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Functional connectivity is scaffolded by the structural connections of the brain. Disruptions of either structural or functional
connectivity can lead to deficits in cognitive functions and increase the risk for neurodevelopmental disorders such as attention
deficit hyperactivity disorder (ADHD). To date, very little research has examined the association between structural and functional
connectivity in typical development, while no studies have attempted to understand the development of structure-function
coupling in children with ADHD. 175 individuals (84 typically developing children and 91 children with ADHD) participated in a
longitudinal neuroimaging study with up to three waves. In total, we collected 278 observations between the ages 9 and 14 (139
each in typically developing controls and ADHD). Regional measures of structure-function coupling were calculated at each
timepoint using Spearman’s rank correlation and mixed effect models were used to determine group differences and longitudinal
changes in coupling over time. In typically developing children, we observed increases in structure-function coupling strength
across multiple higher-order cognitive and sensory regions. Overall, weaker coupling was observed in children with ADHD, mainly
in the prefrontal cortex, superior temporal gyrus, and inferior parietal cortex. Further, children with ADHD showed an increased rate
of coupling strength predominantly in the inferior frontal gyrus, superior parietal cortex, precuneus, mid-cingulate, and visual
cortex, compared to no corresponding change over time in typically developing controls. This study provides evidence of the joint
maturation of structural and functional brain connections in typical development across late childhood to mid-adolescence,
particularly in regions that support cognitive maturation. Findings also suggest that children with ADHD exhibit different patterns
of structure-function coupling, suggesting atypical patterns of coordinated white matter and functional connectivity development
predominantly in the regions overlapping with the default mode network, salience network, and dorsal attention network during
late childhood to mid-adolescence.
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INTRODUCTION
Brain development during childhood and adolescence is a highly
dynamic process characterized by rapid changes in structural and
functional connections within and between different regions of
the brain [1]. In this context, structural connectivity refers to
properties of anatomical connections or white matter tracts
connecting different brain regions [2], while functional connectiv-
ity is the degree to which spontaneous fluctuations in activity
correlate between regions over time [3]. Each form of connectivity
supports the efficient processing and integration of information
between various regions of the brain [4, 5]. Structural connections
are also crucial to facilitate a coordinated neural activity or
functional communication [2, 6–11], with the strength of
associations between structural and functional brain connectivity
termed structure-function coupling [6, 12]. Disruption in functional
and structural connectivity can lead to deficits in various cognitive
functions and increase the risk for neurodevelopmental disorders
such as attention deficit hyperactivity disorder (ADHD) [12]. Thus,
further understanding of structure-function coupling during brain
development may help us better understand how the joint

maturation of white matter connections and functional commu-
nication supports typical neuro-cognitive development, as well as
the neural correlates of neurodevelopmental disorders like ADHD.
Cross-sectional studies suggest that the degree of structure-

function coupling is inversely proportional to the complexity of
the function each brain region serves. For instance, lower
structure-function coupling has been reported in brain regions
responsible for higher-order executive functions and self-control
like the frontal and limbic systems, whereas higher structure-
function coupling has been reported in regions involved in lower-
order sensory processing like the visual system [6]. Cross-
sectionally, age-related changes in functional and structural
connectivity are similar within brain networks [13, 14], suggesting
that the maturation of structural connections supports functional
communication within specific functional networks (e.g., default
mode network (DMN)) [14]. Moreover, structure-function coupling
studies in adults have observed strong relationships between
structural and functional connections in brain networks connect-
ing frontal, parietal, and cerebellar regions [15–18]. However, little
is known about how structure-function coupling, which is
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important for the development of complex cognitive functions,
changes across childhood to adolescence.
Two cross-sectional studies examined associations between age

and structure-function coupling during childhood and did not
identify any age-related effects in the association between
structural and functional connections in default mode, frontopar-
ietal, or salience networks [19, 20]. The only longitudinal study to
examine developmental changes in structure-function coupling
reported that frontal regions, involved in complex higher-order
executive functions, showed increased structure-function coupling
throughout childhood and adolescence [6]. Moreover, it has been
reported that higher structure-function coupling in the lateral
prefrontal cortex is associated with improved executive functions
[6]. Together, these results suggest that it is important to examine
the development of structure-function coupling across the whole
brain to understand how various circuits specialize over time to
support the emergence of cognitive processes [6]. An examination
of developmental changes in structure-function coupling may also
shed light on the neural underpinnings of developmental
disorders in which individuals exhibit impairments in cognitive
processes and functioning, such as ADHD.
ADHD is a prevalent neurodevelopmental disorder that has

been associated with aberrant structural and functional network
organization during development, predominantly within higher-
order cognitive and sensory regions [21–27]. Examining the
association between structural and functional connectivity will
provide an extensive understanding of the networks disrupted in
the pathophysiology of the disorder, which is important for
various cognitive functions [28]. To date, however, only two cross-
sectional studies have investigated structure-function coupling in
children with ADHD. Lee and colleagues observed higher
structure-function coupling in children with ADHD compared to
typically developing children (5–17 years) within the frontoparietal
network (FPN) and DMN [28]. Another study by Bos and
colleagues used a data-driven whole-brain approach to investi-
gate both structural and functional connectivity in young children
and adolescents with and without ADHD (6–16 years) [29]. They
found that greater functional connectivity in prefrontal regions in
children with ADHD was not accompanied by differences in the
underlying white matter structure compared to typical controls.
Both studies emphasize the need for longitudinal studies to
improve our knowledge of neural development in children
with ADHD.
The goal of the current study was to investigate the

development of structure-function coupling between late child-
hood and mid-adolescence, in a longitudinal sample of typically
developing children and those with ADHD. As there has only been
one longitudinal study that has examined the development of
structure-function coupling in typically developing children, the
first aim of this study was to examine the longitudinal changes in
structure-function coupling in typically developing children. The
second aim was to be the first to compare longitudinal changes in
structure-function coupling in children with ADHD to typically
developing children. We hypothesized that structure-function
coupling would increase with age in higher-order cognitive
regions in typically developing children. We also hypothesized
that there would be significant differences between children with
ADHD and typically developing children in structure-function
coupling in higher-order cognitive and sensory regions, including
differential developmental trajectories in these regions.

METHODS AND MATERIALS
Participants
This study used data from a community-based sample of 175 children
(91 children with ADHD and 84 non-ADHD controls) between the ages
of 9 and 14. All participants were a part of the longitudinal
neuroimaging cohort, Neuroimaging of the Children’s Attention Project

(NICAP) [30], in Melbourne, Australia. Subjects underwent up to three
waves of repeated MRI scans at ~18-month intervals. Screening for
ADHD was undertaken using parent and teacher reports on Conners
3 ADHD Index [31], followed by diagnostic confirmation using face-to-
face diagnostic interviews with parents (NIMH Diagnostic Interview
Schedule for Children IV [DISC-IV] [32]). Further information regarding
participants and study design is detailed in [33]. Diagnostic confirma-
tion was initially conducted at recruitment (3 years before neuroima-
ging) and subsequently repeated at the first wave of neuroimaging.
Children with a history of ADHD (i.e., met ADHD criteria at either wave)
were included in the ADHD group. The control group had to screen
negative to parent and teacher Conners 3 ADHD Index, and not meet
the criteria for ADHD in diagnostic interviews.
To ensure the quality of imaging data, functional scans with excessive

head motion (mean frame-wise displacement greater than 0.5 mm [34],
n= 10), scans missing field maps (n= 25) and poor-quality DWI scans
(hyperintense cerebellum, omission of white matter, problematic bias
correction, problem with Freesurfer mask, the presence of excess non-
brain voxels n= 45) were excluded from the final analysis. No significant
differences were observed between included and excluded participants in
the age distribution of control or ADHD groups in one, two, or three waves
(range p= 0.062–0.960). However, those children with ADHD who were
excluded had more severe ADHD symptoms than included ADHD subjects
(p < 0.05).
The final sample with both structural and functional data comprised

278 scans (139 Control, 139 ADHD) across the three assessment waves (see
Fig. 1 and Table 1). At any given wave 7–21% of the ADHD group were
taking medication related to their diagnoses, and of this subset,
medications comprised methylphenidate: 90–100%, atomoxetine: 0–10%.
In addition to one of the former, 33–50% were concurrently taking
clonidine or fluoxetine.

MRI acquisition
All participants underwent a 30min mock (practice) scanner session to get
familiarized with the MRI environment. Subsequently, MRI scans were
acquired using a 3-Tesla Siemens scanner at a single site. However, waves
1 and 2 were collected on a TIM Trio scanner, and wave 3 was collected
after an upgrade to a MAGNETOM Prisma scanner (note that scanner
upgrade was accounted for within statistical modeling). Using a 32-
channel head coil, functional images were acquired using multi-band
accelerated EPI sequences (MB3), with the following parameters: repetition
time (TR)= 1500ms, echo time (TE)= 33ms, field of view
(FOV)= 255 × 255mm, flip angle (FA)= 85 deg, 60 axial slices, matrix
size= 104 × 104, voxel size= 2.5 mm3, and 250 volumes acquired covering
the whole brain in a 6min 33 s sequence. Participants were instructed to
keep their eyes open and look at a fixation cross. High Angular Resolution
Diffusion Imaging (HARDI) data were acquired using a multi-band factor of
three with the following parameters: b= 2800 sec/mm2, 63 slices, matrix
size= 110 × 100, voxel size= 2.4 mm3, FOV=260 × 260mm,
bandwidth= 1748 Hz, acquisition time= 3min 57 s. T1 weighted images
were acquired using a multi-echo magnetization prepared rapid gradient-
echo (MEMPRAGE) sequence along with navigator-based prospective
motion correction with parameters: TR= 2530ms, TE= 1.77, 3.51, 5.32,
and 7.20ms, FOV= 230 × 230mm, FA= 7 deg, axial slices= 176, matrix
size= 256 × 232, voxel size= 0.9 mm3, acquisition time= 6min 52 s [13].

Pre-processing of functional data
Pre-processing of resting-state fMRI images was done using FSL 5.0.9
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Standard pre-processing steps such as
discarding of four initial volumes to account for initial signal inhomo-
geneity, motion correction using MCFLIRT (FMRIB’s Linear Registration
Tool), B0 unwarping, spatial smoothing using 5mm FWHM, spatial
normalization to the MNI template using a 12-parameter affine transfor-
mation and registration of fMRI images to MNI space via high-resolution T1
images using FSL FLIRT and FNIRT were undertaken [35–37]. Further, each
preprocessed dataset was decomposed using Multivariate Exploratory
Linear Decomposition into Independent Components (MELODIC) in FSL.
High-pass temporal filtering (cutoff= 100 s) was also applied to resting-
state fMRI data. Following MELODIC, the resulting components from
20 subjects were manually classified as signal or noise based on the
previously mentioned criteria [38, 39]. FIX (FMRIB’s ICA-based Xnoisefier)
[40] classifier was trained using these classifications. FIX was then run on all
single-session MELODIC output to auto-classify Independent Component
Analysis (ICA) components into good vs bad components and denoise the
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data [35]. More details about the denoising method selected for the
present study can be found in the Supplementary Material.

Pre-processing of structural data
Diffusion-weighted imaging (DWI) data was pre-processed using MRtrix3-
tissue (https://3tissue.github.io), a fork of the MRtrix software [41]. Various
commands in MRtrix that work with the help of external software
programs such as FSL [42] and ANTS [43] were used to pre-process the raw
diffusion images. Pre-processing steps such as denoising [44], Gibbs
unringing [45], correction for eddy current, motion [46], bias field [46], and
brain mask estimation were performed on all the subjects. Mean frame-
wise displacement [47] calculated in each subject’s diffusion space was
used for further analysis to reduce motion confounds in diffusion images.
After pre-processing the structural data, response functions [48] for white
matter, gray matter, cerebero-spinal fluid, and the orientation of fibers in
each voxel was estimated (Fiber Orientation Distribution [FOD]) [49].

Further, global intensity differences among the data were corrected using
intensity normalization.

Functional and structural connectome
For each subject, at each wave, functional and structural connectivity matrices
were defined using the multi-modal parcellation of human cerebral cortex
(HCP-MMP) atlas (360 distinct regions) [50]. The volumetric version of the HCP-
MMP atlas available in AFNI [51] was used for the analysis, with the atlas
converted and mapped into each subject’s surface space using Freesurfer
[52–54]. For the functional connectivity (FC) matrix, Pearson correlation
coefficient between each pair of ROIs was calculated using CONN (Functional
Connectivity toolbox, CONN20b), resulting in a connectivity matrix of size
360 × 360. Structural connectivity (SC) matrix for each subject at each wave
was created by following the steps for estimating the whole brain tractogram
outlined in Basic and Advanced Tractography (BATMAN) [55]. Streamlines
were created using anatomically constrained tractography [56], and spherical-

Table 1. Demographic characteristics of participants.

ADHD Control Difference

Participants wave 1 (% male) 57 (70%) 48 (56%) χ2= 0.77

Participants wave 2 (% male) 53 (74%) 56 (57%) χ2= 0.08

Participants wave 3 (% male) 27 (62%) 34 (56%) χ2= 0.80

Age wave 1, mean (SD) 10.42 (0.51) 10.41 (0.42) t= 0.71

Age wave 2, mean (SD) 11.83 (0.62) 11.70 (0.44) t= 1.16

Age wave 3, mean (SD) 13.23 (0.74) 13.08 (0.51) t= 0.73

dMRI mean head motion wave 1, mean (SD) 0.44 (0.26) 0.36 (0.11) t= 1.98

dMRI mean head motion wave 2, mean (SD) 0.39 (0.14) 0.38 (0.22) t=−0.03

dMRI mean head motion wave 3, mean (SD) 0.33 (0.12) 0.29 (0.06) t= 1.48

rs-fMRI mean head motion wave 1, mean (SD) 0.19 (0.16) 0.14 (0.16) t= 1.12

rs-fMRI mean head motion wave 2, mean (SD) 0.15 (0.11) 0.14 (0.10) t= 0.45

rs-fMRI mean head motion wave 3, mean (SD) 0.11 (0.07) 0.09 (0.05) t= 1.02

DSM inattentive symptom count, mean (SD) 5.59 (2.49) 1.02 (1.42) t=−21.80*

DSM hyperactive-impulsive symptom count, mean (SD) 6.71 (1.69) 0.62 (0.95) t=−10.60*

Baseline symptom severity count (Conner 3 ADHD index), mean (SD) 13.17 (4.69) 1.12 (1.97) t=−16.38*

Medicated wave 1 (%) 12 (21%) - -

Medicated wave 2 (%) 10 (19%) - -

Medicated wave 3 (%) 2 (7%) - -

*p < 0.0001, dMRI diffusion MRI, rs-fMRI resting-state functional MRI.

Fig. 1 The distribution of participants with ADHD and those without ADHD. Distribution of ADHD and control participants who met
inclusion criteria for both resting-state fMRI and DWI data.
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deconvolution informed filtering of tracks (SIFT) [57]. Further, the SC for each
subject at each wave was created using the HCP-MMP atlas by scaling
contribution of each streamline to the connectome edge by the inverse of the
two node volumes [50]. The options “-symmetric” and “zero_diagonal” in
MRtrix were used for generating symmetric SC with diagonals set to zero.
Further, structural connectivity matrices were thresholded using consistency-
based thresholding at the 75th percentile for edge weight coefficient of
variation to reduce the influence of false positives and false negatives, and
nodes with just zero values were excluded, as suggested in prior research [6].
The code used for consistency-based thresholding is publicly available on
github: https://github.com/shaniasoman/SC_consistency-based_thresholding/
blob/main/SC_thr.m.

Structure-function coupling
The structural and functional connectome of 278 datasets (139 Control,
139 ADHD) were used to examine structure-function coupling between
late childhood and mid-adolescence (Fig. 2). To calculate structure-
function coupling for each region, Spearman’s rank correlation was
performed between the non-zero elements of structural and functional
connectivity of each region to the average of every other region of the
brain [6]. The code for structure-function coupling is publicly available on
github: https://github.com/shaniasoman/SC_FC_coupling/blob/main/
SC_FC_coupling.R.

Developmental trajectories of structure-function coupling
Developmental changes of structure-function coupling were examined
using generalized additive mixed models (GAMM), to account for
longitudinal data and the possibility of linear and nonlinear trajectories.
All models included mean frame-wise displacement of structural and
functional connectivity of each subject, scanner effect (pre vs post
upgrade), sex, and medication as covariates. GAMMs were implemented in
R 4.0.3, with the package ‘mgcv’ [58].
First, we examined age-related changes in structure-function coupling in

typically developing children. We compared (i) a null model to (ii) a main
effect of age, in predicting structure-function coupling. Next, we included
children with ADHD. To estimate the differential developmental trajec-
tories in children with ADHD relative to typically developing children four
different models were used: (i) a null model, (ii) main effect of age (iii) main
effect of group, and (iv) the interaction of group and age. For all models,
the basic dimension for the smooth term was set to 4 (maximum degrees
of freedom for smooth term) as recommended by Wood [59]. Each model
was examined using maximum likelihood function. Models were compared
with likelihood ratio tests (LRT) and Akaike Information Criterion (AIC) to
identify the best-fitting model. More complex models were chosen over
lower models based on significant LRT (p < 0.05) and AIC units <2 [60].
Further, false discovery rate (FDR) (p < 0.05) was used to test the statistical

significance of coefficients. All the whole brain maps and trajectory plots
were created using Pysurfer v0.10.10 (https://pysurfer.github.io/) and
RStudio [58] respectively.

RESULTS
Structure-function coupling in typically developing children
First, we evaluated how structure-function coupling develops in
typically developing children between the ages of 9 and 14. Age-
related differences in structure-function coupling were distributed
across the cortex, including the prefrontal, anterior cingulate, mid
cingulate, posterior cingulate, precuneus, inferior parietal, middle
temporal, and visual cortex (Fig. 3, Figure S6 and Table S2).
Notably, regions involved in higher-order cognitive regions
showed increased coupling from 9 to 14 years of age, while
those involved in sensory and visual processes showed increasing
coupling from 9 to 12 years of age followed by a plateau.

Structure-function coupling in children with ADHD
Next, we examined differences in structure-function coupling in
children with ADHD compared to typically developing controls.
Across 9–14 years, children with ADHD showed weaker structure-
function coupling in the left superior temporal gyrus, right inferior
parietal cortex, and right medial prefrontal cortex (Fig. 4 and Table
S3). They also exhibited differential trajectories in coupling
between 9 and 14 years relative to controls. Children with ADHD
showed a significant increase in structure-function coupling in the
bilateral inferior frontal gyrus, left medial prefrontal cortex, left
superior parietal cortex, left precuneus, left inferior temporal
cortex, right inferior parietal, right mid cingulate, right medial
temporal cortex, and right visual region, while typically developing
children did not exhibit any changes in coupling within these
regions (Fig. 5, Figure S7 and Table S4).

DISCUSSION
The present study examined longitudinal changes in structure-
function coupling with typical development and highlighted
developmental differences in children with ADHD. We observed a
significant change in structure-function coupling in typically
developing individuals between late childhood and mid-
adolescence in various regions implicated in higher-order
cognitive and sensory processes, including the prefrontal, anterior

Fig. 2 Illustration describing how structure-function coupling is measured using resting-state functional and structural networks. Nodes
for resting-state functional and structural networks were defined using the multi-modal parcellation of human cerebral cortex atlas (360 × 360)
[6]. Structure-function coupling for each region was calculated by performing Spearman’s rank correlation between the non-zero elements of
structural and functional connectivity of each region to the average of every other region of the brain.
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cingulate, mid cingulate, posterior cingulate, precuneus, inferior
parietal, middle temporal and visual cortex. We also observed that
children with ADHD exhibited differential developmental trajec-
tories to typically developing controls in brain regions such as
bilateral inferior frontal gyrus, left medial prefrontal cortex, left
superior parietal cortex, left precuneus, left inferior temporal

cortex, right inferior parietal, right mid cingulate, right medial
temporal cortex, and right visual region.

Structure-function coupling in typical development
Our longitudinal investigation demonstrated that the typical
development of structure-function coupling from late childhood to

Fig. 3 Developmental trajectories of structure-function coupling in typical developing children (main effect of age). A Illustration of
trajectories shown by higher-order cognitive regions. B Illustration of trajectories shown by sensory and visual regions. Red * indicates the
higher-order cognitive regions and purple * indicates the sensory and visual regions that survived FDR correction (p < 0.05).

Fig. 4 Group differences between ADHD and controls in structure-function coupling. Blue indicates stronger connectivity in ADHD and red
indicates stronger connectivity in controls. * Indicates regions that survived FDR correction (p < 0.05).

S.M. Soman et al.

5

Translational Psychiatry          (2023) 13:252 



mid-adolescence was predominantly distributed in brain regions
such as prefrontal, anterior cingulate, mid-cingulate, posterior
cingulate, precuneus, inferior parietal, middle temporal, and visual
cortex. These regions mainly overlap with the areas of DMN, SAL,
FPN, sensorimotor, and visual network. Notably, the regions that
overlap with higher-order networks (DMN, SAL, FPN) showed
increased structure-function coupling from 9 to 14 years of age,
while regions that overlap with the sensorimotor networks (SMN and
visual networks) showed increased structure-function coupling from
9 to 12 years of age followed by a plateau to 14 years of age. These
findings are consistent with the only prior longitudinal study
examining developmental trajectories of structure-function coupling
from childhood to adulthood, which noted increased coupling of
DMN and FPN regions over this time [6].
Studies have observed that protracted changes in coupling are

crucial for the development of complex cognitive functions across
childhood to adolescence [6, 61]. Several cross-sectional studies
have observed strong associations between structural and
functional connections [62–64]. However, the association between
structural and functional connections is not always straightfor-
ward; strong functional interactions can be observed between
regions with little or no structural connection (e.g., via a third
common connection [9]). Additionally, though strong correlations
may be observed between structural and functional connectivity,
it can be unclear whether the development of white matter
supports functional communication or vice-versa. Our findings do
not examine the causal relationship between structural and
functional connectivity as their association is measured by
correlation. The present evidence suggests that this strong
association could be due to changes in functional or structural
connectivity during brain development across late childhood to
mid-adolescence. Multiple biological processes driving the devel-
opment of white matter may support the ongoing development
of functional communication [60, 61]; likewise it is possible that
the use of brain regions together drives structural development to
maintain and facilitate future coordinated functioning [9].
Moreover, there could be some other underlying factors such as

myelination or axon diameter that cause strong association
between structural-functional connections. For example, while
we examined fiber count as our measure of structural connectivity,
it is possible that the development of myelin on those fibers or

change in axon diameter could facilitate improved functional
connectivity [65, 66]. Strong structure-function coupling in the
highly myelinated sensory regions and weaker structure-function
coupling in less myelinated higher-order cognitive regions has
been reported in prior cross-sectional studies [6]. Notably, axons of
brain regions associated with higher-order cognitive functions
myelinate at a slower rate during childhood and continue to
myelinate into adulthood [6, 65], which could contribute to
changes in interaction between structural and functional connec-
tions. Our results of increased structure-function coupling in
higher-order cognitive brain regions may reflect a process of
maturation and specialization of higher-order brain regions, which
become more efficient and effective over time as they establish
stronger connections with other brain regions [67, 68]. For
example, as the prefrontal cortex matures, it may develop
stronger connections with other regions involved in executive
functions and self-control, such as the limbic system [68], and
exhibit greater levels of structure-function coupling. It is important
to note that this developmental trend does not necessarily
contradict the cross-sectional findings of lower structure-function
coupling in higher-order brain regions. Instead, it may reflect a
different aspect of brain organization that is not fully captured by
cross-sectional studies. Comparatively, early increases followed by
plateau in coupling of sensory and visual networks suggest
potentially earlier patterns of maturation, supported by a range of
prior studies showing early development of structural and
functional connections in the regions associated with visual and
sensory functions [69]. Indeed, earlier development of brain
connections in these regions is critical to facilitate reflex behaviour
and sensory integration at an early age [70, 71]. Collectively, these
findings suggest that structure-function coupling from late
childhood to early adolescence is characterized by protracted
development of networks associated with higher-order cognitive
functions that continues throughout early-to-mid adolescence,
and earlier maturation of networks associated with sensory and
visual functions.

Structure-function coupling in ADHD
We also observed group differences in structure-function coupling
between children with ADHD and their typically developing
counterparts. Across late childhood to mid-adolescence, those

Fig. 5 Group differences in developmental trajectories of structure-function coupling (i.e., group x age interaction). * Indicates regions
that survived FDR correction (p < 0.05). For the regions marked with red *, the ADHD group showed an increase in structure-function coupling
with age whereas the control group showed no change from 9 to 14 years of age (as illustrated in A).
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with ADHD showed reduced coupling in brain regions involved in
SAL and DMN (left superior temporal gyrus, right inferior parietal
region, and right medial prefrontal cortex) compared to controls.
Abnormalities in these regions and networks have been consis-
tently reported in prior cross-sectional structural and functional
connectivity studies of ADHD compared to controls [72–81], with
delayed myelination thought to contribute to higher symptoms in
those with ADHD [82]. Moreover, lower structure-function
coupling has previously been related to higher ADHD symptoms
in adults [83]. There have only been two cross-sectional studies
that have examined group differences in structure-function
coupling between typically developing children and children with
ADHD [28, 29]. Bos and colleagues failed to identify any significant
differences in structure-function coupling [29] (ADHD= 35,
controls= 26), which may reflect limited power in the sample
size to identify significant effects of the dynamics in structure-
function coupling during development. The study has highlighted
the importance of longitudinal cohorts to illustrate developmental
changes in structure-function coupling. On the other hand, Lee
and colleagues observed higher coupling within DMN and FPN in
the combined subtype of ADHD than in controls [28]. This
contradicts our findings of reduced structure-function coupling in
ADHD relative to controls, though may be due to the wide age
range (6–17 years, total N= 210 (70 children with ADHD-C,
75 children ADHD-I and 56 TDC)) or different metrics (global
efficiency) used in their work [29]. Overall, the findings suggest
that disruption in structure-function coupling of DMN, and SAL
could contribute to at least some of the dysfunctions observed in
children with ADHD. However, future studies exploring the
association between the development of structure-function
coupling and neurocognitive measures are required to confirm
this hypothesis.
Given the profound changes in the brain across childhood to

adolescence, it is important to examine how structure-function
coupling changes with age. We found differential development of
structure-function coupling in children with ADHD compared to
controls, predominantly in the regions overlapping with the DMN,
SAL, DAN, and visual network (left superior temporal gyrus, right
inferior parietal cortex, and right medial prefrontal cortex). In
particular, those with ADHD showed increasing structure-function
coupling with age in these regions, whereas typically developing
children showed no change from late childhood to mid-
adolescence. Increased structure-function coupling in ADHD for
age and group interaction could reflect changes in the neural
mechanisms underlying ADHD over time [29]. As individuals with
ADHD grow older, they may develop compensatory mechanisms
that help them overcome some of the deficits associated with the
disorder [84, 85]. These compensatory mechanisms could involve
changes in brain structure and function [86] that result in a higher
level of structure-function coupling in individuals with ADHD
relative to typically developing individuals at certain ages as
observed in the current study. This finding emphasizes the
dynamic characteristics of ADHD and highlights the significance
of employing a longitudinal approach to investigate develop-
mental changes in ADHD. Children with ADHD have been
reported to have aberrant structural connectivity predominantly
in fronto-striatal connections and other tracts connecting parietal,
temporal, and left occipital regions [87, 88]. Moreover, disruptions
in functional connections have been demonstrated in the FPN,
DMN, DAN, and visual network, and prior cross-sectional studies
[76, 80, 89–91], and our recent longitudinal study has reported
age-related differences in functional connections between
various higher-order cognitive networks [35]. Previous studies
demonstrating aberrant functional and structural connections in
DMN, SAL, DAN, and visual network have suggested that this
could be the reason for deficits in attention, impulsivity, and
executive functions in children with ADHD [79, 92–94]. The
differential developmental trajectories of structure-function

coupling observed in children with ADHD could therefore be
due to the disrupted development of structural and/or functional
connections [95]. Moreover, these differential developmental
trajectories in structure-function coupling could be due to other
driving factors such as changes in axon diameter or myelination.
Indeed, a range of studies has previously reported that
dysregulated myelination is associated with disrupted brain
maturation and impairment of various cognitive functions in
children with ADHD [96, 97]. In addition, higher structure-function
coupling is observed as myelin develops, supporting commu-
nication between regions [98]. It is possible that higher coupling
seen in ADHD in sensory and visual regions reflects a temporal lag
whereby controls have peaked, and ADHD continues to show
development into later ages. However, it is difficult to make
strong inferences about such “lags” based on the age period
examined. Nonetheless, altogether our findings suggest that
differences in the maturation of structure-function coupling in
higher-order cognitive and visual regions may underlie ADHD,
and potentially give rise to cognitive and behavioural deficits
typically observed in children with ADHD. Changes in structure-
function coupling may also relate to changes in cognitive and
behavioural profiles of children with and without ADHD across
development—a hypothesis that requires direct examination in
future research.

Limitations and future directions
These findings should be considered in light of certain limitations
of our study. Firstly, although we accounted for medication status
in statistical models, differences in trajectories between medicated
and non-medicated individuals with ADHD were not examined
due to the small number of individuals taking medication in our
sample. Moreover, we did not examine how changes in structure-
function coupling are associated with changes in neurocognitive
functioning and changes or remission of symptoms. Future studies
examining such relations between structure-function coupling
and cognitive and clinical measures would help improve our
understanding of the implications of these neural trajectories for
developmental outcomes.
In conclusion, our results provide a further understanding of the

developmental changes in structure-function coupling in typically
developing children, as well as aberrations in these neural
patterns in those with ADHD. Findings suggest protracted
development of structure-function coupling of higher-order
regions in typical development, as well as differential develop-
mental trajectories in structure-function coupling in children with
ADHD relative to their peers.
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