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Methyl-CpG binding protein 2 expression is associated with
symptom severity in patients with PTSD in a sex-dependent
manner
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Traumatic events may lead to post-traumatic stress disorder (PTSD), with higher prevalence in women. Adverse childhood
experiences (ACE) increase PTSD risk in adulthood. Epigenetic mechanisms play important roles in PTSD pathogenesis and a
mutation in the methyl-CpG binding protein 2 (MECP2) in mice provide susceptibility to PTSD-like alterations, with sex-dependent
biological signatures. The present study examined whether the increased risk of PTSD associated with ACE exposure is
accompanied by reduced MECP2 blood levels in humans, with an influence of sex. MECP2 mRNA levels were analyzed in the blood
of 132 subjects (58 women). Participants were interviewed to assess PTSD symptomatology, and asked to retrospectively report
ACE. Among trauma-exposed women, MECP2 downregulation was associated with the intensification of PTSD symptoms linked to
ACE exposure. MECP2 expression emerges as a potential contributor to post-trauma pathophysiology fostering novel studies on the
molecular mechanisms underlying its potential sex-dependent role in PTSD onset and progression.
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INTRODUCTION
Trauma exposure is a common experience worldwide, with 70% of
people exposed to at least one traumatic event throughout their
lives [1]. This may lead to the onset of post-traumatic stress
disorder (PTSD), a chronic mental disorder characterized by
severely debilitating and long-lasting symptoms, that is more
prevalent in women than men [2]. PTSD symptoms can be
grouped in four main categories [3]: (i) re-experiencing, defined as
the appearance of intrusive thoughts, nightmares and flashbacks;
(ii) avoidance of internal or external trauma reminders; (iii)
hyperarousal, manifested as attentional threat bias, sleep pro-
blems and enhanced startle reactivity; (iv) negative alterations in
cognition and mood, including patients’ inability to recall
important aspects of the traumatic event and persistent negative
emotional state. Only an average of 5.6% of traumatized
individuals in the world develop a chronic PTSD symptomatology
[4]. Nevertheless, the high socio-economic costs and the burden
that PTSD symptomatology represents for the affected individuals
urge the identification of the risk factors involved in disease
development in traumatized people [5].
In recent years the neurobiological bases of PTSD have been

deeply explored [6], and a growing body of evidence has
underscored the contribution of epigenetic mechanisms to PTSD
pathogenesis and symptom presentation in the aftermath of
trauma exposure [7]. Among the multiple epigenetic signatures,

altered DNA methylation has been especially linked to traumatic
stress consequences [8]. Both candidate gene and epigenome-
wide association studies have in fact identified PTSD-related
alterations in methylated DNA (mDNA) at multiple genetic loci
involved in stress, inflammation and neurotransmission pathways
[9–11]. On these grounds previous works also found variations in
the enzymes responsible for DNA methylation in association with
risk for PTSD [12]. In spite of this evidence, the potential role in
PTSD pathophysiology of mDNA reader binding proteins, such as
the X-linked methyl-CpG binding protein 2 (MECP2), has not yet
been addressed. MECP2 in particular serves as a scaffold protein
for the recruitment of chromatin remodeling complexes [13–15]
and DNA methyltransferases [16, 17] on methylated DNA loci, thus
representing an excellent candidate for mediating post-trauma
epigenetic rearrangements. Moreover, the activity and expression
of MECP2 in the rodent brain, where MECP2 is known to regulate
learning and memory processes [18], is very responsive to
environmental challenges such as exposure to early life stress as
well as to stressors in adulthood [19–21]. In this line, previous
studies searching for genetic markers of PTSD risk described an
altered expression of multiple targets of MECP2 in subjects who
developed the disorder in the aftermath of a traumatic experience
[22–25]. Consistently, MECP2 is known to control the transcription
of stress response-regulating genes [26, 27], and to tune immune
function and cytokine production [28], whose alterations have
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been described in patients with PTSD [22, 29–33]. These
characteristics make MECP2 a promising mediator of the lasting
epigenetic adjustments taking place following stress or trauma
exposure that could direct towards vulnerability or resilience to
PTSD [34]. Based on this, we recently addressed the potential
involvement of altered MECP2 functionality in the onset of PTSD-
like pathophysiology in transgenic mice carrying a hypofunctional
form of MECP2. We demonstrated that MECP2-mutated mice
display an increased propensity to develop enduring neurobeha-
vioral alterations, comparable to those observed in patients with
PTSD, when exposed to intense, acute stressors [35].
Notably, male and female carriers of the MECP2 hypomorphic

mutation, while being both behaviorally sensitive to stressors,
exhibited an opposite modulation of stress markers at the
molecular level [36]. This finding opens up the intriguing
possibility that the MECP2 protein may be involved in the
regulation of sex-dependent differences in vulnerability to PTSD.
In this line, it is noteworthy that MECP2 has been proposed to
participate in the sexual differentiation of the developing rodent
brain [37, 38], suggesting that it might play a role in setting the
basis for the existing sex bias in vulnerability to PTSD [39, 40].
Interestingly, a sex-specific modulation of MECP2 expression has

previously been described in rodents following stress exposure
early in life [41, 42]. Furthermore, in a non-clinical population
sample we recently demonstrated that reduced levels of MECP2
are linked to an increased risk of psychopathology following
childhood adversities selectively in women [43]. Given that early-
life adversities, vulnerability to psychopathology and female sex
are factors known to intensify the impact of exposure to traumatic
experiences in adulthood, eventually increasing the risk of PTSD
onset [44, 45], these findings confirm the need of further exploring
the role of MECP2 in the pathogenesis of PTSD.
Based on this body of evidence, we hypothesized that MECP2

levels might be altered within a traumatized population, with its
downregulation possibly representing a risk factor for developing
PTSD. As exposure to stressful experiences at critical develop-
mental periods, such as childhood, dramatically increases vulner-
ability to the pathological outcomes of subsequent trauma
exposure, we explored the possibility that adverse childhood
experiences (ACE) strengthen the association between reduced
MECP2 and an increased PTSD risk. We also reasoned that this
association might be more marked in women, in line with the
existing sex bias in vulnerability to PTSD. To test our assumptions
we evaluated MECP2 mRNA levels in the blood of 132 male and
female participants who were trauma-exposed with or without
ensuing symptoms of PTSD in adulthood (PTSD and trauma
controls, TC) or non-exposed throughout their lifetime (non-
traumatized controls, NTC), and assessed whether MECP2 expres-
sion varied as a function of sex, ACE and trauma exposure.
Focusing on traumatized individuals, we tested the possibility that
the increased severity of PTSD symptoms associated with
exposure to ACE was accompanied by reduced MECP2 blood
levels, with an influence of sex.

MATERIALS AND METHODS
Study participants
Study participants were civilians recruited between 2010 and 2018 to take
part in multiple independent studies on the psychobiological alterations
characterizing people suffering from PTSD (see Supplementary Methods
for further information). A total of 132 subjects (58 women, mean age
41.72 ± 13.91 years) were included in the present study; among them,
85 subjects reported traumatic experiences, of whom 37 received a
diagnosis of PTSD (see Table 1 for detailed information on the study
sample). PTSD diagnosis and possible comorbidities were evaluated by the
Structured Clinical Interviews for DSM-IV [46] I and II (SCID) [47, 48] (see
Supplementary Methods). Participants were excluded in case of clinically
significant traumatic experiences before 18 years of age, comorbid
psychotic symptoms, borderline personality disorder, alcohol/drug

dependence or abuse, and cardiovascular or neurological disorders. The
study conformed to the Code of Ethics of the World Medical Association
(Declaration of Helsinki, 6th revision, 2008) and was approved by the Ethics
Committee of the Medical Faculty Mannheim, Heidelberg University. All
participants gave written informed consent.

Psychometric measures
Posttraumatic Diagnostic Scale. Traumatic experiences were assessed by
the means of the German version of the Posttraumatic Diagnostic Scale
(PDS) [49, 50], a self-report instrument aimed at assessing the severity of
post-traumatic stress symptoms. The first part of the questionnaire consists
of a short checklist of potentially traumatizing events. Among the
experienced events, respondents are required to indicate the one that
has troubled them the most in the past month (index trauma). Participants
experiencing the index trauma before 18 years of age were excluded, since
clinically significant childhood trauma experiences are expected to have
differential impacts on PTSD pathophysiology [22]. The subjects reporting
an index trauma were then required to rate, on a 4-point scale (0 - never to
3 - daily), 17 items representing the frequency of the occurrence of cardinal
PTSD symptoms in the last 30 days. Finally, respondents rated the degree
of impairment caused by symptoms across different areas of life
functioning. The symptom severity score was obtained by adding up the
responses to selected items and ranges from 0 to 51.

Clinician-Administered PTSD Scale. PTSD symptomatology was assessed
by the means of the Clinician-Administered PTSD Scale interview (CAPS)
[51, 52], a 30-item structured interview that corresponds to the DSM-IV
criteria for PTSD [46]. Frequency and severity of each item are rated on a
5-point Likert scale ranging from 0, never/not affected to 4, every day/
extremely affected. Three subscales measuring re-experiencing, avoidance
and arousal symptom clusters were then calculated as the mean frequency
and severity values of the relative items (5 for re-experiencing and arousal
and 7 for avoidance symptoms). The total CAPS score was calculated as the
overall sum of the ratings, ranging from 0 to 68.

Adverse childhood experiences. Participants completed the Childhood
Trauma Questionnaire [53] in order to retrospectively evaluate the severity
of ACE (<18 years of age), including emotional, physical abuse/neglect and
sexual abuse. This is a psychometrically validated self-report inventory
composed of 28 items each rated on a 5-point Likert scale (1, never true –
5, very often true). The total score ranges from 25 to 125. We exploited the
classification of the total score into severity quartiles (none/minimal, low to
moderate, moderate to severe, severe to extreme) contained in the manual
(Bernstein & Fink, 1998; MacDonald et al., 2016) to include ACE as a
discrete independent factor in tests of analysis of variance (ANOVA). By
merging quartiles 2-4 we obtained a dichotomous variable: 1, none/minimal
(total score ≤ 36) - for individuals who did not report ACE, and 2, low to
extreme (total score > 36) - for individuals who recalled ACE of different
intensities.

Trier Inventory for Chronic Stress. The load of current chronic stress was
assessed by the means of the Trier Inventory for Chronic Stress (TICS) [54],
a self-assessment instrument composed of 57 items evaluating 9 chronic
stressors: work and social overload, pressure to perform, work discontent,
excessive demand at work, lack of social recognition, social tensions or
isolation and chronic worrying. Each item is rated on a 5-point Likert scale
indicating how often the subject had experienced a certain situation within
the last 3 months (0, never – 4, very often).

Center for Epidemiological Studies Depression Scale and State-Trait Anxiety
Inventory. See Supplementary Methods.

MECP2 expression
Whole blood was collected in PAXgene Blood RNA Tubes (PreAnalytiX,
Hombrechtikon Switzerland) and stored until analysis at −80 °C [43, 55]. A
PAXgene Blood miRNA Kit (Qiagen, Hilden, Germany) was used to extract
total RNA, following the manufacturer´s instructions. RNA concentration and
sample purity were assessed with a NanoDrop 1000 Spectralphotometer
(Thermo Scientific, Waltham, MA, USA), and RNA integrity was determined
with the Agilent 2100 Bioanalyzer System (Agilent Technologies, Santa Clara,
CA, USA). The cDNA was synthesized by a reversed transcription reaction
using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Waltham, MA, USA). Quantitative PCR was performed on the QuantStudio 7
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Flex Real-Time PCR System (Applied Biosystems by Life Technologies,
Carlsbad, CA, USA) by using TaqMan Fast Advanced Mastermix (Applied
Biosystems), and the MECP2 TaqMan Gene Expression Assay
Hs00172845_m1 (Applied Biosystems). The Actin Beta ACTB TaqMan Gene
Expression Assay Hs01060665_g1 (Applied Biosystems) was used as an
internal standard. Results were calculated with the QuantStudio Real-Time
PCR Software v1.3 (Applied Biosystems by Thermo Fisher Scientific).
Analyses were carried out in triplicates. All data were normalized to the
endogenous reference gene ACTB. For statistical analyses, the relative
expression with respect to participants not reporting traumas or ACE
(controls) was calculated by the Delta-Delta threshold cycles (ΔΔCt) method,
and converted to the relative expression ratio (2-ΔΔCt), separately for men
and women [56].

Statistical analyses
All statistical analyses were conducted using SPSS 20.0 and AMOS 20.0
(IBM Statistics, Armonk, NY, USA).
A logarithmic transformation was performed to reduce skewedness and

kurtosis of non-normally distributed variables (see Supplementary
Methods and Table S1). Outliers, defined as observations lying three
standard deviations outside from the mean, were excluded (2 observa-
tions, in total).
A three-way ANOVA was performed to evaluate the relative role of

sex (men & women), ACE (none/minimal & low to extreme) and trauma
exposure (non-traumatized & traumatized in adulthood) in the
modulation of peripheral MECP2 expression. Normality and homosce-
dasticity of residuals were assessed by the means of Shapiro Wilk,
Levene and Breush Pagan tests. Post hoc comparisons were performed
by Tukey’s test.
Structural Equation Modeling (SEM) with maximum likelihood estima-

tion was used to test the hypothesis that reduced MECP2 expression is
associated with the increased risk of developing PTSD following an index
trauma, as the result of previous exposure to ACE. Exclusion criteria for the
model were: failure to converge after 240 iterations, the presence of
squared multiple correlation values greater than 1 (R2 > 1) and poor fit,
estimated via the following goodness-of-fit (GOF) measures: the χ2statistic
(with a good fit indicated by χ2/degrees of freedom (df) < 3), the root mean
square error of approximation (RMSEA, with a good fit indicated by an
index < 0.08) and the comparative fit index (CFI, with a good fit indicated
by an index > 0.95) [57]. To establish mediation, indirect paths were tested
for significance using a Bias-Corrected (BC) Bootstrapping method (95%
confidence intervals; 2000 resamples) [58]. At least 10 observations per
measured variable were included [59]. We checked whether the final
model predicted equally well PTSD symptoms while using different scales

established in the literature (CAPS and PDS). To examine whether the final
model was specific for ACE, it was retested with a measure of current
perceived chronic stress replacing the ACE score.
To dissect the moderating role of sex, the model was separately re-

specified on male and female subsamples. For each of the analyses the
alpha level was set to 0.05 [60, 61].

RESULTS
MECP2 expression reflects exposure to adversities in
childhood and traumas in adulthood as a function of sex
To evaluate whether exposure to traumatic experiences in
adulthood or a history of ACE are associated with an altered
peripheral expression of MECP2, and to test the moderating effect
of sex, we exploited a three-way ANOVA model. The levels of
blood MECP2 mRNA were significantly higher in men compared to
women (sex: F1,124= 37.89, p < 0.001, ηp

2= 0.23). This difference
was driven by a sex-dependent effect of trauma exposure, which
was associated with an increase of MECP2 expression selectively in
men (p= 0.009 for non-traumatized vs traumatized men after post
hoc comparisons on an almost significant sex*trauma interaction:
F1,124= 3.79, p= 0.054, ηp

2= 0.03; Fig. 1A) without affecting
women. Conversely, peripheral MECP2 expression was significantly
decreased in participants reporting ACE (ACE: F1,124= 7.46,
p= 0.007, ηp

2= 0.06), especially among women (p= 0.006 for
women with none/minimal vs low to extreme ACE after post hoc
comparisons on sex*ACE interaction: F1,124= 7.21, p= 0.008,
ηp

2= 0.06; Fig. 1B). The three-way interaction between sex, ACE
and index trauma was not significant (sex*ACE*trauma:
F1,124= 2.32, p= 0.130, ηp

2= 0.02).

Reduced MECP2 expression accompanies the increase in the
severity of PTSD symptoms associated with ACE exposure in
traumatized participants
Given that ACE are known to increase the risk of PTSD onset in the
aftermath of traumatic events, using structural equation modeling
we tested the hypothesis that the increase in the severity of PTSD
symptoms (total CAPS score) associated with ACE exposure in
individuals reporting an index trauma is accompanied by reduced
MECP2 levels (Fig. 2). Overall PTSD symptomatology was
represented as a single latent factor in the present model, based

Fig. 1 MECP2 is overexpressed in traumatized men and underexpressed in women exposed to childhood adverse experiences. A Blood
mRNA levels of methyl-CpG binding protein 2 (MECP2) are increased in traumatized men, compared to non-traumatized men and women.
B MECP2 is downregulated in the blood of women exposed to adverse childhood experiences (ACE) compared to non-stressed women and
men. MECP2 levels were normalized to total actin beta (ACTB) contents and expressed as a proportion of those of non-traumatized participants,
not exposed to ACE (ctrl), separately for men and women. Statistical significance was calculated by the means of three-way ANOVA, and
Tukey’s post hoc tests. Symbols: **p < 0.01; ***p < 0.001. Data are mean ± standard error of the mean.
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on the a priori assumption that the three PTSD symptom subscales
may be all associated within the same latent construct [51, 62].
The model fit was satisfactory (Tables 1, 2), suggesting that the

hypothesized path (Fig. 2) describes the data well, thus allowing
further interpretations of the results to be obtained. MECP2
expression was inversely proportional to ACE severity (R2= 5.6%),
implying that decreased MECP2 levels were associated with a
stressful childhood (β=−0.24, p= 0.037). As expected, higher
ACE scores were also linked to increased PTSD symptom severity
(R2= 7.2%) among traumatized individuals (β= 0.27, p= 0.022).
Overall, MECP2 expression turned out to be indirectly associated
with PTSD symptoms, with ACE mediating the association
between lower levels of MECP2 and higher total CAPS scores
(β=−0.06, p= 0.037). This suggests that MECP2 downregulation
accompanies the increased PTSD vulnerability emerging from a

history of ACE (see Table 3 and Supplementary Table S2 for further
details on direct and indirect effects in the hypothesized model).
Importantly, the present results were further confirmed after

retesting the hypothesized path on the prediction of PTSD
symptom severity measured through a distinct psychometric scale
(total PDS score, R2= 19.2%) (PTSD symptom scale substitution
model, see Tables 2, 2i, Table 3 and Supplementary Table S3 for
detailed statistical results, and Supplementary Fig. S1).

The increase in PTSD symptomatology associated with current
stress load is not paralleled by changes in MECP2 expression
To examine the specificity of the observed effects for stress
experienced during childhood, we assessed whether the hypothe-
sized path was still valid when replacing the ACE score with a
measure of current chronic stress load (Supplementary Fig. S1).
The model had acceptable fit indices (Table 2, 2ii), and explained

a relatively high proportion of total PTSD symptom variation
(R2= 26%), which was due to the highly significant association
between chronic stress load and PTSD symptoms (β= 0.51,
p < 0.001) (see Supplementary Table S4 for further information on
direct and indirect effects). Indeed, MECP2 was not significantly
associated with chronic stress and failed to have significant indirect
effects on PTSD symptomatology in the present model (see Table 3),
suggesting that the association between MECP2 expression and
PTSD symptomatology is indirectly mediated specifically by stressors
experienced during childhood.

The link between MECP2 downregulation and the increase in
the severity of PTSD symptoms associated with ACE exposure
is particularly relevant in women
In order to dissect the effects of sex, we explored the validity of
the selected path on two different subsamples, composed of men
or women only (Supplementary Fig. S2). The GOF indices for both
subsamples were acceptable (see Table 2, 2iii and 2iv). In terms of
R2 the model explained up to 27.8% of PTSD symptom variance in
the female subsample, but failed to significantly explain PTSD
symptom variance in the male subsample.
Importantly, in both samples, MECP2 expression failed to be

directly associated with the severity of ACE, which, conversely,
significantly predicted PTSD symptoms selectively in women
(β= 0.53, p < 0.001). Of note, the total indirect effect of MECP2
expression on PTSD symptoms was significant in the female
(β=−0.14, p= 0.033), but not in the male subsample (see Table 3
and Supplementary Table S5 for further details).

DISCUSSION
The present findings provide evidence of an association between
the epigenetic factor MECP2 and symptom severity in traumatized
individuals diagnosed with PTSD, a mental illness with severe
impact on quality of life and high cost to the health care system
[5]. This association appears to occur especially among women,

Fig. 2 The increased severity of PTSD symptoms, which in
traumatized participants is associated with exposure to adverse
childhood experiences, is accompanied by reduced MECP2 levels.
Among traumatized participants, reduced methyl-CpG binding protein
2 (MECP2) expression is directly associated with higher adverse
childhood experiences (ACE) scores (R2= 5.6%; β=−0.24,
p= 0.037), which in turn predict increased post-traumatic stress
disorder (PTSD) symptom severity (R2= 7.4%; β= 0.27, p= 0.015).
PTSD symptom severity is measured by means of the clinician-
administered PTSD scale (CAPS). Symbols: Plain arrows - directed
arcs, positive path coefficients (p < 0.05); dashed arrows - directed
arcs, negative path coefficients (p < 0.05); black numbers - standar-
dized coefficients; black underlined numbers – proportion of total
variation explained by the model (R2); r – residual variances (errors).

Table 2. Goodness of fit indices.

Model Ν χ2 df χ2/df RMSEA SRMR TLI CFI

(1) Hypothesized model 75 1.78 5 0.36 0 0.02 1.03 1

(2) Confirmatory models

(i) PTSD symptom scale substitution
model

78 2.31 5 0.46 0 0.03 1.03 1

(ii) Chronic stress model 74 7.44 5 1.49 0.08 0.05 0.98 0.99

(iii) Men 40 1.41 5 0.28 0 0.06 1.06 1

(iv) Women 35 5.59 5 1.12 0.06 0.08 0.99 0.99

Abbreviations: N Sample size, χ2 chi square statistic, df Degrees of freedom, RMSEA Root mean square error of approximation, SRMR Standardized root mean
square residual, TLI Tucker-Lewis index, CFI Comparative fit index.
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who are typically most affected by PTSD, and is mediated by the
quality of early life experiences. These findings suggest that
MECP2 may represent a key sex-dependent player in PTSD
pathogenesis, and point to MECP2 expression as a putative marker
of vulnerability to stress and trauma–related disorders. Further
studies dissecting the underlying mechanisms may unravel
targetable pathways for sex-specific preventive interventions.
Previous evidence from the preclinical setting support the

existence of a tight link between MECP2 and early life events, and
point to MECP2 as a key transducer of perinatal experiences into
lasting epigenetic signatures, which ultimately modulate an
individual’s ability to cope with future challenges [19,
21, 41, 42, 63–66]. We recently demonstrated the translatability
of this framework to the human species, by evidencing an
association between MECP2 levels and subclinical symptoms of
anxiety and depression after ACE [43]. The present findings
substantiate and transfer this link to a clinical framework by
showing that the connection between the severity of PTSD
symptoms and MECP2 levels in traumatized individuals is
significantly influenced by exposure to ACE. Indeed, MECP2
downregulation was related to reporting more ACE and the
associated onset of severe PTSD symptoms following exposure to
an index trauma in adulthood. Conversely, MECP2 levels had no
connection with the exacerbation of PTSD symptoms linked to
ongoing chronic stressors in traumatized participants. An intri-
guing hypothesis explaining the specific influence of ACE on the
link between MECP2 and PTSD vulnerability concerns the
possibility that MECP2 downregulation may blur the participants’
recall of childhood experiences, without affecting current stress
perception, which is in line with the key role exerted by MECP2 in
cognition and memory processes [18]. However, MECP2 down-
regulation might also be an immediate consequence of the
experience of more ACE. Further studies are certainly needed to
ultimately delineate the precise nature of the relationship
between MECP2 and early life events.
An intriguing aspect of the present results is that exposure to

stressors of varying intensity in different periods of life is
accompanied by sex-specific patterns of MECP2 expression. In
fact, women reporting ACE display reduced levels of MECP2, while
men exposed to traumas in adulthood show MECP2 overexpres-
sion. These results are in line with the evidence describing MECP2
as a critical environmental sensor [19, 67] and suggest that
peripheral MECP2 expression may “quantify” lifetime stress
exposure, possibly representing a sex-specific biomarker of
vulnerability [68]. Our results in fact point to females as the sex
most affected by reduced levels of MECP2 and the associated
negative outcomes of early life challenges. Although the small
sample size imposes a cautious interpretation of the data, present
results are in line with our previous findings of a sex-dependent
association of MECP2 with vulnerability to psychopathology in
healthy individuals exposed to ACE [43]. Consistently, females
were described to be more vulnerable than males to the
detrimental and lasting consequences of ACE [69, 70]. It is thus
conceivable that MECP2may take part in sex-dependent biological

mechanisms that make females more vulnerable than males to
stress-related disorders [71]. In this line, other factors that lie
within the MECP2 network have been associated with PTSD in a
sex-specific manner across rodents and people (e.g. FKBP5,
HDAC4) [72, 73] Furthermore, it is important to underline that
developmental sex differences in MECP2 expression and its
contribution to the emergence of sex dimorphisms have been
previously acknowledged [37, 38]. The fact that these dimorph-
isms interest brain regions implicated in PTSD [72] further
strengthen our hypothesis of an involvement of MECP2 in the
establishment of sex differences in vulnerability to traumas.
Gaining further insight into the mechanisms involved in the sex-
specific regulation of MECP2 expression after exposure to stressful
experiences will be of great help for the identification of
vulnerability or pathogenic pathways to be targeted with the
aim of increasing resilience.
The present results should be considered in light of some

limitations. Indeed, participants were mainly of European ancestry,
thus limiting the possibility to extend our findings to multiple
ethnicities. This is important, given that the genetic and
epigenetic underpinnings of PTSD have previously been demon-
strated to differ among ethnic groups [74]. Moreover, although
several studies point to a major involvement of altered DNA
methylation processing as a fundamental mechanism providing
vulnerability to traumas [7, 12, 40], within the present study we
cannot draw conclusions about the functionality of the methyla-
tion machinery in patients with PTSD. Further studies are needed
to explore the expression of other enzymes involved in DNA
methylation and assess MECP2 protein levels, which would be of
interest to unveil a functional role for MECP2 and the methylation
machinery in the periphery. In this context, it is relevant to clarify
that, while analyzing human blood samples allowed us to provide
novel evidence of an association between MECP2 levels and PTSD
symptoms, gene expression in blood does not necessarily reflect
the molecular processes that may take place within the brain.
Although there is evidence that peripheral epigenetic responses
might, in some instances, reflect brain-related states [11, 39, 75],
the present findings need to be reinforced by animal studies
addressing brain MECP2 levels.
Beyond these considerations, the evidence of an existing link, in

the clinical setting, between MECP2 and the negative outcome of
ACE looks promising in the search for vulnerability markers.
Indeed ACE represent a risk factor common to multiple mental
disorders, including depression and schizophrenia [76, 77], with
whom PTSD shares a substantial proportion of genetic variance
[10, 78, 79]. In this light, a better understanding of the role of
MECP2 in the pathophysiology of mental disorders may benefit
from a research focusing on pathological traits, rather than on
strict diagnostic categories [80].
Collectively, the present study suggests that MECP2 down-

regulation may represent a step in the pathogenic process leading
to PTSD onset in patients, especially women, exposed to child-
hood adversities. Studies focusing on dissecting the mechanisms
involved in the regulation of MECP2 expression could shed new

Table 3. Indirect effects of MECP2 expression on PTSD symptomatology in the hypothesized and confirmatory models.

MECP2→ PTSD symptoms (latent construct) b (SE) CI β p-value

Hypothesized model −0.20 (0.14) −0.58 to −0.01 −0.06 0.037

PTSD symptom scale substitution model −0.45 (0.21) −0.91 to −0.11 −0.12 0.009

Chronic stress model 0.07 (0.19) −0.33 to 0.45 0.02 0.685

Men subsample −0.003 (0.138) −0.36 to 0.26 −0.001 0.950

Women subsample −0.63 (0.33) −1.47 to −0.10 −0.14 0.033

Abbreviations: MECP2 Methyl-CpG binding protein 2, PTSD Post-traumatic stress disorders, b Unstandardized coefficient, SE Standard error, CI 95% confidence
intervals for b, β Standardized coefficient, Symbols: underlined – significant results.
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light on the biological pathways underlying the sex and gender
bias in trauma vulnerability and could provide a more detailed
mechanistic understanding of the pathophysiology of the
disorder, hopefully leading to more effective, individualized
interventions.
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