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Previous studies have linked higher body mass index (BMI) to lower subjective well-being in adult European ancestry populations.
However, our understanding of these relationships across different populations is limited. Here, we investigated the association
between BMI and well-being in people of (a) East Asian and (b) European ancestry in the China Kadoorie Biobank (CKB) and UK
Biobank (UKB), respectively. Mendelian randomisation (MR) methods were used to test the relationship between BMI with (a) health
satisfaction and (b) life satisfaction. One-sample MR enabled us to test effects in men and women separately and to test the role of
cultural contexts by stratifying our analyses by urban and rural home location in both China and the UK. Further, we implemented a
control function method to test the linearity of the BMI-well-being relationship. We found evidence of different associations
between BMI and well-being in individuals of East Asian versus European ancestry. For example, a genetically instrumented higher
BMI tentatively associated with higher health satisfaction in people of East Asian ancestry, especially in females (ß: 0.041, 95% CI:
0.002, 0.081). In contrast, there was a robust inverse association between higher genetically instrumented BMI and health
satisfaction in all European ancestry UKB participants (ß: −0.183, 95% CI: −0.200, −0.165, Pdifference < 1.00E−15). We also showed
the importance of considering non-linear relationships in the MR framework by providing evidence of non-linear relationships
between BMI and health and life satisfaction. Overall, our study suggests potential setting-specific causality in the relationship
between BMI and subjective well-being, with robust differences observed between East Asians and Europeans when considering
very similar outcomes. We highlight the importance of (a) considering potential non-linear relationships in causal analyses and (b)
testing causal relationships in different populations, as the casual nature of relationships, especially relationships influenced by
social processes, may be setting-specific.
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INTRODUCTION
Subjective well-being, a measure that seeks to reflect happiness and
life satisfaction, is derived from people’s emotional and cognitive
evaluations of their quality of life [1, 2]. In 1946, the World Health
Organisation (WHO) re-defined “health” as a state of complete
physical, mental and social well-being and not merely the absence
of disease or infirmity [3]. Here, the concept of health is extended to
quality of life with emphasis on a person’s general well-being [4].
The WHO also emphasise the importance of well-being in their
definition of “good mental health” [4]. Understanding factors that
contribute to lower well-being is crucial to ensure appropriate public
health prevention strategies and messaging.
There is extensive evidence linking higher Body Mass Index

(BMI) to lower subjective well-being in adult European (EUR)
ancestry populations [5–7]. For example, Mendelian randomisa-
tion (MR) approaches have provided some evidence for a causal
role of higher BMI on lower subjective well-being scores [7, 8]. This

association was driven by an effect of BMI on people’s satisfaction
with their health, with little evidence of an effect on happiness.
Furthermore, studies have extended these analyses to tease

apart the adverse metabolic and other health consequences of
high BMI from other factors including psychosocial and cultural
influences [8, 9]. MR methods tested the relationship between
favourable adiposity (higher BMI but a more favourable metabolic
profile) and unfavourable adiposity (higher BMI and a less
favourable metabolic profile) with well-being. This provided
evidence for a casual role of both higher favourable and
unfavourable adiposity on well-being in adult EUR ancestry
populations, highlighting the importance of non-metabolic
consequences in this relationship, for example, social stigma and
perceptions of obesity [8].
Currently, our understanding of the relationship between

obesity and well-being across different populations is limited.
The social patterning of body weight changes over the course of
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economic development; as a country’s wealth increases, obesity
moves from being more common in higher socioeconomic groups
to being associated with socioeconomic disadvantage [10–12].
This is likely to reflect larger body size being regarded as a positive
status symbol in some cultures. Additionally, in many low- and
middle-income countries, limited access to high-calorie foods may
initially serve as a protective factor against obesity [13]. However,
as these countries undergo economic development and adopt
more Western-style diets, the increased availability and afford-
ability of energy-dense, nutrient-poor foods contribute to a rapid
rise in obesity rates [14]. This dietary transition is characterised by
a higher consumption of processed foods, added sugars and
unhealthy fats [15]. As a result, the burden of obesity and
associated non-communicable diseases is shifting towards low-
and middle-income countries, posing a significant challenge to
their healthcare systems and economies [16]. Observational
studies in people of East Asian (EAS) ancestry have shown both
high and low BMI to associate with lower subjective well-being
[17, 18] but the study designs have not enabled causal inferences
to be made.
Ideally, evidence of causal effects comes from well-conducted

randomised control trials (RCTs). However large-scale RCTs cannot
always be performed because they can be costly, impractical or
even unethical. One of the alternatives is to perform MR analyses
that are similar to RCTs in terms of study design. MR uses genetic
variation as a natural experiment to investigate the causal
relations between potentially modifiable risk factors and health
outcomes in observational data [19]. To date, no studies have used
genetic techniques to test the causal role of BMI on well-being in
adults of EAS ancestry. The identification of causal associations in
different sociocultural contexts will provide important information
about the complex and potentially setting-specific relationships
between obesity and well-being, thereby informing global
decisions on medical management and public health strategies.
Traditional linear models assume that the relationship between

BMI and well-being is linear, but recent research has challenged
this assumption. Several studies have suggested that the relation-
ship between BMI and well-being may follow a non-linear pattern,
with both low and high BMI levels being associated with
decreased well-being [20–22]. Traditional linear models may fail
to capture the complexity of this relationship, leading to biased
estimates and incorrect conclusions. Therefore, it is crucial to
investigate non-linear relationships in observational studies of BMI
and well-being.
By uncovering the true nature of the relationship between BMI

and well-being, researchers can identify at-risk populations and
tailor interventions accordingly. For instance, a non-linear relation-
ship could indicate that interventions should target individuals
with specific BMI ranges to improve their well-being, rather than a
one-size-fits-all approach. Moreover, investigating non-linear
relationships could help us understand the complex interplay
between these variables, leading to more accurate estimates and
better-targeted interventions.
Here, we utilise MR methods, to provide important information

about the relationship between BMI and well-being. Using data
from the China Kadoorie Biobank (CKB) and the UK Biobank (UKB)
to directly compare the relationship between BMI and well-being
in East Asian and European populations, we (1) investigate the
association between BMI and well-being in people of (a) EAS and
(b) EUR ancestry; (2) test effects in men and women separately; (3)
further test the role of cultural contexts by stratifying our analyses
by urban and rural home location in both China and the UK; and
(4) test the linearity of the BMI-well-being relationship. We show
that the relationship between BMI and well-being differs across
different contexts – “setting-specific causality” – providing
evidence that population-level public health approaches to
obesity and well-being may need to take into account the cultural
and environmental characteristics of the target population.

METHODS
China Kadoorie Biobank
The CKB (www.ckbiobank.org) is a study of 512,891 adults aged between
30 and 79 years at recruitment, with the baseline survey occurring
between 2004–2008. The CKB and data collection has been described in
detail elsewhere [23], but briefly the baseline survey took place in 10
geographically defined regions in China (5 urban, 5 rural) and detailed
questionnaire data, physical measurements and blood samples were taken
from all participants. The participants agreed to have their health followed
via linkages with clinical registries and health insurance databases. All
analyses were conducted under project 2019–0003 as approved by the
CKB Research Committee, using dataset DAR-2021-00041 from data
release 17.02.

UK Biobank
The UKB is a health resource with extensive phenotypic and genetic data
available for over 500,000 participants, who were aged between 40 and 70
at recruitment (from 2006 to 2010). Participants were recruited from across
the UK and attended one of 22 centres in England, Scotland and Wales, to
provide detailed sociodemographic, health and anthropometric data as
well as providing blood and urine samples for subsequent analyses.
Participants consented to having their health followed and many have
subsequently participated in further monitoring or completed additional
questionnaires. The cohort is described in detail elsewhere, with
information on ethics and recruitment [24]. This research has been
conducted using the UK Biobank resource under application number 9072.

Genetic variants
China Kadoorie Biobank. Genotyping in the CKB has been previously
described [25]. Briefly, a total of 102,783 participants were genotyped
using two custom-designed Affymetrix Axiom arrays, including up to
803,000 variants, optimised for genome-wide coverage in Chinese
populations. Stringent QC resulted in genotypes for 532,415 variants
present on both array versions. Genotypes were imputed to the 1000
Genomes Phase 3 reference (EAS MAF > 0) using SHAPEIT version 3 and
IMPUTE version 4.
Genotype data were available for 100,574 individuals whose samples

passed QC (call rate >99.97% across all variants).

BMI variants selected
The BMI variants that reach P < 1 × 10−8 in independent genome-wide
association studies in European ancestries were extracted from the
imputed CKB data (Supplementary Table 1) [26]. Variants were then coded
based on the trait-increasing allele in CKB; this was assessed in each sex by
regressing rank-inverse normal transformed (RINT) BMI against the
corresponding set of variants in a univariate multiple regression model.
When the trait-increasing allele differed between men and women, the sex
in which the effect size was largest was used to code the effect allele in
both sexes. Block jack-knifing was then used to weight the variants. In the
unrelated subset of CKB participants with valid genetic data (n= 72,698),
the variants were regressed against BMI in men and women separately,
with adjustment for 12 national principal components (PCs). The resulting
effect sizes were used to weight the variants in the related individuals.
To weight the variants in the unrelated individuals, the unrelated subset

was split into 100 blocks. Each block was then iteratively removed from the
univariate multiple regression model and estimated effect sizes applied as
weights to the individuals excluded from the regression. These weights
were used to create a genetic risk score (GRS) in CKB (Eq. 1). Multiallelic
variants or variants with a MAF < 0.01 in CKB were excluded from GRS
generation.
Within CKB, the BMI GRS was robustly associated with BMI, explaining

1.5% (F= 637.87) and 3.1% (F= 1815.94) of the variance in males and
females, respectively.

UK Biobank. Genotyping in the UKB has been described in more detail
elsewhere [27]. Briefly, precisely imputed (INFO score > 0.9) genetic
variants were selected from the UK Biobank’s imputation data (released
in 2017). Genome-wide genotyping was performed on 451,025 individuals
using the UK Biobank Axiom Array, and on ~50,000 individuals using the
UK Biobank BiLEVE array. The two SNP arrays were very similar with over
95% common marker content. PCA was performed to determine
population stratification. Principal components (PCs) were generated in
the 1000 Genomes Cohort using high-confidence SNPs to obtain their
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individual loadings. These loadings were then used to project all the UK
Biobank samples into the same principal component space, and
individuals were then clustered using PCs 1–4. Participants were removed
if they had subsequently withdrawn from the study (n= 111) or if they
were sex mismatches (n= 348; self-reported sex did not match
genetic sex).
A subset of unrelated individuals (n= 379,768) was defined from the

451,025 individuals of white EUR ancestry, and the KING Kinship matrix was
used to separate out related individuals (up to third degree). An optimal
list of unrelated individuals was generated to allow maximum numbers of
individuals to be included. Ancestral PCs were then generated within these
identified individuals for use in subsequent analyses.

BMI variants selected
Genetic variants associated with BMI at genome-wide significance
(P < 5 × 10−8) in the GIANT consortium of up to 339,224 people of EUR
ancestry were selected (Supplementary Table 2) [28]. Independent loci
were defined by a clumping analysis on a European-only GWAS-based
meta-analysis, using LD r2 > 0.1 and a distance criterion of ±500 kb
surrounding each genome-wide significant peak (P < 5 × 10−8) [28]. Here,
we used an alternative set of SNPs to those used in the CKB GRS as the
discovery sample did not include the UK Biobank and therefore avoids
over-fitting.
The variants were recoded as 0, 1 and 2 according to the number of BMI-

increasing alleles. A weighted GRS was created using BMI variants (Eq. 1).
Each variant was weighted by its effect size (β-coefficient) obtained from
the primary GWAS that did not include any data from the UK Biobank [28].
Within UKB, the variants included explained 1.8% (F= 3230.42) and 1.5%

(F= 3114.02) of the variance in BMI in males and females, respectively.

Genetic risk scores
Genome wide significant variants were used to create a weighted GRS .
Firstly, variants were recoded to represent the risk-increasing alleles. Each
variant was then weighted by its effect size (Eq. 1).
Equation 1 Weighted Genetic Risk Score

GRSw ¼ β1d1 þ β2d2 þ ¼ þ βndn ¼
Xn

i¼1

βidi

GRSs ¼ n ´GRSwPn
i¼1 βi

Where βi represents the effect size and di represents the effect allele
dosages for variant i of n, and GRSw and GRSs represent the weighted and
standardised GRSs, respectively.

Exposure and outcome measures
Exposure: body mass index (BMI)
In both CKB and UKB, BMI was calculated as weight (kg) divided by the

square of standing height (m). BMI was available for 100,574 and 379,708
individuals with valid genetic data in the CKB and UKB, respectively.
Outcome: well-being

Health satisfaction. In CKB, participants were asked “How is your current
self-rated health status?" with the options to respond “Poor”, “Fair”, “Good”
or “Excellent” (Supplementary Table 3). Similarly, in UKB all participants
were asked “In general how would you rate your overall health” with the
options to respond “Poor”, “Fair”, “Good” or “Excellent”. We recoded these
variables 0 to 3 with 3 representing “Excellent”.
Amongst genotyped participants, 100,574 and 379,708 had information

on health satisfaction in CKB and UKB, respectively.

Life satisfaction. In CKB, participants were asked “In general, how satisfied
are you with your life?" with the options to respond “Very unsatisfied”,
“Unsatisfied”, “Neither satisfied nor dissatisfied”, “Satisfied” or “Very
satisfied”. Due to low numbers (0.3%) of individuals reporting to be “Very
unsatisfied”, we combined this with the “Unsatisfied” category and
recoded this variable 0–3 with 3 representing “Very satisfied” (Supple-
mentary Table 4).
In UKB, all participants completing the Mental Health Questionnaire

(MHQ) were asked: “In general how happy are you?” (Data field 20458) with
the options to respond, “Extremely unhappy”, “Very unhappy”, “Moderately
unhappy”, “Moderately happy”, “Very happy”, “Extremely happy”, “Do not

know” and “Prefer not to answer”. We recoded this variable with 0 to 5
with 5 representing “Extremely happy”. Participants who preferred not to
answer or did not know were set to missing.
Amongst genotyped participants, 100,574 and 130,298 had information

on life satisfaction in CKB and UKB, respectively.

Data analysis
Observational associations. BMI was regressed against measures of well-
being using linear models, which were adjusted for age at baseline, sex,
and region (CKB only), centre (UKB only) and then further adjusted for
smoking status, alcohol consumption and measures of socioeconomic
status (SES, Supplementary Methods).

One-sample Mendelian randomisation. We undertook 1-sample MR
analyses to test the causal relationship between BMI and well-being in
people of EAS and EUR ancestry.
We employed the two-stage least-squares regression estimator method

which uses predicted levels of BMI per genotype and regresses the well-
being outcome against these predicted values [29]. First, we calculated the
association between the BMI GRS and BMI. These predicted values were
then used as the independent variable and well-being as the dependent
variable in a linear regression model. In both stages we adjusted for age,
regional principal components, and array version.
Results from MR analyses may represent a valid causal effect estimate

under the condition of four core assumptions [19, 30]:

1. The genetic instrument needs to robustly associate with the
exposure (‘relevance’);

2. There should be no joint causal influence affecting the exposure
instrument and the outcome (‘independence’);

3. The instrument must not affect the outcome through any
mechanism other than through the exposure (‘exclusion restriction’).

4. The true relationship between the exposure and outcome in each
specific analysis is correctly modelled.

An example where assumption 4 would be violated is if a linear
relationship between the exposure and outcome in the TSLS model were
assumed, implying a constant causal effect across all levels of the
exposure, but in fact the true relationship was non-linear. We aimed to test
the linearity assumption by additionally fitting quadratic causal effect
models (see below).
In CKB, the analyses were performed stratified by sex and recruitment

region, using region-specific principal components. The resulting estimates
and standard errors were then meta-analysed using a fixed effects model
to provide estimates for urban and rural dwellers and for all individuals.
The heterogeneity of the estimates was assessed using the I2 statistic. For
UKB, the analyses were run in all individuals and there was no need for
meta-analysis.

Differences between CKB and UKB estimates. To test the hypothesis that
the effects of BMI on well-being may differ in individuals of EAS and EUR
ancestry we compared our genetic estimates using the Fisher’s z-score
method (Eq. 1) [31].

z ¼ β1 � β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE21 þ SE22

p (1)

Sensitivity analyses. We repeated the genetic analyses for life satisfaction
in CKB excluding the Hunan region, as the prevalence of individuals
reporting to be “unsatisfied” in this region was <1% in both males and
females (Supplementary Table 4).

Non-linear analyses. To test whether the relationship between BMI and
well-being outcomes was non-linear, we compared linear, quadratic
(U-shaped) and fractional polynomial (FP) models. The quadratic associa-
tion between BMI status and health and life satisfaction was tested by
regressing well-being outcomes on linear and quadratic terms of BMI.
FP modelling is a powerful tool to detect non-linear associations [32–34].

FPs are described in more detail elsewhere [35]. Briefly, there are two
classes of FP: First degree (FP1) and second degree (FP2) FPs. FP1 performs
eight tests to detect whether the fit is improved by a power transformation
of the variable X, Xp where P is chosen from S= (–2, –1, –0.5, 0, 0.5, 1, 2, 3).
FP with value of P= 1 is synonymous with a linear regression. FP2 is an
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extension to β1Xp1+ β2Xp2 which compares 36 different power combina-
tions, with p1= 1, p2= 2 equivalent to quadratic regression.
Linear and non-linear models were compared based on the Akaike

information criterion (AIC), and the model with an AIC value smaller than
the other model was considered to be a better fit [36].

Non-linear Mendelian randomisation. We performed non-linear MR of the
relationship between BMI and measures of subjective well-being in the CKB
and UKB using a control function method [37]. In the first stage, we regressed
the instrumental variable (BMI GRS) on the exposure (BMI) whilst accounting
for covariates. In the second stage, the outcome (well-being) was directly
regressed on the exposure (BMI) including both linear and quadratic terms
adjusting for covariates and the residuals of the first stage regression, in order
to account for unmeasured confounding. The coefficients of the second
stage were taken as the control function estimates. We compared the CKB
and UKB non-linear estimates using Fisher’s z-score method (Eq. 1).

RESULTS
The demographics of individuals with valid genetic data in CKB
and UKB are shown in Table 1. Generally, individuals in the CKB
had a lower BMI, were younger, included a higher proportion of
females, and a lower proportion of participants were living in
urban regions when compared to participants in the UKB (Table 1).

Health satisfaction
Higher BMI was differentially associated with health satisfaction in
CKB and UKB using both observational and genetic models.

Observationally, within CKB, a 1-SD higher BMI (3.50 kg/m2) was
associated with higher health satisfaction (0.033, [0.027, 0.039]) in all
individuals (Table 2 and Fig. 1). Estimates were consistent in males
(0.047, [0.038, 0.056]) and females (0.024, [0.017, 0.032]; Table 2 and
Fig. 1). In contrast, a 1-SD higher BMI (4.80 kg/m2) was associated
with lower health satisfaction (−0.179, [−0.181, −0.177]) in all
individuals in the UKB. Effect estimates were consistent when
stratifying by sex (Table 2 and Fig. 1). Adjusting the observational
analyses for smoking status, alcohol consumption and measures of
SES (Supplementary Methods) slightly attenuated the effect
estimates toward the null (Supplementary Table 5).
Genetics provided some evidence for population-specific causality.

One-sample MR, in 100,574 East Asian ancestry individuals, provided
tentative evidence for a causal role of higher BMI in health
satisfaction in females (0.041, [0.002, 0.081]), consistent with the
observational results (Table 2 and Fig. 1). By contrast, in males there
was no evidence of an association (−0.006, [−0.064, 0.052]). Thus, for
meta-analysis across all individuals, a genetically determined 1-SD
higher BMI was not significantly associated with higher health
satisfaction (0.026, [−0.007, 0.059]), although in each case the genetic
association was consistent with that from the observational analysis.
In people of EUR ancestry, 1-sample MR methods provided strong

evidence for an inverse causal association between higher BMI and
health satisfaction, consistent with the observational analyses. A 1-SD
higher BMI was associated with lower health satisfaction in all
individuals (−0.183, [−0.200, −0.165]) and in males (−0.231, [−0.254,

Table 1. The demographics and lifestyle characteristics of participants in the CKB and UKB with valid genetic data and measured BMI.

Demographic CKB UKB Pa

N 100,574 379,708 –

Mean age at recruitment (SD) 53.7 (11.0) 57.2 (8.0) <1.00E-15

Female, N (%) 57,573 (57.2) 204,736 (53.9) <1.00E-15

Lives in urban region, N (%) 43,939 (43.7) 320,127 (85.1) <1.00E-15

Mean BMI (SD) 23.7 (3.5) 27.4 (4.8) <1.00E-15

Mean WHR (SD) 0.88 (0.1) 0.87 (0.1) –

Sleep hours (SD) 7.37 (1.4) 7.33 (0.95) 8.22E-12

Mean MET hours (physical activity metric) (SD) 6.03 (3.5) 7.40 (1.1) <1.00E-15

Smoking status, N (%) <1.00E-15

Never smoker 60,314 (60.0) 204,218 (53.8) –

Former smoker 6921 (6.9) 134,423 (35.4) –

Current smoker 27,670 (27.5) 35,940 (9.5) –

Occasional smoker (CKB)/ Missing (UKB) 5669 (5.6) 5127 (1.4) –

Highest education, N (%) <1.00E-15

No formal school 20,141 (20.0) 63,515 (16.7) –

University 2474 (2.5) 180,127 (47.4) –

Other 77,959 (77.5) 132,445 (34.9) –

Missing 0 (0) 3621 (1.0) –

Unemployed N (%) 2901 (2.9) 6182 (1.6) <1.00E-15

Has own home N (%yes) 42,883 (42.6) 340,318 (91.7) <1.00E-15

Health satisfaction N (%) – – <1.00E-15

Excellent 17,187 (17.1) 64,053 (16.9) –

Good 27,187 (27.0) 202,717 (58.4) –

Fair 44,584 (44.3) 77,460 (20.5) –

Poor 11,616 (11.6) 16,046 (4.2) –

Anxiety N (%) 682 (0.7) 6163 (7.5) <1.00E-15

Depressive symptoms N (%) 3398 (3.4) 41,644 (14.4) <1.00E-15

Major depression N (%) 760 (0.8) 29,594 (23.8) <1.00E-15
aP Comparison of people of East Asian (CKB) and European (UKB) ancestry.
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−0.208]) and females (−0.206, [−0.229, −0.184]), respectively
(Table 2 and Fig. 1).
The effect estimates, when using 1-sample MR methods, were

substantially different when comparing individuals of East Asian and
European ancestry (Pdiff<1.00E-15, Supplementary Table 6). Signifi-
cant differences were also observed in sex stratified analyses (Pdiff
males= 1.75E-12 and Pdiff females= 1.24E-04, Supplementary Table 6).

Recruitment region within China influenced our findings, whereas
higher BMI was consistently associated with lower health satisfaction
in UKB. Observationally, higher BMI was associated with higher

health satisfaction in all individuals of EAS ancestry living in either
urban or rural regions of China (Table 2), with consistent estimates
in males and females (Table 2). However, when further adjusting
for smoking status, alcohol consumption and SES, in males and
females from urban regions the confidence intervals crossed the
null (Supplementary Table 5). By contrast, observationally higher
BMI was robustly associated with lower health satisfaction in
urban and rural dwelling EUR ancestry populations (Table 2).
When stratifying by urban and rural regions, there was no clear

causal evidence within people of EAS ancestry, although the effect
estimates were unchanged (Table 2 and Fig. 2). Across the 10 CKB
regions we observed high heterogeneity between the estimates
for all participants and for females (Pheterogeneity < 1.00E-15
Supplementary Table 7 and Supplementary Fig. 1). By contrast,
genetically instrumented BMI provided strong evidence that
higher BMI lowered health satisfaction in EUR ancestry individuals
living in both urban and rural regions of the UKB (Table 2 and
Fig. 2). For example, a 1-SD higher BMI was associated with lower
health satisfaction (−0.184, [−0.202, −0.165]) in all individuals
living in urban areas.
For participants living in both urban and rural environments,

comparison of CKB and UKB estimates provided strong evidence
for a difference in the relationship between BMI and health
satisfaction in individuals of East Asian and European ancestry
(Purban= 2.79E-04, Prural= 5.37E-10; Supplementary Table 6).

Life satisfaction
Limited evidence for an association between BMI and life satisfaction.
Observationally, a 1-SD higher BMI was associated with higher life
satisfaction (0.058, [0.053, 0.063]) in all individuals of EAS ancestry
in the CKB. Estimates were consistent in (a) males and females
(Table 3 and Supplementary Fig. 2), (b) urban versus rural dwellers
(Table 3), and (c) when further adjusting for SES, alcohol
consumption and smoking status (Supplementary Table 5).
By contrast, observationally a 1-SD higher BMI was associated

with lower life satisfaction (−0.019, [−0.023, −0.014]) in all UKB

Table 2. The observational and genetic associations between BMI and health satisfaction in the CKB and UKB stratified by sex and urban and rural
regions.

Observational Genetic

Study Strata Region Beta (95% CI) per SD higher BMI Pa Beta (95% CI) per SD higher BMI Pb

CKB All Both 0.033 (0.027, 0.039) <1.00E-15 0.026 (−0.007, 0.059) 0.12

Male Both 0.047 (0.038, 0.056) <1.00E-15 −0.006 (−0.064, 0.052) 0.83

Female Both 0.024 (0.017, 0.032) 1.10E-10 0.041 (0.002, 0.081) 0.04

All Urban only 0.020 (0.011, 0.030) 1.40E-05 0.022 (−0.031, 0.076) 0.41

Male Urban only 0.030 (0.015, 0.044) 7.10E-05 −0.004 (−0.100, 0.091) 0.93

Female Urban only 0.016 (0.004, 0.028) 0.01 0.035 (−0.030, 0.099) 0.30

All Rural only 0.034 (0.027, 0.041) <1.00E-15 0.028 (−0.013, 0.070) 0.18

Male Rural only 0.051 (0.040, 0.063) <1.00E-15 −0.008 (−0.080, 0.065) 0.84

Female Rural only 0.025 (0.015, 0.034) 3.70E-07 0.045 (−0.005, 0.095) 0.08

UKB All Both −0.179 (−0.181, −0.177) <1.00E-15 −0.183 (−0.200, −0.165) <1.00E-15

Male Both −0.181 (−0.185, −0.178) <1.00E-15 −0.231 (−0.254, −0.208) <1.00E-15

Female Both −0.182 (−0.185, −0.179) <1.00E-15 −0.206 (−0.229, −0.184) <1.00E-15

All Urban only −0.178 (−0.181, −0.176) <1.00E-15 −0.184 (−0.202, −0.165) <1.00E-15

Male Urban only −0.180 (−0.184, −0.176) <1.00E-15 −0.234 (−0.260, −0.209) <1.00E-15

Female Urban only −0.181 (−0.184, −0.178) <1.00E-15 −0.203 (−0.228, −0.179) <1.00E-15

All Rural only −0.179 (−0.185, −0.173) <1.00E-15 −0.167 (−0.213, −0.122) 6.40E-13

Male Rural only −0.185 (−0.194, −0.176) <1.00E-15 −0.173 (−0.234, −0.113) 1.90E-08

Female Rural only −0.178 (−0.185, −0.170) <1.00E-15 −0.177 (−0.241, −0.114) 4.20E-08
aP adjusted for age, region (CKB only), centre (UKB only) and sex.
bP adjusted for age, region (CKB only), centre (UKB only), sex and principal components.

Fig. 1 Health satisfaction and BMI in UK Biobank and China
Kadoorie Biobank. The observational and 1-sample genetic
associations between BMI and health satisfaction in all individuals
in the CKB and UKB, stratified by sex.
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individuals. Effect estimates were consistent urban versus rural
dwellers and in females, but in males the observed effect was very
small and confidence intervals crossed the null (Table 3 and
Supplementary Fig. 2).
One-sample MR in individuals of EAS ancestry provided some

evidence for an inverse association between BMI and life
satisfaction in males (−0.077, [−0.123, −0.030]); Table 3 and

Supplementary Fig. 2), but the association was null in females.
Stratifying by urban versus rural home location in CKB suggested
the relationship in males was stronger in those from rural regions
(−0.103, [−0.162, −0.044]) (Table 3 and Supplementary Fig. 3).
However, we observed high heterogeneity across the different
regions in CKB (Supplementary Table 7 and Supplementary Fig. 4).
In the UK Biobank, one-sample MR in EUR individuals provided

no evidence for a causal role of higher BMI on life satisfaction in all
individuals, nor when stratifying by sex and/or home location
(Table 3 and Supplementary Figs. 2 and 3).
When comparing CKB and UKB estimates we found only a

nominally significant difference in the relationship between BMI
and life satisfaction in rural males only (Pdifference= 0.04, Supple-
mentary Table 8).

Sensitivity analyses. We repeated our genetic analyses for life
satisfaction in CKB excluding Hunan as the prevalence of
individuals reporting to be “unsatisfied” in this region was <1%
in both males and females. Excluding Hunan lowered the
heterogeneity of our estimates (Supplementary Table 7), and in
our one-sample analyses the male estimate was no longer
significant (Supplementary Table 9 and Supplementary Figs. 5–6).

Non-linear analyses
Observationally, using quadratic and fractional polynomial (FP)
models, we found evidence for a non-linear relationship between
BMI and health satisfaction in all individuals from both the CKB
and UKB (Supplementary Table 10). The FP2 model demonstrated
the lower AIC value for all analyses in both the CKB and UKB,
including when stratifying by urban versus rural dwelling and/or
sex. Some of the FP2 models were collapsible into FP1 models due
to having the same p1 and p2 values, however, they still differed
from the FP1 model and showed improved model fit. The selected
FP2 models differed between CKB and UKB suggesting the shape
of the non-linear association may be different in people of East

Fig. 2 Health satisfaction and BMI stratified by rural and urban
home location. The 1-sample genetic associations between BMI and
health satisfaction in all individuals in the CKB and UKB stratified by
sex and urban versus rural dwelling.

Table 3. The observational and genetic associations between BMI and life satisfaction in the CKB and UKB stratified by sex and urban and rural
regions.

Observational Genetic

Study Strata Region Beta (95% CI) per SD higher BMI Pa Beta (95% CI) per SD higher BMI Pb

CKB All Both 0.058 (0.053, 0.063) <1.00E-15 −0.028 (−0.055, −0.002) 0.04

Male Both 0.054 (0.047, 0.062) <1.00E-15 −0.077 (−0.123, −0.030) 1.00E-03

Female Both 0.062 (0.056, 0.069) <1.00E-15 −0.004 (−0.037, 0.028) 0.80

All Urban only 0.048 (0.041, 0.055) <1.00E-15 0.006 (−0.036, 0.048) 0.78

Male Urban only 0.059 (0.048, 0.070) <1.00E-15 −0.033 (−0.109, 0.042) 0.39

Female Urban only 0.043 (0.034, 0.052) <1.00E-15 0.024 (−0.027, 0.075) 0.36

All Rural only 0.066 (0.059, 0.072) <1.00E-15 −0.051 (−0.085, −0.016) 4.00E-03

Male Rural only 0.072 (0.062, 0.081) <1.00E-15 −0.103 (−0.162, −0.044) 1.00E-03

Female Rural only 0.063 (0.055, 0.072) <1.00E-15 −0.023 (−0.066, 0.019) 0.28

UKB All Both −0.019 (−0.023, −0.014) <1.00E-15 −0.019 (−0.054, 0.016) 0.28

Male Both −0.002 (−0.008, 0.005) 0.65 −0.003 (−0.049, 0.043) 0.90

Female Both −0.029 (−0.035, −0.023) <1.00E-15 −0.030 (−0.073, 0.014) 0.19

All Urban only −0.020 (−0.025, −0.015) 2.3E-15 −0.027 (−0.066, 0.011) 0.16

Male Urban only −0.005 (−0.013, 0.002) 0.17 −0.003 (−0.054, 0.048) 0.90

Female Urban only −0.028 (−0.035, −0.022) <1.00E-15 −0.031 (−0.079, 0.016) 0.19

All Rural only −0.013 (−0.024, −0.002) 0.02 0.030 (−0.058, 0.119) 0.50

Male Rural only 0.015 (−0.002, 0.032) 0.08 0.026 (−0.085, 0.137) 0.64

Female Rural only −0.030 (−0.045, −0.015) 6.80E-05 0.010 (−0.111, 0.130) 0.88
aP adjusted for age, region (CKB only), centre (UKB only) and sex.
bP adjusted for age, region (CKB only), centre (UKB only), sex, and principal components.
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Asian and European ancestry (Supplementary Table 10). Further,
the FP2 models differed by sex and region within the CKB which
may suggest differences in the non-linear associations within
China (Supplementary Table 10).
Both quadratic and fractional polynomial models provided

evidence for a non-linear relationship between BMI and life
satisfaction in the CKB and UKB (Supplementary Table 11). The FP2
model demonstrated the lowest AIC value in all individuals from
the CKB and UKB and when stratifying by sex. In rural regions of
the CKB, the FP1 model demonstrated a better fit (Supplementary
Table 11). Additionally, despite the lower AIC value for the FP2
model in most cases, there were specific subsets where the FP1
and FP2 models yielded equivalent results. Specifically, in urban
females from the CKB dataset and rural males from the UKB
dataset (Supplementary Table 11).

Non-linear MR. Non-linear MR provided some evidence for a non-
linear relationship between BMI and health satisfaction in all
individuals from both the CKB and UKB (Fig. 3 and Supplementary
Table 12). In the CKB, we saw evidence of an inverted U-shaped
relationship (P < 1.00E-15) whereas in the UKB, the relationship
was mildly curvilinear but with a consistent inverse association
across the full BMI range (P < 1.00E-15). Results were consistent
when stratifying by sex and urban vs rural dwelling in the CKB and
UKB (Fig. 3 and Supplementary Table 12). We found a significant
difference in the non-linear relationships between BMI and health
satisfaction observed in people of EAS ancestry and EUR ancestry
across all regions and when stratifying by sex (Fig. 3 and
Supplementary Table 12).
Similarly, we found some evidence for non-linear relationships

between BMI and life satisfaction, in all individuals from both the
CKB (P= 1.00E-03) and UKB (P < 1.00E-15; Fig. 4 and Supplemen-
tary Table 13). The estimate in the CKB was driven by females

(P= 5.73E-06) with no evidence for a non-linear relationship in
males (P= 0.81). The results were consistent when stratifying by
sex and home location (Fig. 4 and Supplementary Table 13). There
was a significant difference between the CKB and UKB non-linear
estimates for BMI to life satisfaction (Fig. 4 and Supplementary
Table 13). Further, although the p values for the quadratic
estimates were significant, the confidence intervals were wide
(Fig. 4).

DISCUSSION
This study tested the causal role of higher BMI on subjective well-
being outcomes in two large cohorts of people of East Asian and
European ancestries. We have provided evidence that (a) it is
important to consider setting specific causality where the
relationship may not be purely biological and (b) that where
possible it is important to consider non-linear relationships. In
particular, null estimates in linear models may mask a combination
of strong positive and negative effects at different BMIs.
The pathways through which BMI could influence life satisfac-

tion are complex but include weight-related stigma and social
norms. Health satisfaction may be influenced by the direct health
consequences of higher body weight, but an association between
higher BMI and lower health satisfaction could also partially reflect
social norms and the messages about health-related conse-
quences of obesity received from public health campaigns and
other sources. Given that stigma, social norms and public health
messages are likely to differ according to context, we may expect
these relationships to be specific to a setting. Further, the
perceived impact of increasing weight may vary according to
whether someone is currently under or overweight [38–40].
Hence, it is important to investigate these relationships in diverse
ancestries as the BMI to well-being relationship may not be purely

Fig. 3 Non linear relationships between BMI and health satisfaction. A plot of the NLMR estimates using a control function approach in
A Urban regions in the CKB, B Rural regions of the CKB, C Urban regions of the UKB and D Rural regions of the UKB, stratified by sex.
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biological and could be subject to setting-specific causality. To our
knowledge, this is the first-time causal inference methods have
been used in people of East Asian ancestry to tease apart the role
of BMI in well-being. Here, using one-sample Mendelian
randomisation methods in up to 100,574 individuals in the CKB,
we provide tentative evidence that higher adiposity increases
health satisfaction in people of East Asian descent, especially in
females. By contrast, higher BMI was associated with lower life
satisfaction in people of East Asian ancestry, especially in males.
This contrasts with people of European ancestry, where higher
BMI leads to lower health satisfaction, with no association
between BMI and life satisfaction. In both studies we provide
evidence of non-linear relationships between BMI and health and
life satisfaction, suggesting the importance of considering both
high and low BMI in relation to well-being.
The association between higher BMI and higher health

satisfaction in people of East Asian ancestry fits with some
previous observational literature [18, 41]. Whilst in high-income
countries the “thin ideal” has been a cultural symbol [42], in low-
and middle-income countries higher BMI may be considered a
sign of wealth and better health, and hence weight-stigma may be
less common. China’s history of famine and scarcity of food has
led to the common perception that “happiness makes you fat”
[43–45], which may also imply that being fatter makes you happy.
This study suggests that currently within many regions of China
higher BMI is contributing to higher health satisfaction and
therefore, the public health response to the growing obesity
problem in China is likely to need to differ from higher income
countries such as the UK, where we see an inverse association
between BMI and health satisfaction. However, this is very
complex, with differing relationships within different regions of
China. Furthermore, the social patterning of body weight changes

over the course of economic development; as a country’s wealth
increases, obesity moves from being more common in higher
socioeconomic groups to being associated with socioeconomic
disadvantage [46]. This suggests that as China develops as an
economy we may see a directional switch in the association, so
whilst this study demonstrates differences in effect sizes between
people of East Asian and European ancestry now, this may change
in the future.
The pathways from adiposity to subjective well-being could be

explained by obesity-related problems such as diabetes, muscu-
loskeletal problems, etc. or social factors such as weight-related
stigma. We have previously used genetic variants that are
associated with higher adiposity but a favourable metabolic
profile, and these remained associated with poorer well-being [8].
The physical health consequences of higher BMI have been shown
to be similar across the UK and China [47, 48]. Thus, our results
suggest that the association of higher BMI with lower health
satisfaction in the UK is not purely due to the physical health
consequences of obesity driving the association in Europeans,
with potential societal influences, perceptions and stigma
hypothesised to contribute to the relationship between higher
BMI and poorer well-being. The different direction of effects in
China suggests that these processes of weight stigma and its
consequences differ across the UK and China.
Our study further highlights the contrast in findings between

EAS and EUR ancestry populations where higher BMI is associated
with lower life satisfaction in the CKB but, in the UKB we saw no
association between BMI and life satisfaction. Again, we provide
evidence for sex- and region-specific relationships in the CKB with
higher BMI associating with lower life satisfaction in males only.
The male estimate was driven by males living in rural regions of
China. However, when removing Hunan, the rural male estimate

Fig. 4 Non linear relationships between BMI and life satisfaction. A plot of the NLMR estimates using a CF approach of BMI to life
satisfaction in A Urban regions in the CKB, B Rural regions of the CKB, C Urban regions of the UKB, and D Rural regions of the UKB, stratified
by sex.
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was attenuated to the null. A previous study concluded that low-
income people are less inclined to be overweight in China and
tend to have a healthier diet as income constraints lead them to
consume food with lower calories and nutrition [49]. Furthermore,
low incomes limit excess food consumption and increase
physically demanding labour whereas high incomes increase
access to food and allow avoidance of physically demanding
labour [50]. However, there was a low prevalence of people in the
region of Hunan reporting to be unsatisfied (0.8%) and this may
bias our estimate. Further work is required to confirm these
findings.
This study also highlights the importance of considering non-

linear models in causal inference. Here, we found some evidence
that the relationship between BMI and (a) health and (b) life
satisfaction was non-linear with both high and low BMI
associating with lower health/life satisfaction in individuals of
East Asian and European ancestry. Further, we demonstrated
differences in the non-linear relationship between BMI and
health/life satisfaction in individuals of East Asian and European
descent, with an inverted U-shaped relationship in individuals of
East Asian ancestry, whilst in Europeans the relationship was
mildly curvilinear but with a consistent inverse association across
the full BMI range. In Europeans, this relationship may be
explained by the thin-ideal internalisation [41, 51] hypothesis,
according to which individuals in Western countries, particularly
women, cognitively “buy into” socially defined ideals of attrac-
tiveness, i.e., being thin. This could explain why individuals of low
BMI in the UKB report higher health satisfaction than individuals
with low BMI in the CKB. However, this difference may also be
explained by the responses being scaled differently or the
questions being perceived/understood differently in people of
East Asian and European ancestry. Whilst in high-income
countries the “thin ideal” has been a cultural symbol, in low-
and middle-income countries people do not have such a
negative attitude towards having a higher BMI as it may be
considered a sign of wealth and better health [43, 52, 53].
Furthermore, observational non-linear analyses suggested that
the relationship between BMI and well-being outcomes may be
more complex with fractional polynomial models, in some sub-
analyses, better explaining the relationship than quadratic
models in both the CKB and UKB. Also, although the quadratic
term was significant in many of the NLMR analyses the
confidence intervals were wide and indicated uncertainty in
our analyses. Future work should aim to explore more complex
models such as polynomials in a causal inference setting.
This study benefits from individual level data in both the CKB

and UKB which enabled sex-specific analyses, non-linear analyses,
and further regional analyses, to allow us to comprehensively test
the role of higher BMI on well-being outcomes. We acknowledge
some limitations in our work. The question used to define our
measure of life satisfaction differed in the CKB and UKB, such that
we cannot be sure any differences in the relationship between
BMI and life satisfaction in people of East Asian and European
ancestry populations are not due to our definitions not accurately
capturing life satisfaction in both cohorts. Further, in the CKB there
were a low percentage of individuals reporting to be “very
unsatisfied” (0.29%), especially when analysing certain regions and
therefore the power of our sex-specific regional analyses for life
satisfaction is limited, and the by region analyses are exploratory,
purely to try to understand the main results. Using 1-sample MR
methods in the CKB and UKB analyses we were unable to account
for potential pleiotropy in our models. However, previous work in
the UKB using more pleiotropy robust methods provided
consistent estimates with higher BMI associating with lower
health satisfaction. Furthermore, we recognise that one-sample
MR estimates of BMI to life satisfaction in people of EAS ancestry
were in the opposite direction to the observational estimates
within CKB. This may be a result of (a) unmeasured or residual

confounding within our observational analyses [54] or (b) reverse
causation. Accurately accounting for this in our observational
analyses was not possible, although adjustment for socioeco-
nomic factors did attenuate the observational estimates towards
the null, tending to support the unmeasured confounding
hypothesis. Whilst we considered all four key assumptions of
MR, we were only able to use available data to test the exclusion
restriction assumption and it is possible that the BMI GRS may
associate with unmeasured confounders. Additionally, genetic
associations can be confounded by demographic and family-level
processes [55], for example indirect effects of parents’ genotype
on offspring phenotype via environmental pathways which may
violate the independence assumption specifically. Circumventing
these sources of bias requires genotype data on multiple
members of the same family, which was not available here. We
acknowledge that here, we cannot exclude reverse causal
pathways as we were unable to test the role of well-being on
BMI using genetic approaches. Due to the large number of highly
related analyses, it would be challenging to determine an exact
threshold for multiple testing correction. However, we recognise
the importance of this issue and future work should further
investigate these findings with a focus on accounting for multiple
testing. Furthermore, while our study makes robust use of the
available data, it is important to note that the choice of 12 PCs,
though justified, may not fully capture all aspects of genetic
variation in the CKB dataset, given the vast size and complex
ancestral diversity of the Chinese population. Although our
analysis of health satisfaction is based on the subset of UKB
participants who completed the MHQ, we believe that the sample
size is still large enough to detect general trends. However, we
must note that these findings may not be representative of the
broader UKB population due to potential participation biases [56].
Finally, the variants included in the BMI GRS, used in CKB, were
identified in a European Genome Wide Association Study (GWAS)
of BMI and therefore may not accurately represent associations in
individuals of East Asian ancestry. However, these were weighted
by and aligned to the trait raising allele in the CKB, meaning that
the BMI GRS was strongly associated with BMI in CKB (F-stat>100).
Future work should aim to use an external East Asian cohort to
discover instruments for BMI.
Overall, our study suggests potential setting-specific causality in

the relationship between body weight and subjective well-being,
with robust differences observed between East Asians and
Europeans when considering very similar outcomes. This study
highlights the importance of testing causal relationships in
different ancestries, as casual nature of relationships, especially
relationships influenced by social processes may be setting-
specific. We also provide evidence for considering non-linear
relationships in MR studies, with this study highlighting the
importance of both high and low BMI for well-being in both
people of East Asian and European ancestry.
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