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Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent and heterogeneous neurodevelopmental disorder in children
and has a high chance of persisting in adulthood. The development of individualized, efficient, and reliable treatment strategies is
limited by the lack of understanding of the underlying neural mechanisms. Diverging and inconsistent findings from existing
studies suggest that ADHD may be simultaneously associated with multivariate factors across cognitive, genetic, and biological
domains. Machine learning algorithms are more capable of detecting complex interactions between multiple variables than
conventional statistical methods. Here we present a narrative review of the existing machine learning studies that have contributed
to understanding mechanisms underlying ADHD with a focus on behavioral and neurocognitive problems, neurobiological
measures including genetic data, structural magnetic resonance imaging (MRI), task-based and resting-state functional MRI (fMRI),
electroencephalogram, and functional near-infrared spectroscopy, and prevention and treatment strategies. Implications of
machine learning models in ADHD research are discussed. Although increasing evidence suggests that machine learning has
potential in studying ADHD, extra precautions are still required when designing machine learning strategies considering the
limitations of interpretability and generalization.
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INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is one of the most
prevalent neurodevelopmental disorders, affecting ~5–8% of
children worldwide [1, 2]. For about 60% children with ADHD,
the symptoms persist into adulthood [3, 4]. Individuals with ADHD
have poorer educational and social outcomes, increased injury
incidences during daily activities [5, 6], and an elevated risk of
developing more severe mental disorders [7–9]. ADHD is a highly
heterogeneous disorder [10]. For example, sex, genetic, and
environmental factors have been implicated in the presentation of
ADHD [11–13]. There is also diverging evidence regarding the
developmental trajectories and comorbidities of individuals with
ADHD [14, 15]. Considering the high prevalence and life-long
consequences of ADHD, early detection, accurate diagnosis, and
efficient treatments are highly desired. However, the field
currently lacks a comprehensive understanding of the relevant
neural mechanisms and is far from reaching an agreement
regarding efficient treatment strategies.
Extensive studies have attempted to characterize ADHD in

terms of neuropsychological performance, brain anatomy and
functional responses, and genetic risk factors. Cognitive deficits in
executive function, reaction time, vigilance, inhibition control,
sustained attention, and working memory have been reported in
ADHD [16–18]. Neuroimaging studies using T1-weighted magnetic
resonance imaging (MRI), functional MRI (fMRI), resting-state fMRI
(rs-fMRI), and electroencephalogram (EEG) have reported wide-
spread and inconsistent anatomical and functional alterations in

children with ADHD, including frontal lobe, parietal lobe, temporal
lobe, thalamus [19–22]. Genome-wide association studies have
also revealed several variants associated with ADHD [23–25]. In
addition, the treatment of ADHD shows inconsistent results, with
evidence suggesting that 30% of ADHD patients respond poorly
to the most common ADHD medication [26, 27]. The existing
evidence suggests that ADHD may not have a single etiological
source but rather a combined effect of multiple subtle anomalies.
Such a complex etiology is difficult to detect using parametric
statistical methods, and interactions between widespread altera-
tions have not been successfully translated into clinical practice
due to the limited capacities of conventional analytical methods.
The increasing accessibility of machine learning models has led

to increased interest in applying such models to investigate
psychiatric disorders. Generally, machine learning models are
mathematical models that learn complex patterns in an existing
dataset. These learned patterns can then be used for prediction in
a novel dataset (e.g., patient vs control participant, symptom
scores), as well as to highlight the most important variables in
creating this prediction. Machine learning models have proved
effective in capturing the complex interactions between discrete
alterations in schizophrenia, Alzheimer’s disease, and autism
spectrum disorder (ASD) [28, 29]. Most psychiatric studies have
developed models that differentiate patient groups and controls
using classification algorithms like SVM, random forest and linear
discriminative analysis (LDA). Others predict symptom severity or
behavioral performance using regression algorithms, for example,

Received: 23 September 2022 Revised: 19 June 2023 Accepted: 21 June 2023

1Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA. 2Icahn School of Medicine at Mount Sinai, New York, NY, USA.
✉email: xli.aecom@gmail.com

www.nature.com/tpTranslational Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-023-02536-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-023-02536-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-023-02536-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-023-02536-w&domain=pdf
http://orcid.org/0000-0002-8153-5415
http://orcid.org/0000-0002-8153-5415
http://orcid.org/0000-0002-8153-5415
http://orcid.org/0000-0002-8153-5415
http://orcid.org/0000-0002-8153-5415
https://doi.org/10.1038/s41398-023-02536-w
mailto:xli.aecom@gmail.com
www.nature.com/tp


random forest regression, support vector regressor, and elastic net
regression. The general steps involve data splitting, feature
reduction, and model training, as shown in Fig. 1. The original
data is first split into training set (for features selection and
training machine learning models), validation set (for validating
and tuning parameters of trained models), and testing set (for
evaluating the model performance). Before using the training set
to train the model, feature reduction is usually performed using
feature selection or feature fusion to increase the efficiency of the
training process and reduce the chance of overfitting. During the
training process, adjustments are made to the model based on the
model performance in the validation set. Finally, the effectiveness
of the classification models is evaluated in the independent
testing set using accuracy, specificity, sensitivity, or area-under-
the-curve (AUC), and the performance of the regression models is
evaluated by the mean square error or the correlation [30].
However, many studies to date report model performance based
on the results of cross-validation processes without having
independent set testing. Such studies can yield less reliable or
less generalizable results, and therefore, extra precautions are
needed when interpreting the findings of these studies. Using this
general process, most machine learning studies have been able to
differentiate patients with psychiatric disorders and controls with
AUC from 60 to 90% [29]. For diagnostic purposes, models with an
AUC of less than 60% were considered to have bad performance,
while models with an AUC of more than 80% were considered as
having very good performance [31].
Increasing evidence suggests that machine learning techniques

are beneficial in improving ADHD diagnosis, understanding
neurobiological substrates, and evaluating treatment strategies
(for reviews [32–35]). For example, current diagnoses of ADHD
require extensive interviews of parents and teachers (for child-
hood ADHD) and of patients (for adult ADHD) on observations of

current and past ADHD symptoms and subsequent impairment of
daily functioning. Machine learning studies can learn from
sufficient samples to sort and select the most relevant interview
questions for accurate diagnoses. Therefore, machine learning has
the potential to facilitate the development of more efficient
diagnostic procedures for ADHD. Additionally, the ability to
predict treatment outcomes using machine learning may con-
tribute to the emergence of precision medicine (for reviews on
these topics, see [32–35]). The abundance of machine learning
investigations in neuroimaging studies has partially been enabled
by the public release of the ADHD-200 dataset [36], which has
allowed exploration in automating ADHD diagnosis [35]. Recent
public datasets like Adolescent Brain Cognitive Development
(ABCD) dataset also boosted the machine learning research in
ADHD [37].
The majority of existing machine learning studies in ADHD

focus on developing classification algorithms between ADHD
patients and controls or patients with other comorbid disorders.
Undoubtedly, machine learning algorithms were best suited for
predictive purposes. However, the sample size is often a study
limitation. Large and high-quality datasets are difficult to obtain
due to the substantial efforts required in the collection and
maintenance processes. Studies in small-size samples tend to get
over positive results and less generalizable models without
including appropriate validation processes (e.g., lack of indepen-
dent validation set or leakage between the validation set and
training set) [38, 39]. For example, leakage between the training
set and validation/testing set, or feature selection/reduction
before data splitting, can lead to substantial bias in the machine
learning models [40]. Despite these issues, there are merits of
studies with smaller sample sizes. Relative to large sample studies,
small sample studies may be able to recruit more homogeneous
groups. In these homogeneous samples, after proper validation
and evaluation process, the inference of important features, rather
than building accurate classification models, is more beneficial to
the research in ADHD. Due to the ability of machine learning
models to extensively learn the complex patterns in a dataset,
they can also be used to compare different modalities or identify
important features. Be advised that current methods for calculat-
ing feature importance still have limitations. For example, the
most advanced or complex models don’t inherently rank feature
importance; and generalized feature importance scores may not
describe the true relationship that is utilized in the models [41, 42].
Additionally, many studies (despite reporting feature importance
scores) aim at demonstrating machine learning models with high
classification accuracy rather than understanding the most
representative biological information.
Existing reviews have summarized the effectiveness of different

machine learning models in differentiating subjects with ADHD
from control subjects or subjects with other disorders [32–35].
However, in addition to building classification models to aid
diagnosis, machine learning is advantageous in studying mechan-
isms underlying ADHD due to its ability to describe the vast
heterogeneity in the etiology of ADHD. The purpose of the present
narrative review is to summarize the current literature regarding
the applications and benefits of using machine learning algo-
rithms to understand the underlying neural mechanisms of ADHD,
as well as ongoing issues and future research directions. Although
the aforementioned limitations of the interpretation of feature
importance exist, exploring the possible applications may lead to
the development of feature-focused and explainable machine
learning models in ADHD. Studies were included if they met the
criteria of (1) using machine learning algorithms, (2) having a total
sample size of at least 40, (3) applying a cross-validation step, (4)
model evaluation is independent of model training, (5) reporting
comparisons between features (e.g., feature importance, or
performances of different measuring modalities). A full list of
search terms used in this review can be found in the

Fig. 1 Overview of machine learning steps. Typical steps, including
data splitting, feature reduction, and model training, used in
machine learning studies of patients with psychiatric conditions.
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Supplementary document. An overview of the studies that applied
machine learning algorithms in investigating ADHD is presented
in Supplementary Fig. 1. The detailed methodology and key
findings of the included studies can be found in Supplementary
Tables 1–4.

MACHINE LEARNING IN CHARACTERIZING ADHD
The use of machine learning in aiding the diagnosis of ADHD has
been covered extensively in existing reviews [32, 34, 35] and will,
therefore, not be discussed in detail in this review. Briefly, some
evidence suggests that machine learning algorithms have the
potential to benefit the diagnosis of ADHD by either simplifying
the diagnostic process in complex cases (e.g., achieving similar
accuracy with less items, increasing accuracy in patients with
comorbidities) [43–49] or increasing accuracy with additional
neurobehavioral measures or activity records [50–55]. The
contribution of the classification models can be limited by factors
such as the sample sizes used, which often contribute toward
inflated accuracies. Instead, by inspecting the features identified
as most important in classification models, machine learning
algorithms were able to identify the core characteristic of ADHD.
A recent nationwide study in Sweden applied multiple machine

learning models, including random forest, elastic net, deep neural
network, and gradient boosting, in identifying the significant
predictors for ADHD based on family and medical histories from
238,696 individuals [56]. The best model achieved a sensitivity of
71.7% and a specificity of 65.0%, and the results showed that the
top risk factors for ADHD in children are having parents with
criminal convictions, male sex, having a relative with ADHD,
academic difficulties, and learning disabilities. Another study
investigated Conner’s rating scale from both parents and teachers
in differentiating children with ADHD and controls using a deep
neural network [57]. The models demonstrated an accuracy of
89%. More interestingly, the study reported that teachers’ ratings
for the oppositional questions were more discriminative for ADHD
than parents’ ratings. In addition, questions directly describing the
symptoms were more discriminative than the question worded
metaphorically. Among adults with ADHD, one study with
1249 subjects reported that difficulty organizing, does not follow
through, making careless mistakes, and difficulty engaging in
leisure activities were key characteristics of adult ADHD [58]. This
evidence from existing machine learning studies may expand the
understanding of the characteristics of ADHD and provide
guidance for developing more reliable and efficient diagnostic
criteria.
Beyond allowing the classification of subjects into traditional

diagnostic groups, research into machine learning-aided diagnosis
of ADHD has contributed to the understanding of the clinical
presentation and heterogeneity of ADHD by allowing the
identification of novel subgroupings of participants, which can
increase diagnostic accuracies [59, 60]. For example, Fair et al.
evaluated the performance data during seven neuropsychological
tasks, including inhibition, working memory, arousal, response
variability, temporal information processing, memory span, and
processing speed, in a cohort of 285 children with ADHD and 213
controls [61]. By implementing community detection methods,
four subgroups in both the ADHD group and the control group
were identified. Classification using SVM following this subgroup-
ing led to a diagnostic accuracy as high as 84.1%, compared to a
markedly lower classification accuracy of 65% without subgroup-
ing. Similarly, Kleinman et al. regrouped healthy children and
children with ADHD, bipolar disorder, or both into two groups
based on continuous performance task (CPT) performance [62].
LDA was then used to build separate classification models on both
the Diagnostic and Statistical Manual of Mental Disorder (DSM) IV-
based groups and CPT-defined groups. CPT-defined groups had a
markedly higher discriminative accuracy (95.2%) than the DSM IV-

defined groups (23.8%). A more recent study performed clustering
analysis in a combined group of children with ADHD, children with
ASD, and controls based on the behavioral measure from 12
domains [63]. Three executive function-defined groups were
detected, including weakness in flexibility and emotion regulation,
weakness in inhibitory control, and weakness in working memory,
organization, and planning. SVM was used to validate the
detected subtypes in an independent dataset and yield a
classification accuracy of 88.9%. Within a subset of the subjects,
the detected subgroups explained more between subject variance
than the DSM-defined clinical groups. Such studies suggest that
although existing clinical classifications may be sufficient to
identify ADHD, they cannot comprehensively capture the
heterogeneities.
In general, the accuracy of the classification models varies from

66 to 96% in the existing machine learning studies that
investigated behavioral and cognitive performances in ADHD.
The inconsistency was partially contributed by the differences in
total sample size, percentage of the clinical group in the total
sample, test or measurement selection, model selection, or
validation methods. Therefore, extra precaution was required in
designing reliable classification models. Furthermore, machine
learning techniques that can explore the heterogeneities in ADHD
(e.g., clustering analysis, regression analysis) may not only improve
diagnosis but may contribute to improvements in future research
investigating the underlying mechanisms by providing more
appropriately defined samples.

MACHINE LEARNING IN INVESTIGATING BIOLOGICAL
MECHANISMS OF ADHD
Neuroimaging studies
Structural MRI and diffusion tensor imaging. The neuroanatomy of
ADHD has been investigated for decades. However, results are
inconsistent [19, 64, 65]. A recent mega-analysis reported subtle
alterations in surface area in various cortical regions in ADHD [20].
Studies using diffusion tensor imaging (DTI), a neuroimaging
technique that measures microstructural changes, also reported
white matter alterations in widespread regions [66]. This existing
evidence suggests that ADHD might not be related to highly
localized anatomical alterations but more diffuse changes [67–69].
Existing research may be limited by the use of conventional
statistical methods, which lack sensitivity to subtle changes over
multiple regions and the interactions between them.
Machine learning, on the other hand, can model a number of

features simultaneously, making machine learning approaches
particularly well-suited to understanding the widespread structural
alterations underpinning ADHD. For example, Peng et al. reported
results from an extreme learning machine-based classification
model which differentiated children with ADHD and controls with
an accuracy of 90.18% using sMRI data from ADHD-200 [70]. The
model identified surface area, folding index, and volume in the
parietal lobe, temporal lobe, and insula as the most important
predictors of ADHD. Another study using SVM for classification
showed that the white matter volume in the brain stem was the
most important feature in differentiating boys with ADHD and
controls [71]. Using LASSO regression, a recent DTI study reported
that the tract strength between the substantia nigra/ventral
tegmental area and the striatum was able to predict impulsivity
with a Spearman’s correlation of 0.17 in a group of 74 ADHD
patients and controls [72]. In a large cohort (4183 subjects from
35 study sites), deep learning neural network revealed that sMRI
was a good predictor of ADHD in children but not in adults,
supporting the idea that structural alterations associated with
ADHD lessen with age [73]. Studies using sMRI can also identify
structural properties that distinguish ADHD from other common
disorders. For example, Lim et al. investigated the discriminative
power of structural properties in ADHD, ASD, and control
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participants [74]. With voxel-level gray matter volume as features, a
Gaussian process classification algorithm differentiated ADHD
specifically (compared to ASD) from controls with 79.3% accuracy
and highlighted several regions in which structural properties
contributed highly to this classification. Those regions may be
involved specifically in the pathophysiology of ADHD, as opposed
to ASD. Despite these promising results, Oztekin et al. found that
parent and teacher ratings of executive function in an SVM model
resulted in an accuracy of 92.6%, while using sMRI data alone
resulted in an accuracy of 61.2%, and adding anatomical features
to a model containing neurocognitive measures had minimal
benefit [75]. Therefore, in some cases, the additional benefit of
sMRI measures for classification may be limited, although they can
still contribute toward identifying underlying structural differences.
Machine learning can also be used to explore novel sMRI

features, which may provide optimal discriminative power for
ongoing research into ADHD. For example, Chang et al. generated
novel morphological features based on the local binary patterns
(an image texture categorization method) to differentiate data
from 210 ADHD and 226 controls from the ADHD-200 dataset [76].
An SVM model applied to the generated features achieved an
accuracy of 69.95% in detecting ADHD. Similarly, using volumetric
features named Dissociated Dipoles, Igual et al. built an SVM-based
classification model with an accuracy of 72.48%, a specificity of
85.93%, and a sensitivity of 60.07% [77]. Another team used a
hybrid machine learning approach on novel interregional mor-
phological connectivity features and reported a classification
accuracy of 74.65% [78]. Although currently, these studies do not
contribute to our understanding of anatomical alterations in ADHD
per se, they contribute to the field by highlighting features that
may be beneficial for improved diagnosis or sample classification.

Task-based fMRI. Task-based fMRI is a commonly used method to
examine brain activation or functional connectivity during of
engagement of a specific cognitive domain. Features like voxel-

level activation, functional connectivity between regions-of-
interest (ROIs), or network topological properties (as shown in
Fig. 2) can be used to build machine learning models. Several
studies have applied machine learning techniques to fMRI data
collected from participants with ADHD. For example, by applying
various machine learning algorithms to the functional activations
during time discrimination tasks [79], Flanker tasks [80], and stop-
signal task [81], studies have highlighted that the task-related
activations in frontal regions were important for the classification
of ADHD, suggesting functional importance of frontal regions in
ADHD.
Importantly, machine learning algorithms may be able to detect

functional patterns (e.g., the collective contribution of multiple
brain regions in differentiating ADHD and controls), which may
otherwise be undetected when using traditional methods. For
example, Wolfers et al. applied a Gaussian process classifier in
differentiating subjects with ADHD, their unaffected siblings, and
controls based on the fMRI data during stop-signal task [81]. The
model was able to differentiate ADHD patients from their siblings
with an AUC of 0.65 and from control participants with an AUC of
0.64. The results showed that the fronto-lateral and inferior
parietal regions were highly discriminative features for ADHD. Hart
et al. utilized a Gaussian process classifier to differentiate boys
with ADHD from controls based on fMRI data recorded during a
stop-signal task (used to measure response inhibition) [82]. Using
voxel-level functional activation as feature, the classification
accuracy reached 77%. Interestingly, voxels that showed no
significant group differences using traditional univariate analysis
demonstrated high discriminative power when using machine
learning, suggesting that machine learning methods can tease out
important discriminatory activations above and beyond traditional
analysis methods.

Resting-state fMRI. The brain demonstrates intrinsic spontaneous
activity that can be measured during rest. rs-fMRI measures such

Fig. 2 Functional neuroimaging features. A Voxel-level features, for example, voxel-level activation in task-based fMRI or regional
homogeneity in resting-state fMRI. B Functional connectivity. C Network topological properties in graph theoretical analysis. fMRI functional
magnetic resonance imaging.
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activity, and the collected data can be used to generate machine
learning features, such as regional homogeneity (ReHo), fractional
amplitude of low-frequency fluctuation (fALFF), and network
connectivity. As rs-fMRI data does not require the performance of
a task, it is easy to implement in children with ADHD. Classification
techniques have highlighted regions in which resting brain
activity is of potential importance in ADHD. For example, studies
using SVM have revealed that functional connectivity in default
mode network, frontoparietal regions, cerebellum, precuneus/
posterior cingulate cortex regions, and dorsal anterior cingulate
cortex were important in differentiating ADHD [83, 84].
As previously mentioned, the ADHD-200 dataset has allowed

numerous investigations into rs-fMRI correlates of ADHD using
machine learning algorithms. Various rs-fMRI features have been
explored, including ReHo, fALFF, power spectra, functional
connectivity, and voxel- and ROI-level functional networks
[85–87]. Eloyan et al. constructed a classification algorithm based
on majority voting from four algorithms, including random forest
on motor cortex connectivity, SVM on major clusters, gradient
boosting method on decomposed functional connectivity, and
gradient boosting on functional connectivity and motion para-
meters [88]. The final model achieved a specificity of 94% and a
sensitivity of 21%, and connectivity within the motor network was
most important in classifying ADHD participants. Several studies
have utilized SVM to construct classification models and report
that the frontal lobe, parietal lobe, and cerebellum are most
discriminative between ADHD and controls and between ADHD
inattentive subtype and ADHD combined subtype [89, 90].
Similarly, a graph convolutional neural network study identified
the frontal, temporal, and occipital regions and the cerebellum as
the most discriminative regions for ADHD and controls [91].
Despite the success of rs-fMRI-based machine learning models,

it is possible that phenotypic information such as gender, age, and
cognitive measures provide more discriminative power than rs-
fMRI data [92, 93]. However, the addition of rs-fMRI features may
be beneficial nonetheless. For example, Bohland et al. found that
the addition of such features increased generalization to novel
data [93]. Additionally, studies have suggested that rs-fMRI data
are more predictive for inattentive symptoms rather than
hyperactive/impulsive symptoms [94] and that classification
accuracy increases when using an SVM trained separately for
male and female subjects [95], reflecting that certain applications
of such models can yield more accurate results. Such considera-
tions may be useful in future rs-fMRI research.

EEG. Due to its high accessibility, low cost, and non-invasive
nature, EEG has gained popularity in studying ADHD. Common
features generated from EEG data are power in frequency bands
at different locations and event-related potentials (ERPs), which
are electrical responses that are time-locked to the occurrence of
sensory or cognitive processes, as shown in Fig. 3. Several studies
using machine learning have shown that features extracted from
EEG data can be used to differentiate ADHD patients from controls
and from other comorbid conditions with varied accuracy ranging
between 69 and 91% [96–99]. Classification of specific diagnostic
subtypes of ADHD based on EEG features is also possible,
although with a lower classification accuracy of around 72%
[100, 101].
Several studies have investigated the predictive power of

specific features of EEG data. For example, using deep neural
network, one study identified that ERPs within the time range
from 100 to 200ms post-stimulus are important in differentiating
children with ADHD and controls during an interval-time task [99].
The model was able to differentiate the ADHD group and controls
with an accuracy of 69%. In addition, several factors appear to
contribute to the accuracy of EEG-based models. Several studies
have assessed the optimum experimental paradigm for classifica-
tion. For example, Chang et al. reported that the signal during the

transition period between the task and resting condition was
more discriminative for ADHD than the signal during the task
condition or resting condition [102]. Tenev et al. reported that a
model combining multiple task conditions showed a significant
increase in classification accuracy when compared with a single
condition (82.3% vs 70%) [103]. Studies using the go/no-go task
report inconsistent results regarding the most discriminative task
conditions. For example, Mueller et al. reported that an ERP-based
network for No-go had significantly higher predictive power than
that during the Go condition for a visual sustained attention task
[104]. However, Biederman et al. reported that an SVM-based
model using the signal from the Go condition achieved higher
AUC than the signal during the No-go condition (0.92 vs 0.84)
[105]. Age may also be an important influence on classification.
For example, splitting subjects into different age groups increased
classification accuracy when applying SVM on EEG data [106].
Machine learning is also valuable in investigating novel EEG

features. For example, Kim et al. used machine learning to validate
mismatch negativity (a novel measure that contrasts activity
during regular auditory stimuli and occasional novel stimuli) in
differentiating adults with ADHD from controls [107]. The SVM-
based model showed a classification accuracy of 81% and
identified the frontal lobe, temporal lobe, and limbic lobe as the
most important regions in the classification. Studies have also
constructed machine learning models using other novel features,
including various entropy-based features and fractal dimension-
based features from chaotic theory [108–110]. As research
continues to employ machine learning methods, it is likely that
novel features to best classify individuals with ADHD will continue
to be determined.

Functional near-infrared spectroscopy. Functional near-infrared
spectroscopy (fNIRS) is a non-invasive and portable method to
measure the hemodynamic response in the cortex. Relative to
fMRI, fNIRS is less susceptible to the movements and is therefore
well-suited to study ADHD, and machine learning has the
potential to utilize the fNIRS’s high temporal resolution while
overcoming its low spatial resolution. One study applied SVM on
fNIRS data from children with ADHD and controls during a
working memory task [111]. The final model achieved an accuracy
of 96% and highlighted the dorsal lateral prefrontal cortex,
temporal cortex, medial prefrontal cortex, and posterior prefrontal
cortex as the most discriminative in classifying ADHD and controls.
Yasumura et al. applied an SVM-based model on fNIRS data from
children with ADHD and controls collected during a reverse Stroop
task [112]. The model achieved 86.25% accuracy with a sensitivity
of 88.71% and a specificity of 83.78%. Splitting the sample into
three age groups (<10 years, 10–12 years, >12 years) increased
classification accuracy significantly.

Multimodal imaging. Given its ability to model several features
simultaneously, machine learning is well-suited to multimodal
investigations of neural markers of ADHD. For example, Zhou et al.
combined rs-fMRI with sMRI and DTI data from the ABCD dataset
and reported that the functional connectivity in frontal and
temporal regions, cerebellum, thalamus, and anatomical regions
in the basal ganglia were the most discriminative features for
ADHD in children [113]. Luo et al. utilized multimodal imaging
data, including fMRI data during a cued attention task, sMRI, and
diffusion tensor imaging [114]. The algorithms combined a range
of machine learning models and achieved an accuracy of 89% in
differentiating adults with ADHD and controls and an accuracy of
90% in differentiating ADHD persisters and remitters. The results
showed that functional connectivity in the frontal and parietal
lobe and amygdala volume was important to differentiate ADHD
with controls, while functional connectivity in the frontal lobe,
parietal lobe, and putamen was important to differentiate ADHD
persisters and remitters. Owens et al. combined task-based fMRI
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data and structural MRI data from the ABCD dataset to investigate
the relationship between ADHD symptoms and imaging measures
[115]. Using the elastic net algorithm, results showed that,
compared to other modalities, functional activation during a
working memory task can predict ADHD symptoms with the best
performance, which explained 2% of the variance with a small
effect size. Combining multimodal data offers the opportunity to
identify a range of biomarkers, which is particularly advantageous
in ADHD, given its complex etiology.

Genetic studies
Genetic studies. Genetic and twin studies suggest that ADHD is
highly heritable [116–119]. This heritability may be due to
polygenic risk [120, 121]. Recent genome-wide association studies
provide promising results in understanding the genetic associa-
tions with ADHD [25]. Machine learning handles multiple
independent variables simultaneously, allowing the interactions
between various risk factors to be assessed. In addition, it
highlights risk factors that are statistically insignificant but may
contribute to ADHD. These properties make machine learning a
particularly valuable tool in studying genetic markers of ADHD.
van der Meer et al. used a random forest regression model to

investigate the predictive power of 29 stress-related genes on
ADHD severity in children with ADHD, subthreshold ADHD, and

controls [122]. The model explained 12.5% of the variance in
ADHD severity and indicated that, besides chronic stressors, the
region that regulates the expression of telomerase reverse
transcriptase was important in predicting ADHD severity. Other
studies have used random forest and convolutional neural
networks to study genetic predictors of ADHD and have revealed
that the gene regions GRM1, GRM8, and EPHA5 are important
predictors of ADHD [123, 124]. Using multiple machine learning
algorithms, a recent study reported that age and sex were
significant predictors in genetic information-based classification
models [125]. In addition, gene regions SNAP25, ADGRL3, and
DRD4 significantly contributed to the prediction of inattentive,
hyperactive, or impulsive symptoms. SVM models have also
shown that microRNA has high discriminative power for ADHD
and can predict medication responses in ADHD patients [126].

Multi-omics studies. Machine learning algorithms allow the
combination of genetic data with data such as cognitive and
neuroimaging data. For example, using conditional random
forests, Sudre et al. were able to predict ADHD severity with an
AUC of 0.79 [127]. While cognitive measures were most important
in the overall classification, genomics was important in detecting
children with worsening ADHD, highlighting the utility of multi-
modal machine learning approaches. Yoo et al. combined

Fig. 3 Electroencephalogram features. A Frequency analysis, including power at different frequency bands. B Event-related potential
analysis, including the time or amplitude of peaks after the target stimuli.
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anatomical features from both sMRI and DTI, functional con-
nectivity during rs-fMRI, and genetic data related to norepinephr-
ine, dopamine, and glutamate to build a random forest-based
classification model and regression model for ADHD [128]. The
classification model using cortical thickness and volumes achieved
the best performance with an accuracy of 85.1% and an AUC of
0.877 in differentiating ADHD participants and controls. Addition-
ally, the regression model was able to explain 18% of the variance
of the ADHD rating scale. Both models did not gain improvements
when including genetic data. Future machine learning studies
may be needed to further investigate the relations between
genetic data, neurocognitive performance, behavioral problems,
and neurobiological alterations in ADHD patients.

MACHINE LEARNING IN PREDICTING TREATMENT AND
PROGNOSTIC OUTCOMES OF ADHD
Heterogeneity in ADHD imposes difficulties in developing
effective and reliable treatment strategies. Methylphenidate
(MPH) is one of the main pharmacological treatments for ADHD;
however, 30% of patients are poor responders [26, 27]. Machine
learning techniques are beneficial to predicting treatment out-
comes as they have the ability to provide predictions from
relatively little prior knowledge. Several studies have predicted
response to MPH using SVM, with features including neuropsy-
chological test performance and information on clinical informa-
tion [129] and sMRI data [130]. Faraone et al. implemented lasso
regression to predict the responses of adolescents to a novel non-
stimulant medication (SPN-812) [131]. Responder status (with
good responder defined as a >50% improvement in symptoms
score) after 6 weeks was predicted with the response data
(symptom score change from baseline) collected up to weeks 1, 2,
and 3. The lasso regression model predicted the long-term result
based on the outcome at 2 weeks with 75% accuracy.
Machine learning can also be utilized to predict adverse drug

outcomes, which are common in ADHD treatment. For example,
Yoo et al. predicted sleep side effects of using MPH treatment
based on multiple variables and achieved an accuracy of 95.5%
[132]. Based on findings using long short-term memory model,
Fouladvand et al. reported that the initiation of ADHD medication
during adolescence is a significant predictor for developing
substance use disorder in a large cohort with 11,624 children
with ADHD [133]. Zhang-James et al. also reported ADHD
medication as one of the important predictors of substance use
disorder, along with ADHD diagnosis before 12 years old and
crime behaviors [134]. Given that finding the most suitable ADHD
treatment is largely still dependent on trial-and-error of medica-
tions and the risk for adverse outcomes of drug treatment, the
ability to predict treatment outcomes using machine learning
models has the potential to reduce financial and medical burdens.

DISCUSSION
A growing number of studies are utilizing machine learning
techniques to report interpretable results regarding neural
mechanisms associated with ADHD, in addition to building
accurate classification models. Such studies have already con-
tributed to the literature regarding functional, structural, and
physiological correlates of ADHD.

Performance of machine learning models
A particular benefit of classification models is the ability to label
individuals. In addition to the detection of important features,
machine learning can assist the development of individualized
treatment plans for ADHD (e.g., [130, 135]). The idea of precision
medicine has been introduced and practiced in many other
diseases [136, 137]. Machine learning studies can accelerate this
process in ADHD. This application will no doubt further benefit

from the increasing accessibility of large datasets (e.g., ABCD
dataset, Human brain mapping dataset, and UK Biobank dataset),
which can be used to train more reliable classification models.
Groups with small cohorts can also benefit from collaborations
with other groups like The Enhancing NeuroImaging Genetics
through Meta-Analysis (ENIGMA) Consortium [138]. Alternatively,
He et al. also proposed meta-matching methods to utilize
information generated from large public datasets when working
on independent datasets [139]. The construction of a reliable
model using such data could dramatically reduce the workloads of
clinicians, thereby increasing the capacities of the existing medical
system and minimizing the burden on affected families and
societies.
The existing classification models for ADHD reported largely

inconsistent accuracy, with the majority varying from 60 to 90%.
Several factors related to machine learning design may contribute
to these discrepancies. First, the choice of machine learning
algorithms may affect the performance of the classification model
based on different datasets. Algorithms with very few or no
trainable parameters were preferable for studies with small
sample sizes, whereas studies with large datasets were able to
explore the effectiveness of deep learning algorithms [56, 73, 133].
The second factor is the size balance between different groups.
Most studies were able to recruit patient groups and control
groups of relatively similar sizes. However, for clinical studies or
population-based studies, the balance is hard to achieve
[56, 58, 115]. This may potentially give overly positive results.
For example, the same model may have a much higher AUC in a
population sample than in a group-matched clinical sample (AUC:
0.86 vs 0.72) [140]. Lastly, the choice of validation-test strategy
may contribute to inconsistencies in accuracy. A large indepen-
dent testing set is the best choice for testing generalizability but is
only affordable for studies with large datasets [115, 133]. Nested
cross-validation may be an alternative, in which the inner cross-
validation layer is responsible for training algorithm’s parameter,
and the outer cross-validation layer is solely responsible for
performance evaluation [71, 113, 114]. However, more than half of
the existing machine learning studies in ADHD have only reported
results using only one cross-validation, which can cause overfitting
of the features and reduce the generalizability of the results.

Identification of important features
A major benefit of machine learning techniques is that they
always involve multivariate data, and some machine learning
models like SVM and random forest can rank the contribution of
features under the interaction of each other [141]. Therefore, the
important clinical or biological features in identifying ADHD can
be evaluated based on their contribution to the model. Accuracy
(or AUC) can also be used to compare the effectiveness of
different feature sets. The training process of a machine learning
model extensively learns the information associated with the
classification labels within the dataset. When training the same
model with features from different modalities, accuracies can
partially reflect the sensitivity of particular modalities in ADHD.
This evidence can be used to guide experimental design in future
hypothesis-driven research.
However, several factors limit the interpretability of the

important features reported in existing machine learning studies.
First, not all of the machine learning models have intrinsic
operations to rank the input features for their importance during
the learning procedures. Although generalized feature importance
methods exist, such as permutation importance, these methods
do not necessarily represent the covariate information used in the
original models [41, 142]. On the other hand, for machine learning
models that include feature ranking mechanisms, the reported
results can be restricted by the ranking methods of the models.
For example, feature ranking in a linear SVM only recognizes the
high contribution features that show linear relationships with
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ADHD. Additionally, the majority of the existing studies have only
focused on reporting learning procedures that achieved high
classification accuracies without giving enough consideration to
the “biological meaningfulness” of the study features. Lastly, the
field still lacks gold standards in evaluating the quality of a
machine learning study. For example, the studies in this review
have reported model performance based on different evaluation
methods, like cross-validation, nested cross-validation, or inde-
pendent testing set, using various metrics, including accuracy,
AUC, specificity, and sensitivity, meaning the performance may
not be comparable. Authors may choose the favorable metrics
that do not represent the true performance, and interpretation of
the feature importance of such overfitted or biased studies
requires extra precaution.

Current challenges
Despite great promise, challenges are also present before machine
learning can provide significant clinical benefits for ADHD due to
its heterogeneity. First, machine learning algorithms currently lack
interpretability. High-accuracy models are usually constructed
with a collection of variables [91, 114, 122], with each variable
contributing partial information in distinguishing subjects. The
relationship between variables is hard to characterize. Currently,
one can rely on the feature’s importance score to provide future
direction in investigating particular measures. Models that can
translate complex interactions between objective measures are
truly beneficial in understanding the neural mechanisms asso-
ciated with ADHD. A second challenge is the limited general-
izability of classification models trained on small samples.
Although most studies reported here implemented cross-
validation methods to combat overfitting and generalization

problems, the nature of the imbalances in the number of features
vs the number of subjects in clinical studies and the high
heterogeneity of study samples still impose limitations on
generalizability [143]. Notably, classification accuracy can drop
significantly when applying a trained model to new subjects
[45, 46], highlighting the critical need to overcome the general-
ization problems when implementing machine learning.

Future directions
Machine learning techniques are still currently undergoing
extensive development. Several directions have the potential to
resolve the existing problems. One direction is taking a generative
approach. Most existing machine learning studies have utilized
discriminative models focused on finding the boundaries between
known groups within a sample. On the contrary, generative
models focus on characterizing groups and predicting group
allocation based on probability, as shown in Fig. 4A. In addition,
generative models can also characterize samples by identifying
subgroups that cluster together. Considering that ADHD diagnosis
is usually based on subjective measures and that comorbidities
are frequently observed, a hard boundary in the classification
process may not be an appropriate threshold for ADHD. Within
the literature reviewed here, discriminative models were more
effective in constructing accurate classification models (e.g.,
[75, 111, 114].). This is likely due to the more homogeneous
sample using carefully selected inclusion and exclusion criteria
[39]. Compared to discriminative models, generative models are
less vulnerable to the bias induced in the dataset and therefore
can generalize well. In addition, due to the heterogeneous nature
of mental disorders, there might be multiple etiological sources or
various clinical profiles. Generative unsupervised learning models

Fig. 4 Generative approaches and dimensional approaches for machine learning studies. A Discriminative model vs generative model for
classification between two groups. Discriminative models aim to define the clear boundary between different groups, while generative
models aim to characterize each group and classify based on probability or likelihood. B Dimensional approaches. Regression models are used
to study the relationship between the target clinical measures and data in transformed dimensions.
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can detect the homogeneous subtypes otherwise hidden to
traditional statistical methods [144]. This property opens the
opportunities to capture the heterogeneities embedded in ADHD.
More importantly, more homogeneous subgroups expand the
interpretability of important features.
Another direction is taking a dimensional approach. The

categorical definition of ADHD may not be sufficient to describe
the ADHD symptoms in a comprehensive way. Fair et al. reported
distinct ADHD subgroups based on cognitive performance,
suggesting that neurobiological properties of ADHD might need
to be characterized using multiple cognitive measures in addition
to the DSM-based symptom measures [61]. Using regression-
based machine learning algorithms to associate biological features
to multiple clinical dimensions simultaneously can link hetero-
geneities in both clinical presentations and biological properties of
ADHD, therefore increasing the interpretability, for example, in
Fig. 4B. This dimensional direction is in line with the National
Institute of Mental Health Research Diagnostic Criteria (RDoC)
project, which introduced a framework to eliminate diagnosis-
imposed boundaries [145]. Notably, several studies have defined
the clinical groups based on cognitive or behavioral profiles, and
all yield more distinctive groupings than traditional DSM clinical
groupings [62, 63, 146–148]. As deficits can be explained along
several dimensions (for example, attention, cognitive control, or
perception constructs in the RDoC matrix), it may therefore be
easier to link to the related biological substrates. In addition, this
brings opportunities to explore the phenotypes or endopheno-
types of ADHD and explain the heterogeneities in current findings.
In summary, early attempts to investigate ADHD using machine

learning show promising results. In addition to seeking high
classification accuracy, studies using machine learning to study
ADHD can identify the importance of features and discriminative
power of modalities, which provide clinical and research targets.
Future studies focusing on increasing the interpretability and
generalizability of models are highly desired.
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