to annotate the identified loci to

determine tissue expression and molecular functions of shared
risk variants for ASD and cognitive traits [39].

METHODS
Study participants
We obtained GWAS results in the form of summary statistics (p values and
z-scores) for the relevant phenotypes [10, 40, 41] (Table 1). Data on autism
spectrum disorder (ASD) were acquired from the Psychiatric Genomics
Consortium (PGC) [10]. The dataset was a meta-analysis of the population-
based iPSYCH project [42] and five family-based trio samples of European
ancestry (n= 5305) [43], including a total of 18,381 ASD cases, and 27,969
controls.
General Intelligence was based on data from 269,867 individuals across

14 cohorts, primarily consisting of data from the UK Biobank (n= 195,653)
[41]. These studies assessed INT using various cognitive tests and were all
operationalized to a general intelligence factor (g-factor). In the majority of
cohorts, the g-factor was based on results on 13 different cognitive tests
that required verbal and mathematical reasoning (http://
biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20016) [41]. The included GWAS
data from UK biobank are mainly from individuals of European descent
[44].
Educational attainment (EDU) is measured as the number of years of

completed schooling [31]. The GWAS data for EDU used in our analysis
includes public available summary statistic from a meta-analysis of data
from the Social Science Genetic Association Consortium (SSGAC), with a
sample size of 766,345 individuals after excluding data from 23andMe [15].
The meta-analysis was performed using an inverse-weighted fixed effects
model implemented in the METAL software (http://csg.sph.umich.edu/
abecasis/metal/), of 71 quality-controlled cohort-level results files. The
included GWAS data are restricted to individuals of European descent.

Statistical analysis
We applied MiXeR v1.3 [33] to quantify polygenic overlap between ASD
and cognitive traits irrespective of genetic correlation using GWAS
summary statistics. This method estimates the total number of shared
and trait-specific ‘causal’ SNPs and SNP-based heritability (h2snp) for each
trait, based on the distribution of z-scores and detailed modeling of LD
structure. Polygenicity estimates included the number of ‘causal’ variants
required to explain 90% of h2snp to prevent extrapolating model
parameters into variants with infinitesimally small effects. Results were
presented as Venn diagrams displaying the proportion of trait-specific and
shared ‘causal’ SNPs. Dice coefficient as calculated by MiXeR was used to
estimate the similarity between genetic architecture of two phenotypes.
Model fit was evaluated based on predicted versus observed conditional
quantile-quantile (Q–Q) plots, the Akaike Information Criterion (AIC) and
log-likelihood plots (Supplementary Methods). A positive AIC indicates
adequate discrimination between modeled fit and the comparative model.
A negative AIC indicates inadequate discrimination between modeled fit
and the comparative model.
We next applied the conditional(cond)/conjunctional(conj)FDR method,

which leverages polygenic overlap between two traits to boost statistical
power to identify loci associated with a single trait (condFDR) and loci
jointly associated with two traits (conjFDR) [35]. Cross-trait enrichment of
SNP associations between ASD and each cognitive trait, and vice versa, was
visualized using conditional Q–Q plots. The condFDR value of each SNP
was computed for ASD conditional on cognitive traits and vice versa.
CondFDR represents the probability that a SNP is not associated with the
primary trait given that the p-values in the primary and conditional trait are
as small as or smaller than the observed p-values. Next, the conjFDR value
for each SNP was calculated as the maximum of the two condFDR values
(i.e., ASD conditional on INT and vice versa). This represents a conservative
estimate of the FDR for the association between each SNP with both traits.

Table 1. GWAS characteristics.

Sample Sample size (N) Age group Reference

ASD 46,350 (ASD= 18,381, CON= 27,969) Adults and children Grove et al., 2019

INT 269,867 Adults and children Savage et al., 2018

EDU 766,345 Adults Lee et al., 2018

ASD autism spectrum disorder, INT intelligence, EDU educational attainment.

S. Hope et al.

2

Translational Psychiatry          (2023) 13:295 

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20016
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20016
http://csg.sph.umich.edu/abecasis/metal/
http://csg.sph.umich.edu/abecasis/metal/


SNPs with a condFDR <0.01 or conjFDR<0.05 were assigned statistical
significance. Since the complex correlations in regions with intricate
linkage disequilibrium [45] can bias FDR estimation, all cond/conjFDR
analyses were performed after excluding the following SNPs regions from
the FDR fitting procedures: the extended major histocompatibility complex
(MHC) region (chr6: 25119106-33854733), the 8p23.1 region (chr8:
7242715-12483982) and the MAPT region (chr17: 40000000-47000000).
However, they were not excluded from our discovery analysis. All
chromosome locations are derived from genome build hg19. We further
evaluated the directional effects of the shared loci by comparing their
z-scores from original GWAS. We also identified previously reported GWAS
associations in the NHGRI-EBI catalog [46] overlapping with the identified
loci. For more details about the statistical tools, see Supplementary
Methods and the original publications [33, 47].

Genetic loci definition and effect direction
We defined independent genetic loci according to the FUMA protocol [39].
We evaluated the directional effects of shared loci by comparing z scores
from the respective GWAS summary statistics.

Genome-wide and local genetic correlations
Genome-wide genetic correlation (rg) was estimated using linkage
disequilibrium score regression (LDSR) [48]. Local heritabilities and local
genetic correlations within shared loci identified in conjFDR analyses were
calculated using local analysis of co-variant annotation (LAVA) [49]. See
Supplementary Methods for more details.

Functional annotation
We functionally annotated all candidate SNPs in the genomic loci with a
conjFDR value < 0.1 having an LD r2 ≥ 0.6 with one of the independent
significant SNPs, using FUMA SNP2GENE [39]. We linked lead SNPs to
genes using three gene-mapping strategies: (1) positional mapping to
align SNPs to genes based on their physical proximity, (2) expression
quantitative trait locus (eQTL) mapping to match cis-eQTL SNPs to genes
whose expression is associated with allelic variation at the SNP level, and
(3) chromatin interaction mapping to link SNPs to genes based on three-
dimensional DNA–DNA interactions between each SNP’s genomic region
and nearby or distant genes. All gene-mapping strategies were limited to
brain tissues. Finally, we queried SNPs for known QTLs in brain tissues
using the GTEx portal (GTEx, version 8) [50]. If the gene annotation of a
specific SNP was marked as ‘NA’, we search for information in the dbSNP
database. We investigated whether genes mapped to SNPs in the shared
loci were overrepresented in gene-sets and biological pathways using
FUMA GENE2FUNC [39] (see Supplementary Methods).

RESULTS
Shared genetic architecture (MiXeR)
MiXeR revealed substantial amount of shared ‘causal’ variants
between ASD&INT and ASD&EDU. As shown in the Venn diagram
(Fig. 1), the estimated number of shared ‘causal’ variants between
ASD and INT was 11.1k (SD= 0.7k), with 1.6k (1.2k) unique ASD
variants and 0.6k (0.7k) unique INT variants. The Dice coefficient

Fig. 1 MiXeR-modeled genome-wide genetic overlap between autism spectrum disorder (ASD), educational attainment (EDU) and
intelligence (INT). Venn diagrams from MiXer analyses shows the number of shared and trait-specific “causal” genetic variants in thousands
for ASD & EDU and ASD & INT. The MiXeR estimated DICE coefficient for ASD & EDU was 0.90 and for ASD & INT it was 0.91. Both analyses had
positive AIC values when comparing modeled estimates to minimum possible overlap but negative compared to maximum possible overlap,
indicating that the estimates may underestimate genetic overlap. Rg: MiXeR estimated genome-wide genetic correlation.

Fig. 2 Conditional Q–Q plots. Conditional QQ plots of observed versus expected −log10 p-values in the primary trait (ASD) as a function of
significance of genetic association with the secondary traits intelligence (a) and educational attainment (b) at the level of p ≤ 0.1 (red lines),
p ≤ 0.01 (yellow lines) and p ≤ 0.001 (purple lines). Blue lines indicate all SNPs. Black dotted line is the expected Q–Q plot under the null
hypothesis (no SNPs associated with the trait).
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was 0.91 for variants shared between ASD and INT (Table S15).
MiXeR estimated 12.0k (1.3k) shared ‘causal’ variants between ASD
and EDU, with 0.7k (0.7k) unique ASD variants and 1.7k (1.4k)
unique EDU variants. The Dice coefficient was 0.90 for variants
shared between ASD and EDU (Table S15). The proportion of
shared ‘causal’ variants with concordant effects for ASD&INT was
0.58 (SD= 0.004) and 0.58 (SD= 0.005) for ASD&EDU.

Enrichment
In the conditional Q–Q plots, we observed SNP enrichment for
ASD as a function of the significance of SNP associations with EDU
(Fig. 2a) and INT (Fig. 2b). The reverse conditional Q–Q plots also
demonstrate consistent enrichment in ASD given associations
with INT and EDU, indicating polygenic overlap between the
phenotypes (Fig. S1a, S1b).
Log-likelihood plots are shown in Figs. S1a and S1b. The AIC

values (Table S15) were positive when comparing modeled
estimates to minimum overlap, but negative compared to
maximum overlap for both ASD/INT and ASD/EDU analysis. This
indicates that the MiXeR-predicted overlap is not distinguishable
from maximum possible overlap, suggesting caution in interpret-
ing the estimates from MiXeR. ASD and INT have LDSR-based

genome-wide genetic correlation of rg= 0.22 (SD= 0.032,
p= 4.60e−12) and MiXeR-estimated genetic correlation of shared
variants of ρβ= 0.24 (SD= 0.01). For ASD and EDU, those values
are respectively rg= 0.21 (SD= 0.028, p= 2.17e−13) and ρβ=
0.25 (SD= 0.02). This pattern of extensive genetic overlap but
weak genetic correlation is indicative of mixed effect directions,
supported by the MiXeR-estimated proportion of shared ‘causal’
genetic variants with concordant effects of 0.58 for both ASD&INT
and ASD&EDU.

Identification of shared genetic loci (cond/conjFDR)
CondFDR. We leveraged this pleiotropic enrichment using
condFDR analysis and re-ranked the ASD SNPs conditional on
their association with EDU or INT, and vice versa. At condFDR
<0.01, there were 9 loci associated with ASD conditional on INT
(Table S1), of which two loci were not found in the original ASD
GWAS (Table S1). We identified 12 loci associated with ASD
conditional on EDU (Table S2), of which four were not in identified
the original ASD GWAS (Table S2).

ConjFDR. The conjFDR Manhattan plots are shown in Fig. 3a, b.
At conjFDR < 0.05, we detected 19 genetic loci jointly associated

a) ASD and EDU 

b) ASD and INT 

Fig. 3 Manhattan plots showing common genetic variants jointly associated with autism (ASD) and cognitive traits. The plots show
common genetic variants jointly associated with ASD and intelligence (a) and ASD and educational attainment (b) with the –log10
transformed conjFDR values for each SNP on the y-axis and chromosomal positions on the x-axis. The black dotted horizontal line represents
the threshold for significant shared associations (conjFDR <0.05, i.e. –log10 (conjFDR >1.3)). Independent lead SNPs are encircled in black.
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with ASD and INT (Table S3), and among them, 11 are unique for
ASD and INT. We detected 32 distinct genetic loci jointly
associated with ASD and EDU (Table S4), of which 24 are unique
for ASD and EDU. Eight loci were common for both ASD and EDU
and ASD and INT, yielding a total of 43 distinct loci at
conjFDR < 0.05. Of these SNPs, 18 were intronic, 13 intergenic,
11 non-coding RNA intronic and 1 exonic (see Tables S3 and S4).

Evaluation of allelic effect directions. Loci were either concordant
or discordant as denoted by the sign of the effect, and 68% (13/
19) of the shared loci between ASD and INT had concordant allelic
effect directions (Table S3) and 59% (19/32) of the shared loci
between ASD and EDU possessed concordant allelic effect
directions (Table S4).

Local genetic correlations. LAVA analysis of 19 loci shared
between ASD and INT revealed three loci (2q12.1, 5q22.3 and
14q32.33) with significant local heritabilities (p < 0.05/19) in both
ASD and INT and nominally significant local genetic correlation
(p < 0.05) (marked with green in Table S3), all being positive. For
32 loci shared between ASD and EDU, LAVA identified five loci
(6q16.1, 6p21.32, 7p15.3, 14q32.33 and 17q21.31) with significant
(p < 0.05/32) local heritabilities in both ASD and EDU and
significant (p < 0.05) genetic correlation between them (marked
with green in Table S4), four out of these five loci were positively
correlated while one locus had negative correlation.

Novel ASD loci. As seen in Table S3, 11 of 19 the lead SNPS jointly
associated with ASD and INT at conjFDR <0.05, were not identified
in the original ASD GWAS [10], and 21 of the 32 loci jointly
associated ASD and EDU were also novel (Table S4). Five of these
loci were overlapping both with EDU and INT, which yielded a
total of 27 novel ASD loci (Table 2).

Functional annotation (FUMA SNP2GENE). We did functional
annotation of all SNPs with a conjFDR value < 0.1 within loci
shared between ASD & INT and ASD & EDU, which resulted in 2356
candidate SNPs jointly associated with ASD and INT (Table S5) and
1782 SNPs candidate SNPs jointly associated with ASD and EDU
(see Table S6).

Gene-mapping. By using three different methods (positional,
eQTL, and chromatin interaction) we mapped 104 genes from
candidate SNPs within loci shared between ASD and INT (see
Table S7) and 132 genes for ASD and EDU (see Table S8). Of these,
there were 10 genes that were credible i.e., implicated by all three
mapping strategies in analysis of ASD and EDU and all of these
were also credible in analysis of ASD and INT, resulting in 16
credible mapped genes all together (see Fig. S9 and Table S16).

Gene-set enrichment and molecular function analysis (FUMA
GENE2FUNC)
Gene expression in different tissues. Heatmaps of all genes
annotated to candidate SNPs are shown in Fig. S4a (ASD and
EDU) and Fig. S5a (ASD and INT). Candidate genes from ASD and
EDU had significantly upregulated differentially expressed genes
(DEGs) in four of 54 different tissues, namely brain cortex, frontal
cortex, brain cerebellum and cerebellar hemisphere (Fig. S4b) and
candidate genes from ASD and INT had significant upregulated
DEGs two tissues: cerebellum and cerebellar hemisphere (Fig. S5b).

Gene expression during brain development periods. Candidate
genes tended to have upregulated expression during early
prenatal period and late infancy (Figs. S3c and S4c) but these
differences were not significant.

Gene set enrichments. GO biological processes molecular func-
tion (Tables S9 and S10): Enrichment was found in 43 different

gene sets, including positive regulation of central nervous system
development, midbrain development, neuronal differentiation,
synaptic signaling, neuron death, gliogenesis, astrocyte develop-
ment, mitochondrion organization, synapse plasticity and more
general pathways as inositol phosphate and response to reactive
oxygen species,

Transcription factors. Candidate genes were enriched in the
pathways of 100 transcription factors, of them HIF1 (hypoxia
inducible factor 1), NFR1 (nuclear respiratory factor 1) and vitamin
D receptor.

Immunologic signatures. Candidate genes were enrichments in
23 immune related gene sets for ASD and EDU, among them,
Interleukin-2 and Interleukin-10 pathways, Macrophage Stimulat-
ing 1 (MSP1) pathway, EBNA1 anticorrelated, and development of
regulatory T cells (Tregs).

GWAS gene sets. As seen in Tables S9 and S10, enrichment was
seen in 100 different gene sets including ASD related social
behaviors (attendance at social groups, helping behavior),
cognitive function, mental/neurologic traits (short sleep, alcohol
abuse, mood instability, schizophrenia, depression, neuroticism,
intracranial volume, neurodegenerative diseases) and somatic
traits (inflammatory bowel diseases, cardiovascular measures, lung
function/pulmonary fibrosis, endocrine measures).

FUMA (GENE2FUNC) of concordant loci (Figs. S5–6 and Tables S11
and S13). Heatmaps showing the tissue expressions of each gene
in the concordant gene sets (ASD/EDU and ASD/INT) are shown in
Figs. S5a–S6a. For ASD/INT, expression analyses showed that
concordant genes were significantly differently expressed (DEGs)
in 13 tissues, with highest DEGs in frontal cortex (Fig. S5b). Similar
results were found for ASD/EDU, were DEGs were significantly less
expressed in amygdala, hippocampus, basal ganglia, and sub-
stantia nigra. Highest upregulation (non-significant) was found in
brain frontal cortex and cerebellum (Fig. S6b). Similar enrichment
analyses as for the total gene sets were performed for concordant
genes and showed that they were enriched in gene sets for
extremely high intelligence, social traits (attending social groups
and helping behavior), psychiatric disorders, inflammatory bowel
diseases and immunological signatures (Tables S11 and S13).
FUMA analyses of the 6 credible genes mapped from concordant
loci (NCKIPSD, CCDC36, IP6K2, PRKAR2A, QRICH1, CCDC71) showed
that they were enriched in pathways for inflammatory diseases
and blood protein levels (Fig. S9a and Table S16).
FUMA GENE2FUNC of discordant loci (Figs. S7–S8 and Tables S12

and S14) showed that they were significantly upregulated (DEGs)
in the cerebellum and cerebellar hemisphere (Figs. S7b and S8b).
Discordant genes were enriched in several gene sets, including
neurodegenerative diseases (incl. Alzheimer’s disease and Parkin-
son’s disease), chronic pain, alcohol use disorder and craniofacial
macrosomia (small head and face) (Tables S12 and S14). For the
credible mapped discordant genes (MAPT, CRHR1, WNT3, KANSL1,
ARL17B, SPPL2C, LRRC37A, ARHGAP27, PLEKHM1, and STH) we
found trends of similar enrichments as the total set of discordant
genes (Fig. S9b and Table S16).

DISCUSSION
The main finding of the current study is an extensive genetic
overlap between ASD and the cognitive traits INT and EDU with
a mixture of positive and negative effect directions of the
overlapping genetic loci. We identified 43 loci jointly asso-
ciated with ASD and INT or EDU, of which 27 were novel for
ASD. The results provide insights into putative overlapping
molecular mechanisms. By dissecting the overlapping genetic
architecture and quantifying the shared and unique genetic
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factors for ASD versus cognitive traits beyond genetic correla-
tions, we show that common genetic variants can underlie
both better and worse cognitive functioning across the ASD
spectrum.
The current findings of bidirectional genetic overlap between

ASD and cognitive traits INT and EDU, as revealed with the MiXeR
method, has not been shown before. The genetic overlap estimated
by Dice coefficient was 0.90–0.91 which is substantial, taking into
account the relatively low genetic correlation we found between
ASD and INT (rg= 0.22), in line with previous findings [10]. It is
noteworthy that the genetic correlation is only present if the bulk of
variants associated with both ASD and INT or EDU have consistent
direction of effects (concordant or discordant) but not mixed [51].
Among the 43 loci shared between ASD and EDU or INT revealed
by conjFDR, n= 27 (63%) had concordant effect directions with INT

and EDU. Thus, the main fraction of common variants shared with
ASD is associated with higher INT and EDU. These variants may
shed light on mechanisms underlying better cognition in ASD
patients [10, 52, 53] and provide support for high functioning ASD
as a “neurodiversity” rather than a disorder [5].
A high genetic overlap between ASD and cognitive traits INT

and EDU is consistent with genetic overlap between INT and EDU
and other mental disorders, such as schizophrenia (SCZ) [30, 54],
bipolar disorder (BP) [30], major depression (MD) [32] and
attention deficit hyperactivity disorder (ADHD) [31], although the
overlap between ASD and INT is larger than between INT and SCZ,
BP, ADHD and MD [30–32]. However, the overall concordant effect
direction with INT contrasts findings in SCZ and ADHD where the
majority of variants shared with INT are associated with poorer
cognitive performance [30, 31]. The results also differ from MD

Table 2. Novel shared SNP’s between ASD and INT, and ASD and EDU found through cond/conjFDR.

Chr Min-max BPs Lead SNPs conjFDR ASD Trait (INT/EDU)

Z-score p-value Z-score p-value Concordant Overlapping

ASD and INT

3 16843737-16879208 rs7625233 0.042 3.9 1.14E−04 −4.88 1.07E−06 No Yes

3 48564209-50239012 rs73073015 0.020 4.1 3.51E−05 6.28 3.43E−10 Yes Yes

5 81261923-81679914 rs73134709 0.041 −3.9 9.58E−05 −3.86 1.16E−04 Yes No

5 92488009-92574385 rs4242244 0.036 −3.9 8.64E−05 −5.48 4.16E−08 Yes Yes

5* 113837198-113995764 rs414517 0.016 −4.23 2.30E−05 −4.25 2.18E−05 Yes No

8 87754626-87783335 rs1982564 0.038 3.90 9.62E−05 −4.01 6.14E−05 No Yes

10 106563924-106830537 rs6584649 0.046 −3.82 1.33E−04 3.88 1.05E−04 No No

10 133729181-133815530 rs34473884 0.018 4.17 3.03E−05 5.26 1.48E−07 Yes Yes

14 29396922-29677464 rs140802584 0.034 4.02 5.87E−05 −3.93 8.42E−05 No No

17 43463493-44865603 rs7207582 0.002 4.71 2.44E−06 −4.91 9.22E−07 No No

21 40553845-40741068 rs2249666 0.039 3.89 9.89E−05 4.06 4.99E−05 Yes No

ASD and EDU

1 45797505-46021556 rs12049503 0.050 3.77 1.63E−04 4.10 4.12E−05 Yes No

2* 104056454-104387855 rs6543224 0.015 4.26 2.05E−05 5.01 5.32E−07 Yes No

2 159340038-159553686 rs3771643 0.049 3.80 1.46E−04 3.97 7.29E−05 Yes No

2 215361613-215406125 rs12467438 0.044 −3.84 1.25E−04 4.28 1.85E−05 NO No

3 16843737-16879208 rs7625233 0.042 3.86 1.14E−04 −6.37 1.83E−10 No Yes

3 48564209-50239012 rs73073015 0.021 4.14 3.51E−05 7.25 4.14E−13 Yes Yes

3 70252572-70291268 rs73116288 0.019 4.18 2.93E−05 4.53 5.89E−06 Yes No

3 157829953-158284861 rs7630176 0.050 −3.77 1.63E−04 4.13 3.58E−05 No No

4 105319081-105414222 rs7665487 0.037 3.91 9.27E−05 −4.28 1.84E−05 No No

5 87792844-87932809 rs4916723 0.002 4.76 1.92E−06 −7.09 1.32E−12 No No

5 92488009-92574385 rs4242244 0.036 −3.93 8.64E−05 −5.04 4.75E−07 Yes Yes

5 113788755-113995764 rs13188074 0.004 4.67 3.04E−06 5.30 1.18E−07 Yes No

6 19211776-19358341 rs7762189 0.048 3.79 1.51E−04 −4.60 4.25E−06 No No

6 26341301-26341301 rs9467715 0.049 −3.78 1.60E−04 −5.42 5.98E−08 Yes No

7* 24526039-24536700 rs6461809 0.012 4.33 1.48E−05 6.04 1.55E−09 Yes No

8 87754626-87783335 rs1982564 0.038 3.90 9.62E−05 −5.46 4.75E−08 No Yes

10 133729181-133815530 rs34473884 0.020 4.17 3.03E−05 7.40 1.32E−13 Yes Yes

11 17804998-17852452 rs2237944 0.042 3.85 1.18E−04 4.69 2.69E−06 Yes No

13 58746132-59167198 rs77146055 0.044 3.83 1.26E−04 −4.02 5.90E−05 No No

17 2295405-2296014 rs2447091 0.041 3.87 1.09E−04 −4.68 2.89E−06 No No

17* 43463493-44865603 rs55915917 0.004 4.64 3.55E−06 −8.39 4.93E−17 No No

Chr Chromosome, Min-max BPs Minimum-Maximum Base Pairs, Lead SNP Single Nucleotide Polymorphism within a locus having the lowest P-value, conjFDR
Conjunctional False Discovery Rate, ASD Autism Spectrum Disorder, INT Intelligence, EDU Educational attainment, Overlapping overlapping SNP’s between INT
and EDU.
*Loci with significant local genetic correlation.
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and BP which have a more balanced mixture of directional effects
among the loci shared with INT [30, 32]. A potential clinical
implication of the current result is to improve ASD polygenic
scores to stratify ASD according to genetic variants differentiating
between reduced and improved cognitive abilities. This can help
to target interventions against risk of autistic regression and
dementia among adults, in a precision medicine approach.
Analyses of brain tissue expression of all candidate genes,

including both concordant and discordant showed that they are
significantly upregulated in two brain tissues in frontal cortex and
cerebellum, which is in line with a recent meta-analysis of post-
mortem studies in ASD [20]. In recent years the interest in
cerebellum’s role in language and social behavior has increased
[55] and it has emerged as key for ASD pathology [56, 57]. The
increased expression in cerebellum was only significant for
discordant genes. This seems in line with the association between
motor impairments and cognitive impairments in ASD [58].
Concordant genes did not have significantly upregulated DEGs
in any of the brain tissues investigated, suggesting that they are
not especially important for these brain regions. Associated genes
were, however, enriched in the pathways for midbrain develop-
ment, a region not included in the tissue analysis. Still, its
relevance in ASD is supported by a genetic overlap between
determinants of midbrain volume and ASD [59], and the
concordant gene RHOA has been targeted for improved learning
and memory in ASD animal models [60]. As expected, associated
genes were enriched in several gene sets important for
neurodevelopment, and with gene sets reflecting social function,
as e.g., helping behavior and participating in social groups. These
enrichments suggest that the associated genes are of relevance
for ASD.
Genes associated with concordant loci were enriched in a pathway

for extremely high INT [61], and included the gene for creatine kinase,
brain type (CKB). This seems in line with that creatine has been
suggested as a cognitive enhancer [62], The concordant genes were
also enriched in 23 immune pathways and in inflammatory bowel
diseases. One of these genes was MST1, which is found in the high
intelligence-pathway and plays a role in autoimmunity [63]. This
support the involvement of inflammation in ASD [64] and is
consistent with cytokines as positive modulators of cognitive function
[65, 66]. Concordant genes were also enriched in the pathway of
vitamin D receptor, which may be relevant for the association
between ASD and cognitive function [67, 68].
Discordant credible genes were enriched in three types of

GWAS phenotypes, mental disorders, neurodegenerative diseases
and somatic traits. Of these, the enrichment in neurodegenerative
diseases as Alzheimer’s and Parkinson’s is of interest since the
variants could possibly be involved in mechanisms underlying
autistic regression in children and of increased risk of dementia in
adults [29, 66]. Among credible genes enriched in neurodegen-
erative diseases are CRHR1, KANSL1, MAPT, and WNT3. CRHR1
encodes a corticotrophin releasing hormone receptor implicated
in social behavior [69, 70] and stress-induced cognitive deficits
[71]. KANSL1 has been associated with autistic traits [72] and
cognitive difficulties in 17.q21.31 deletion syndrome [73]. MAPT
encodes the tau–protein which misfolds and forms a hallmark of
frontotemporal dementia and Alzheimer’s disease [74]. WNT3 is a
Wnt-signaling gene involved in neurogenesis [75], as well as in
behavioral and cognitive deficits [75]. It has been suggested that
the Wnt-pathway may be of importance for understanding the
high phenotypical heterogeneity of ASD [76]. Together, discovery
of these discordant genes could potentially improve the under-
standing of autistic regression and cognitive difficulties in ASD.
A limitation of our study is that the sample of UK-biobank

consists mainly of persons of European ancestries. Another
limitation is that the study does not include rare pathogenic
variants causing ASD, as only common variants are included in the
analyses. Furthermore, the results are based on a common factor

for INT, which is not exactly similar with a full IQ score.
Furthermore, EDU is not purely a cognitive trait, but it is also
influenced by other factors, including socioeconomic status.
In conclusion, the current findings show extensive bidirectional

genetic overlap between ASD and cognitive traits, with a majority of
loci for ASD associated with better cognitive performance. The
mixture of effect directions is in line with the large variation in
cognitive abilities in ASD. Together, these findings suggest that
genetic factors may underlie some of the large variation in cognitive
performance in ASD, and highlight molecular mechanisms involved
in the two cognitive subgroups within the ASD spectrum.
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