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Temporal neural synchrony disruption can be linked to a variety of symptoms of major depressive disorder (MDD), including mood
rigidity and the inability to break the cycle of negative emotion or attention biases. This might imply that altered dynamic neural
synchrony may play a role in the persistence and exacerbation of MDD symptoms. Our study aimed to investigate the changes in
whole-brain dynamic patterns of the brain functional connectivity and activity related to depression using the hidden Markov
model (HMM) on resting-state functional magnetic resonance imaging (rs-fMRI) data. We compared the patterns of brain functional
dynamics in a large sample of 314 patients with MDD (65.9% female; age (mean ± standard deviation): 35.9 ± 13.4) and 498 healthy
controls (59.4% female; age: 34.0 ± 12.8). The HMM model was used to explain variations in rs-fMRI functional connectivity and
averaged functional activity across the whole-brain by using a set of six unique recurring states. This study compared the
proportion of time spent in each state and the average duration of visits to each state to assess stability between different groups.
Compared to healthy controls, patients with MDD showed significantly higher proportional time spent and temporal stability in a
state characterized by weak functional connectivity within and between all brain networks and relatively strong averaged
functional activity of regions located in the somatosensory motor (SMN), salience (SN), and dorsal attention (DAN) networks. Both
proportional time spent and temporal stability of this brain state was significantly associated with depression severity. Healthy
controls, in contrast to the MDD group, showed proportional time spent and temporal stability in a state with relatively strong
functional connectivity within and between all brain networks but weak averaged functional activity across the whole brain. These
findings suggest that disrupted brain functional synchrony across time is present in MDD and associated with current depression
severity.

Translational Psychiatry          (2023) 13:261 ; https://doi.org/10.1038/s41398-023-02540-0

INTRODUCTION
Major Depressive Disorder (MDD) is a complex psychiatric
condition characterized by various core symptoms, such as
inflexible mood and a propensity to fixate on negative stimuli.
These symptoms may encompass further symptoms or be
accompanied by them, which can manifest differently in each
individual. Investigating the momentary brain functional dynamics

during rest, when the individual’s thoughts are not guided in
tasks, can offer valuable insights into the underlying neurobiolo-
gical mechanisms of MDD. Although numerous studies have
contributed to our understanding of the association between
depressive symptoms and the underlying neurobiological
mechanisms of MDD, our knowledge in this area remained limited
[1–7].
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Resting-state functional magnetic resonance imaging (rs-fMRI)
is one non-invasive approach to investigate the underlying
changes in brain function associated with MDD [5]. Static
functional connectivity (FC), a classical rs-fMRI parameter, indicates
the degree of the coherent patterns of fMRI signal fluctuations by
calculating correlation coefficients between the time-series of
predefined brain regions [8]. Studies using this approach to study
MDD have found disrupted FC within and between brain networks
including the default mode (DMN), the frontoparietal (FPN), and
salience (SN) networks. Altered FC within and between these
functional brain networks is associated with specific depressive
symptoms, such as negative affect and negative thoughts [1,
9–11]. Furthermore, whole-brain studies showed FC alteration
within and between dorsal attention (DAN), somatosensory motor
(SMN) and visual (VN) networks to be related to the overall
depression severity [12, 13].
One core symptom of MDD is diminished fluctuation in the

mood with the dominance of the negative affect state and less
experiencing positive emotions [14]. This persistence of lower
mood can be interlinked to rigid attention towards negative
stimuli, which might also contribute to the perpetuation of
negative thoughts and combined with disruption in the cognitive
process prevents the patients to leave this state [15, 16]. Directing
attention towards negative stimuli can also extend to bodily
sensations and may intensify the perception of bodily discomfort,
contributing to symptoms such as fatigue, agitation, sleep
disturbances, and other somatic complaints commonly observed
in individuals with MDD [17–20]. These patterns are not only
relevant to the transient states of depression but also to the
enduring depressive traits. Disrupted cognitive processes, dis-
torted attention and maintained negative mood and further might
be observed both as state-dependent symptoms in individuals
experiencing depressive episodes and as trait-like tendencies in
individuals with a predisposition to depression [21–23]. The
rigidity or instability of specific dynamic patterns of functional
interactions among brain regions could contribute to both the
acute manifestations of depressive states and the underlying trait-
related vulnerabilities [1, 4, 24, 25]. Therefore, studying the
fundamental dynamics of brain function could provide additional
knowledge about the mechanisms in the brain that are related to
both specific depressive symptoms and the overall trait and state
nature of depression [6, 26, 27].
Capturing the temporal variability of reoccurring functional

activity and connectivity patterns (i.e., spatial states) is critical for
understanding the dynamic organization of the brain [28]. The
temporal features related to the recurring spatial states can be
quantified by fractional occupancy (FO), the proportion of time
spent in any of the states characterized by functional activity or
connectivity, or the average lifetime of each state (ALT), a
parameter of stability of the given spatial brain state and
switching rate (SR) measures a ratio of overall transitioning
between reoccurring functional states [29]. These dynamic
patterns of specific brain connectivity known as spatiotemporal
measures have already been shown to be associated with thought
processing, and specific cognitive and affective states [27, 30–33].
Moreover, alterations of brain dynamics patterns have been
associated with post-traumatic stress disorder, schizophrenia, and
Alzheimer’s disease [34–36].
Previous dynamic functional connectivity (dFC) studies on MDD

yielded inconclusive findings. This might be due to specific
methodological approaches such as hypothesis-testing of selected
regions of interest (ROIs) or due to variation in sample
characteristics [37–39]. For example, one study calculated the
standard deviation (SD) of the FC values within a predefined time-
window and found decreased FC variability between the medial
prefrontal cortex (MPFC) and parahippocampal gyrus in MDD,
while the increased FC variability between the MPFC and insula
was related to ruminative processes in MDD [40]. Another study

showed that a higher probability of transitioning from a state with
weak FC within DMN regions to a state with strong FC within DMN
regions was correlated with depression severity [41]. The
inconsistency of findings can also be seen in studies at the
network level, showing either greater or lower FC variability in
DMN and FPN in MDD [42–44]. However, a recent whole-brain
study reported greater FC variability of DMN, SMN, and subcortical
regions in the MDD [45]. It has also been shown that depressed
patients have lower ALT in a state with strong connectivity
between SMN and DMN [46].
Apart from the characteristics of the study sample and the

selection of specific brain regions, replication of dFC findings in
MDD is often challenging because of differences in the
methodological approaches [39, 47–49]. Typically, the aforemen-
tioned studies used the sliding-window approach. This method
calculates the dFC by correlating the time-series of the selected
brain regions within an arbitrary time window [50]. Hereby, the
definition of an optimal time window length is challenging - a
long window increases the chance of missing specific states and a
short window compromises the reliability of the FC patterns [49].
In addition, another problem with the sliding-window approach is
its lack of sensitivity to transient changes in the time-series [51].
One promising alternative approach to uncovering the dynamic

properties of spatial states is the hidden Markov model (HMM)
[51, 52]. This probabilistic model assumes that there are discrete
latent spatial states for the observed time-series, which can
reoccur at any time-point, and these states can be inferred by the
probability distribution over a sequence of observations [53].
Previous studies using the HMM approach in healthy populations
found associations between the spatiotemporal features of brain
activity and behavioral characteristics or evoked emotions while
watching a movie [47, 54]. Clinical studies also showed significant
differences in the brain dynamic between healthy controls and
patients with schizophrenia disorder [35]. Applying the HMM to
study brain dynamics in MDD has revealed that compared to
healthy subjects, patients stayed longer in two brain functional
states with contrasting activity patterns of DMN and SMN regions
[55]. However, this study did not investigate the relation of these
alterations to depression severity or specific MDD symptoms.
The main aim of the present study was to investigate the

functional dynamic patterns at the whole-brain level using HMM
in a large sample of 314 patients with MDD and 498 control
participants and to relate these putative alterations to symptom
severity and specific clusters of depressive symptoms. The
inclusion of a large, heterogeneous clinical cohort enabled us to
gain a better understanding of the disorder and its underlying
mechanisms. Based on the findings of the previous studies, we
expected that patients with MDD will have altered whole-brain
dynamic patterns of functional connectivity and activity compared
to the control group and that altered dynamic patterns are
associated with the severity of depression. We also expected that
patients with MDD will have higher stability (averaged lifetime) in
certain brain states as a notion of persistence of brain states,
which are also characterized by the higher functional activity of
DMN regions and higher connectivity within the DMN network
compared to other brain networks. We additionally hypothesized
that individuals with depression will have lower overall switching
rate compared to healthy individuals, indicating a reduced ability
to flexibly transition between different brain states.

METHODS AND MATERIAL
Demographic and sample characteristics
The data is from the Marburg-Münster Affective Disorders Cohort
Study (MACS), established during a bicentric study from Marburg
and Münster in Germany (data freeze by 2017). All participants
gave written informed consent and received financial compensa-
tion for the study participation. The study was approved by the
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local ethics committee of the Medical Faculties of the Universities
of Marburg (AZ:07/14) and Münster (AZ:2014-422-b-S) according
to the current version of the Declaration of Helsinki.
Patients were diagnosed either with lifetime or current MDD by

trained clinicians according to the Diagnostic and Statistical
Manual of Mental Disorders (DSVM-IV-TR) criteria using the
structured clinical interview for the DSM-IV axis I disorders
(SCID-I) [56]. The symptom severity of MDD was assessed in the
week of scanning by the clinician-rated 17-item Hamilton
Depression Rating Scale (HAMD-17) [57], and by the self-rated
Beck Depression Inventory (BDI) [58]. Healthy participants were
included if they had no current or former psychiatric disorders as
verified using the SCID-I interview. The initial sample included 974
participants (HC: 552, MDD: 452) within the age range of 18 to 65.
Participants (both MDD patients and healthy controls) were
excluded from the study (Supplementary Fig. 1 - PRISMA Flow-
diagram), if they had neurological or severe medical conditions,
BMI < 18.5 kg/m², current substance use, verbal IQ score less than
80 assessed by Multiple-Choice Word Test-B (MWT-B) [59], and any
MRI contraindication. Furthermore, MDD patients were excluded if
they had MDD with psychotic features, and had psychiatric
comorbidities including cannabis and substance dependence
disorder, delusional disorders, and brief psychotic disorder.
Patients currently treated with antipsychotics, lithium, and antic-
onvulsants, as well as those with incomplete MR images were also
excluded. The final sample consisted of 314 patients with MDD
(female: 207 (65.9%), mean age ± standard deviation (SD):
35.9 ± 13.4) and 498 HC controls (female: 296 (59.4%), mean
age ± SD: 34.0 ± 12.8; Table 1).
For severity analyses, we categorized patients based on the

symptom severity status using the HAMD-17 scores: Asymptomatic
patients (HAMD-17= < 7, N= 162), and patients with clinically
significant depressive symptoms as symptomatic patients (HAMD-
17 > 7, N= 150) [60]. The symptomatic group had a mean BDI score
of 24.5 (SD= 9.88), while the asymptomatic group had a mean score
of 10.5 (SD= 8.29). The t-test showed a significant difference
between these groups (t-value=−13.244, p < 0.001).

Scanner information
Comparable MRI sequences and acquisition parameters were
performed in both sites (Marburg: 12-channel head matrix Rx-coil;
Tim Trio, Siemens, Erlangen, Germany, and Münster: 20-channel head
matrix Rx-coil; Prisma, Siemens, Erlangen, Germany). In both sites, the
three-dimensional magnetization prepared rapid acquisition gradient
echo (MPRAGE) T1-weighted sequence was acquired with slice
thickness= 1.0mm, voxel size= 1.0 × 1.0 × 1.0mm3, field of view
(FOV)= 256mm and the following parameters in Marburg: acquisi-
tion time (TA)= 4.26min, repetition time (TR)= 1.9 s, echo time
(TE)= 2.26ms, inversion time (TI)= 900ms, 176 slices, flip angle= 9°;
and Münster: TA= 4.58min, TR= 2.13 s, TE= 2.28ms, TI= 900ms,
192 slices, flip angle= 8°. T2∗-weighted echo planar imaging (EPI)
sequences were used to acquire whole brain rs-fMRI images with the
same parameters at both sites: TR= 2000 ms, TE= 30ms, number of
volumes= 237, flip angle= 90°, and FOV= 210mm, matrix
size= 64 × 64 and voxel size= 3.3 × 3.3 × 3.8mm³.

Parcellation schemes and data processing
For processing anatomical images, we followed the fsl-anat
pipeline using FMRIB Software Library (FSL) version 6.0
(www.fmrib.ox.ax.uk/fsl) [61]. To address the head motion and
scanner artifacts, the motion confounds (24 regressors) were
removed and then FMRIB’s ICA-based X-noisefier (FIX) from the
FMRIB Software Library (FSL) was used to remove further motion-
related and scanner artifacts [62, 63]. The global signal regression
was not used [64]. The detailed pipeline of MR preprocessing is in
the Supplementary Material.
To extract the time-series of the cortical regions, we used the

Schaefer et al. parcellation scheme with 100 regions [65] . The 100

regions were assigned to seven brain networks according to Yeo
et al. (2011) (DMN, FPN, SN, DAN, SMN, visual (VN), and limbic (LN))
[66]. Choosing this parcellation instead of an ICA data-driven
approach in clinics helps with the reproducibility of other samples
using the same brain parcellation. Furthermore, this specific
parcellation was developed on extended resting-state data and
several studies have replicated these functional networks [67]. The
five regions located in the left and right orbital frontal cortex and
temporal pole from the limbic network were discarded due to the
signal loss in these regions. Sixteen subcortical regions based on
Tian et al. (2020) were also included in our analysis. This
subcortical atlas is comprised of the left and right hippocampus
(HIP), amygdala (Amy), posterior and anterior thalamus (THA),
nucleus accumbens (NAc), globus pallidus (GP), putamen (PUT),
and caudate (CAU) [68] and the regions were assigned to a
“subcortical” network. The time-series data of 812 participants
with 232 time-points and 111 brain regions were combined into a
2D matrix of dimensions 188384 × 111, which was then
standardized to have a mean of 0 and standard deviation of 1
for use in the HMM model (example: Fig. 1A–C).

Hidden Markov Model
The assumption for HMM in brain dynamic analysis is that the
fluctuations of time-series in brain regions can be explained by a
finite number of latent states through observing the whole time-
series (recurrent spatial states). Thus, each time-point can be

Table 1. Demographic information of the study participants.

HC (N= 498) MDD (N= 314)

Age

Mean (SD) 34.0 (12.8) 35.9 (13.4)

Median [Min, Max] 29.0 [18.0, 65.0] 31.0 [18.0, 65.0]

Gender

Female 296 (59.4%) 207 (65.9%)

Male 202 (40.6%) 107 (34.1%)

BMI

Mean (SD) 24.5 (4.40) 25.9 (5.77)

Median [Min, Max] 23.4 [18.6, 59.5] 24.4 [18.6, 46.8]

Missing 21 (4.2%) 11 (3.5%)

Total score of HAMD-17

Mean (SD) 8.02 (6.60)

Median [Min, Max] 7.00 [0, 28.0]

Missing 2 (0.6%)

Total score of BDI

Mean (SD) 17.1 (11.4)

Median [Min, Max] 15.0 [0, 50.0]

Missing 12 (3.8%)

Severity based on HAMD-17

Symptomatic 150 (47.8%)

Asymptomatic 162 (51.6%)

Missing 2 (0.6%)

Antidepressants

Off 147 (46.8%)

On 167 (53.2%)

Patients and healthy subjects were not significantly different in terms of
age and gender as indicated by Kruskal–Wallis and Chi-squared tests
(p > 0.05).
BDI Beck Depression Inventory, BMI Body mass index, HAMD-17 17-item
Hamilton Depression Rating Scale, HC healthy controls, MDD Major
depressive disorder.
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described as a transient state. This state can either explain the
next time-point or be switched to any other state. Therefore, this
model can also compute the probability of being in each state at
each time-point [51, 52], and provides the probability of
transitioning between obtained states (Fig. 1D, E). Further, the
switching rate (SR) can be computed by the rate of transitioning
between all states, which represents the stability of brain
dynamics per participant.
The main temporal measures driven by HMM model for

downstream analyses are FO, which is defined as the proportion
of time each subject spends in a specific state, and ALT, which
represents the average number of time-points per visit to that
state before switching to any other state, indicating the stability of
a state [49].
The HMM model uses the multivariate normal distribution to

model the distribution of each hidden state. In this case, the
time-series of each state have the parameters of the multi-
variate normal distribution of a mean vector and a covariance
matrix. These parameters are referred to as the "averaged
functional activity" of the state, as well as the "functional
connectivity" of the state that is the product of the covariance
matrix, which is a measure of the strength of the connections
between the brain regions involved in that state [47]. The
spatial states derived by HMM-MAR can be characterized by the
corresponding functional connectivity matrices (Supplementary
Fig. 2), which can appear at any time-point, and by averaged
BOLD time-series (averaged functional activity) (Fig. 2 and
Supplementary Figs. 3 and 4).
We used the Hidden Markov Model - Multivariate Autoregres-

sive (HMM-MAR) toolbox implemented in MATLAB (https://
github.com/OHBA-analysis/HMM-MAR) to perform variational
Bayes inversion of HMM with 500 cycles to define states by

multivariate Gaussian distribution [49], the finite number of states
should be set as a prior in the model. Therefore, we ran HMM for
the number of states ranging from 5 to 12 (run k= 5–12) as
suggested by previous studies. For each run (k), we did at least five
repetitions, i.e., computing the whole model. The final number of
states was identified by assessing the summary statistics of the
proportion of time visited per state for each run and repetition [47,
49, 69]. The repetitions were done with different initializations to
help identify the optimal model and reduce the risk of getting
stuck in a local minimum. Applying HMM with an a-priori number
of more than 6 states did not demonstrate any occupation in the
additional states with the minimum free energy. Therefore, we
used the 6 states model for group analyses.

Statistical analyses
For comparing the HMM indices, fractional occupancy (FO),
averaged lifetime (ALT), and switching rate (SR) between patients
with MDD and healthy controls, the fixed-effect linear model was
used. The factor group (MDD, HC), and variables age and sex were
set as fixed-effect variables. The FO, ALT of each state, and SR were
set as dependent variables. Prior to statistical comparisons, the
dependent variables were inverse normal transformed [70].
To better understand the dynamic characteristics in patients

with different depression severity, we compared asymptomatic
patients, patients with clinically significant depressive symptoms
(symptomatic), and HCs to explore the differences in HMM indices
based on clinician-rated depressive symptoms.
Following this, we also conducted exploratory analyses. We

investigated the associations between the self-rated BDI total
score and FO and ALT of spatial states, which were significant at
the level of group comparisons (MDD vs. HC) using Pearson’s
correlation. To explore the association between the FO and ALT of

Fig. 1 Schematic overview of the study. A Resting-state data from one participant representing 232 imaging volumes). B Schaefer et. al
(2018) parcellation with 100 cortical regions and Tian et. al. (2020) parcellation with 16 subcortical regions. C Part of the time-series extracted
from the parcellation schemes in Fig. 1B. D Hidden Markov Model (HMM) to calculate the probability of latent states being active at each
timepoint of the observed time-series, concatenated from the whole study population. Depicted is the probability of occurrence of any state
and each time-point of a part of time-series. The states do not occur sequentially and any of them might occur at any time-point. E Probability
of transitioning from one state to any other state across groups.
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the states and the self-rated depression symptom categories, we
used structured factor analyses (SFA) with the varimax rotation to
find the main factors of symptoms based on the BDI. Then, the
pairwise correlation between the factors (eigenvalues) and FO and
ALT of the states was calculated (see Supplementary Material and
Supplementary Table 1). Additionally, a literature-based two-factor
solution was also tested [71] (Supplementary Table 2).

We tested the association between other clinical features,
namely the number of episodes and age of onset with the FO.
Lastly, to elucidate the potential effect of antidepressant

medication, we compared the FO and ALT of asymptomatic and
symptomatic groups for medication status.
We used the Bonferroni correction to adjust for multiple

comparisons by dividing the p-value threshold by the number of

Fig. 2 Group comparisons of the temporal features. Applying the hidden Markov model (HMM) resulted in six spatial states, with the brain
map of averaged functional activity represented for each state (blue to red is indicating the negative to positive averaged functional activity,
range −0.15 to 0.15). This figure contains the finding of fractional occupancy and averaged lifetime of state #1, #4 and #6 and the findings
related to states #2, #3 and #5 can be found in Supplementary Fig. 4. The range of −0.15 and 0.15 for the averaged functional activity
represents the level of functional activity observed during a particular state in the current dataset. In general, the magnitude and direction of
the values can indicate the degree and type of neural activity occurring during a particular state. The positive values may indicate increased
neural activity, while negative values may indicate decreased activity. Functional activity is averaged blood-oxygen-level-dependent (BOLD)
time-series at that state for each region. The violin plots represent the group comparisons (HC vs. all MDD-diagnosed patients and HC vs.
asymptomatic or symptomatic patients) of the temporal features (fractional occupancy and averaged lifetime). The value on the top of each
comparison is an uncorrected p-value and the p-values that are significant also after the Bonferroni correction are indicated by red color and
asterisks.
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states for each temporal feature. We conducted post-hoc analyses
using the Tukey method for each temporal feature and state.
The effect sizes of the main comparisons (MDD vs. HC) were

computed using Cohen’s d with 2000 resamples for a 95%
confidence interval [72].
To help with the interpretability of findings, we compared the

average of pairwise FC within and between resting-state networks
(RSN) among the six states using t-tests and adjusted the p-values
for Bonferroni multiple comparisons (Supplementary Table 3 and 4).

RESULTS
Spatial states and transition probability
The applied HMM model resulted in six unique spatial states
characterized by specific functional connectivity (Supplementary
Fig. 2 and Supplementary Tables 3 and 4) and averaged functional
activity (the region-network sorted heatmap in Supplementary
Fig. 3; brain maps in Fig. 2 and Supplementary Fig. 4).
State #1: FC within and between all networks is weaker

compared to state #4 but relatively stronger compared to all other
states. In this state, the networks have weaker within FC than the
between networks connectivity compared to other states. In this
state, DAN has lower averaged functional activity (AFA) compared
to all other networks where the AFA is relatively zero.
State #2: The FC within all networks is relatively weaker

compared to states #1 and #4 but stronger than in states #3, #5
and #6. The AFA in all networks is around zero.
State #3: In relation to their respective within FCs, the FCs of

SMN, VN and DAN are relatively stronger to other networks (SN,
FPN, DMN and subcortical regions) compared to all other states.
The AFA in all networks is higher compared to all other states.
State #4: This can be described by higher FC within all networks

and weaker connectivity between networks. However, the
averaged functional activity of all brain regions in this network
is lower relative to all other networks.
State #5: The FC of all networks in this state is relatively higher

than state #6 but lower than all other networks. The AFA is around
zero in all regions of brain networks.
State #6: The FC within all networks is weaker relative to all

other states. The FC within SMN and SN and DAN are lower than
the FC of these networks with all other networks compared to all
other states. However, the AFA in SMN, SN and DAN is higher in
this state relative to all other states.
Furthermore, transitioning between the spatial states is not

sequential or random (Fig. 1E and heatmap of transition
probability of the entire data: Supplementary Fig. 5). The
transitions between the states were qualitatively different
between healthy controls, asymptomatic, and symptomatic
patients (Supplementary Fig. 6).

Comparisons of dynamic features in MDD vs. HC
Fractional occupancy. Patients with MDD showed significantly
higher FO in states #1 and #6 compared to controls adjusted for
age and gender, Bonferroni corrected (state #1: t-value= 4.08,
effect-size= 0.33, p < 0.001; and state #6: t-value= 3.79, effect-
size= 0.30, p < 0.001). Control subjects exhibited higher FO in
states #4 and #2 compared to MDDs (state #4: t-value= 2.70,
effect-size= 0.23, p= 0.006; #2: t-value= 2.60, effect-size= 0.21
p= 0.009). However, the difference in FO of state #2 was
significant only at an uncorrected level. Fractional occupancy of
states #3 and #5 was not significantly different between HCs and
MDDs (states #1, #4 and #6: Fig. 2; states #2, #3 and #5
Supplementary Fig. 4).

Averaged lifetime
We also compared the averaged lifetime of the states between
groups, which indicates state stability. Patients with MDD
exhibited significantly higher ALT in state #6 (t-value= 2.66,

effect-size= 0.21, p= 0.007) and significantly lower ALT in states
#2 and #4 compared to healthy controls (state #2: t-value= 3.21,
effect-size= 0.25, p= 0.001; #4: t-value= 3.32, effect-size= 0.27,
p < 0.001); adjusted for age and gender, Bonferroni corrected
(states #1, #4 and #6: Fig. 2; states #2, #3 and #5 Supplementary
Fig. 4).

Switching rate
The overall switching rate (SR) was not significantly different
between the groups. (Supplementary Table 5: MDD vs. HC and
Supplementary Table 6: HC vs. Symptomatic vs Asymptomatic)

Comparisons of dynamic FC features in groups with different
depression severity
Fractional occupancy. The linear models indicated significant
overall group differences (symptomatic vs. asymptomatic vs. HC)
regarding the FO of the three originally significantly different
states (state #1: F-value= 13.88, p < 0.001; state #4: F-value= 8.19,
p < 0.001; state #6: F-value= 10.51, p < 0.001; Bonferroni cor-
rected). Pairwise contrast with Tukey’s test indicated that these
differences are mainly driven by patients with current depressive
symptoms (symptomatic), except for state #1, in which the
asymptomatic patients showed higher FO compared to HC (state
#1, asymptomatic > HC: t-value= 3.56, p < 0.001; state #4,
symptomatic < HC: t-value= 3.40, p= 0.001; state #6, sympto-
matic > HC: t-value= 3.74, p < 0.001; Bonferroni corrected; (states
#1, #4 and #6: Fig. 2; states #2, #3 and #5 Supplementary Fig. 4)).

Averaged lifetime
The linear models with the ALT showed overall significant
differences between the two states (state #4: F-value= 7.81,
p < 0.001; state #6: F-value= 7.89, p < 0.001; Bonferroni corrected).
The post-hoc t-tests revealed that symptomatic patients were only
significantly different from healthy controls in state #6 (state #6,
symptomatic > HC: t-value: 3.59, p= 0.001, Bonferroni corrected).
However, comparisons between asymptomatic patients and HC or
symptomatic groups showed no significant differences (states #1,
#4 and #6: Fig. 2; states #2, #3 and #5 Supplementary Fig. 4)).

Correlations between depression severity and temporal
features
Fractional occupancy. Depression severity, as assessed by the
HAMD-17 questionnaire, was not significantly related to temporal
characteristics. However, the FO of state #6 was positively
correlated with the self-rated BDI total score (R= 0.16, p= 0.005;
Fig. 3A). The FO of state #4 was negatively correlated with the BDI
total score (R=−0.15, p= 0.008, Fig. 3B). The FO of other states
were not significantly correlated with the BDI total score.

Averaged lifetime
The correlation of ALT of state #6 and the total score of BDI
(R= 0.16, p= 0.0042) was significantly positive. In contrast, the
ALT of other states did not show any significant correlations
(Supplementary Fig. 7).

Switching rate
The switching rate was not associated with the BDI total score
(Supplementary Fig. 8).

Categories of depressive symptoms and temporal features
We explored the association between specific categories of
depressive symptoms and FO. For that, we identified three main
symptom factors in the BDI, which we labeled based on the item
composition as “negative self-view”, “social and cognitive
symptoms”, and “negative affect”. The pairwise Pearson correla-
tion between Bartlett scores of the three factors and the FO and
ALT of six states did not show significant correlations (respectively:
Supplementary Figs. 9 and 10). None of the associations between
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FO and ALT of the six states and the literature-based two-factor
solution [71] was significant (p-value < 0.05).

Number of episodes, age of onset and fractional occupancy
For further exploratory analyses, we also compared the FO of the
six states and specific MDD characteristics including categories of
the number of episodes (one episode, two episodes and three or
more episodes) and healthy controls (Supplementary Table 7). We
found that patients with three or more episodes had higher FO in
states #1 and #6 compared to HC (state #1, One episode > HC: t-
value= 0.67, p= 0.001 and three or more >HC: t-value= 3.31,
p= 0.005; state #6, Three or more >HC: t-value= 3.05, p= 0.001).
We also correlated the age of onset (the age of the first MDD

diagnosis) and the fractional occupancy of states adjusted for age
and gender in the MDD-diagnosed sample. We did not find a
significant association between the FO of any state and age of
onset.

Effect of antidepressants on temporal assessments
We compared the potential effect of medication on FO and ALT
within each group of symptomatic and asymptomatic (respec-
tively: Supplementary Figs. 11 and 12). The finding indicated that
patients with antidepressants did not significantly differ from
unmedicated patients in FO and ALT. We also examined the FO of
six states between five groups for additional investigation of
antidepressant effect: medicated asymptomatic, unmedicated

asymptomatic, medicated symptomatic, unmedicated sympto-
matic, and healthy control (Supplementary Figs. 13 and 14). In
summary, the findings indicated that symptomatic and asympto-
matic patients using antidepressants have higher FO and ALT in
state #6. Symptomatic patients using antidepressants have a
significantly lower FO and ALT compared to HC in state #4.

DISCUSSION
This study demonstrated that patients with major depressive
disorder have different brain dynamic properties than healthy
controls. By applying the hidden Markov model, six unique
spatial states characterized by functional connectivity as well as
averaged functional activity were obtained in the whole study
sample. Comparisons of dynamic measures revealed that
patients with MDD compared to healthy controls have higher
fractional occupancy (FO) and averaged lifetime (ALT) in state #6,
which is characterized by the weaker whole-brain functional
connectome as well as higher activity of the SMN, SN, and DAN
networks. Healthy subjects, in contrast, exhibited higher FO and
ALT in state #4 with stronger FC within and between all networks,
as well as relatively lower functional activity in all brain networks.
Importantly, the alterations in MDD were largely driven by the
severity of depressive symptoms. Furthermore, the significant
association of self-rated depression severity in patients and
temporal features of this state pointed toward the specificity of
this finding for the self-experienced depressive state. It has been
also shown that patients experiencing three or more depressive
episodes have higher FO in states #1 and #6 compared to HC.
However, the cluster of symptoms representing “negative self-
view”, “negative affects” and “social and cognitive” were not
significantly associated with the FO of any state. Furthermore, we
did not find any significant differences in switching rate (SR)
between patients and healthy controls.
The current findings are in contrast to previous dFC studies,

which focused on the hypotheses of changes in FC variation or
temporal alteration only in specific regions within the DMN, FPN,
and SN [40–42, 44]. The current study implemented a whole-
brain dynamic approach to address the etiological complexity of
MDD. As depression is a heterogeneous disorder from both
behavioral and biological aspects; each patient usually suffers
from different combinations of symptoms. Therefore, associating
predefined brain regions with the MDD diagnosis and depres-
sion severity or a single symptom of depression might contradict
the phenotypes of this disorder and may lead to less replicable
findings [6, 73, 74].
Previous dFC studies using the sliding-window approach

reported altered dFC between brain regions located in SMN,
DMN, FPN, and subcortical regions [43, 45, 46]. Furthermore, a
recent whole-brain HMM study found different states and showed
that patients with MDD have higher FO in two recurring functional
brain states, one marked by higher activity of DMN and lower
activity of SMN and subcortical regions, and the other state
identified by higher activity of SMN and lower activity of DMN,
and subcortical regions, while healthy controls have higher FO in a
state with low activity of subcortical areas and high activity in
DMN [55]. These studies and our study agree that the
spatiotemporal alteration related to MDD diagnosis could not
only be found in DMN but is also associated with alterations in
other neural networks, including SMN. Our findings revealed that
patients have higher FO and ALT in #6 with the higher functional
activity of DAN, SMN, and SN, and relatively low FC not only within
DMN but also within all other investigated brain networks. This
finding indicates that this brain state is more stable in sympto-
matic patients. The current finding fits well with the findings of the
recent static FC mega-analysis that showed lower FC mainly within
the SMN, DAN, and SN in patients with MDD compared to healthy
controls [12, 13].

Fig. 3 Correlation of fractional occupancy with BDI total score in
MDD patients. Each scatterplot shows each state’s fractional
occupancy and the BDI total scores in MDD patients. As it is
indicated by the R-value and p-values on the top of each plot, A FO
of state #6 positively correlated and B FO of state #4 is negatively
correlated with the BDI total score. The correlations of FO of other
states (#1, #2, #3, and #5) are not significant.
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The association between the temporal features (FO and ALT) of
state #6 and self-rated depression severity might be explained by
the possible increased salience for potential negative self-related
thoughts emerging during the resting-state scan in MDD
[1, 2, 10, 75]. We assume that the negative thoughts in
symptomatic patients are distressing and thereby provoke
emotional arousal [76–78]. Given the putative function of DAN,
SMN, and SN, another speculative explanation may be that the
higher activity in these networks is associated with a higher level
of sympathetic arousal as a sign of stress reaction during the MR
scanning [79, 80]. However, state #6 did not relate to any specific
symptoms cluster of the self-rated severity. This may indicate a
symptom-unspecific association and further studies measuring
symptom categories with targeted questionnaires or behavioral
tasks are needed to elucidate general and symptom-specific brain
dynamics in MDD.
We also found that the FO of state #6 was associated with the

recurrence of depression but not with the age of onset of MDD.
These findings suggest that participants experiencing recurrent
depressive episodes have a specific pattern of brain dynamics that
may be, for example, associated with the proneness to ruminate, a
feature which was previously related to dynamic connectivity and
depression relapse. However, this is speculative and would require
follow-up research [40, 81].
Unraveling neuroimaging markers of MDD can significantly

impact monitoring remission, prediction of relapses and improv-
ing behavioral and pharmaceutical interventions [82, 83]. A recent
case-control study investigating the biological and behavioral
markers of MDD using structural, diffusion-tensor imaging, task,
and rs-fMRI (static FC) found that the deviations of the univariate
neuroimaging features of these modalities between patients with
MDD and healthy controls are low and negligible [84]. However,
the current dynamic features of rs-fMRI differed significantly
between MDD patients and healthy controls and were sensitive to
the severity of depression and the reoccurrence of depressive
episodes. Previous classification studies using both static and
dynamic FC features also substantiate the sensitivity of dynamic
features in discerning psychiatric diagnoses [85, 86].

Limitation
The sample was not balanced between asymptomatic and
symptomatic MDD. Future studies should increase sample size
and include longitudinal measurements to investigate within-
person differences related to dynamic features and remission
status. We limited the effect of medication other than antide-
pressants. However, the patients were treated with different types
of antidepressants, with different doses and duration, both of
which could affect the results of the current study. Although we
removed the motion parameters in the preprocessing pipeline,
the latent head motion may still affect the resulting brain states.
The duration of the fMRI scan for each participant was relatively
short. However, to address this limitation, we concatenated the
time series of all participants and fit the HMM model on the
resulting long format. This approach allowed us to capture a
sufficient time-series to obtain temporal information and over-
come the issue of short scan duration. The current findings
suggest that future studies may benefit to include measures of the
sympathetic nervous system and questionnaires related to self-
referential processes during rs-fMRI scans to further investigate
the specificity of associations between physiological and sub-
jective states, and dynamic brain measures.

CONCLUSION
In conclusion, our findings suggest that patients with MDD
showed higher proportional time spent and temporal stability in
spatial states characterized by relatively lower connectivity within
and between entire brain functional networks and higher

averaged functional activity of regions in SMN, SN, and DAN.
The stability of this brain state might be associated with the
inability to disengage from discomfort in the scanner or self-
related negative thoughts leading to heightened arousal. The
recurrence of this pattern could result in or be associated with the
maintenance of negative mood states in patients with higher
severity of depressive symptoms and multiple recurrent episodes.
While the altered temporal dynamics may contribute to the
persistence of negative affect and attention biases in MDD, it is
noteworthy that asymptomatic individuals share similarities with
healthy individuals in terms of temporal dynamics. This suggests
that affective domains, such as mood and emotional processing,
may show the symptomatic resemblance between asymptomatic
individuals and healthy individuals, while the brain dynamics
changes may appear less prominent. However, it is important to
acknowledge that these interpretations are partially speculative
due to the limitations of the study, including the absence of
subjective assessments of experiences in the scanner and
physiological measures. Future research incorporating subjective
reports and physiological data could provide further insights into
the relationship between temporal dynamics, attention biases,
and the interplay between trait and state characteristics of MDD.
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