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Metabolic syndrome (MetS) is characterized by a constellation of metabolic risk factors, including obesity, hypertriglyceridemia, low
high-density lipoprotein (HDL) levels, hypertension, and hyperglycemia, and is associated with stroke and neurodegenerative
diseases. This study capitalized on brain structural images and clinical data from the UK Biobank and explored the associations of
brain morphology with MetS and brain aging due to MetS. Cortical surface area, thickness, and subcortical volumes were assessed
using FreeSurfer. Linear regression was used to examine associations of brain morphology with five MetS components and the
MetS severity in a metabolic aging group (N= 23,676, age 62.8 ± 7.5 years). Partial least squares (PLS) were employed to predict
brain age using MetS-associated brain morphology. The five MetS components and MetS severity were associated with increased
cortical surface area and decreased thickness, particularly in the frontal, temporal, and sensorimotor cortex, and reduced volumes in
the basal ganglia. Obesity best explained the variation of brain morphology. Moreover, participants with the most severe MetS had
brain age 1-year older than those without MetS. Brain age in patients with stroke (N= 1042), dementia (N= 83), Parkinson’s
(N= 107), and multiple sclerosis (N= 235) was greater than that in the metabolic aging group. The obesity-related brain
morphology had the leading discriminative power. Therefore, the MetS-related brain morphological model can be used for risk
assessment of stroke and neurodegenerative diseases. Our findings suggested that prioritizing adjusting obesity among the five
metabolic components may be more helpful for improving brain health in aging populations.
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INTRODUCTION
Metabolic syndrome (MetS) is a constellation of conditions, including
obesity, hypertriglyceridemia, low high-density lipoprotein (HDL)
levels, hypertension, and hyperglycemia [1]. MetS affects 33% of the
US population and increases significantly with age, reaching a
prevalent rate of more than 50% in the elderly aged over 60 years [2].
Often considered a “pre-disease” state, MetS is associated with the
development of cognitive impairment [3] and neurological diseases,
such as stroke [4], dementia [5], and Parkinson’s disease [6] in aging
populations. Given the current absence of disease-modifying
treatment in the elderly [7] and the considerable burdens posed
by the incidence of stroke and dementia [8, 9], there is a growing
interest in understanding how to slow down or even reverse brain
aging in the pre-disease stages. Consequently, determining the role
of MetS in brain aging within the general population is crucial, as
addressing MetS may be more beneficial for brain health. The
mechanisms underlying the association between MetS and brain
aging, as well as neurological diseases, remain poorly understood.
Brain morphological alterations, such as cortical thinning and

volume reduction, are one of the most prominent markers of brain
aging [10, 11]. Increasing evidence suggests that adults with MetS or

with a diagnosis of obesity, diabetes, hypertension, high triglycer-
ides, or low HDL have a thinner thickness in the global cortex
[12, 13], frontal lobe [13–15], and central gyrus [12, 13]; and lower
volumes in the whole brain [16], thalamus [12] and basal ganglia
[12, 14, 17] in the healthy middle-aged and/or older populations.
Nevertheless, some existing studies do not discover such associa-
tions [12–14, 18, 19]. There was also a lack of consensus on the
morphological changes in the medial temporal lobe (MTL), including
a hippocampal volume reduction [14, 20, 21] and MTL cortical
thinning [12, 14, 21], in adults with MetS across various age and
ethnic groups. Discordant results may be partly due to the use of the
dichotomous diagnosis of MetS that does not capture the
complexity and dimensional view of MetS and its individual
components [22]. Moreover, the small sample size employed in
existing studies may not well characterize the heterogeneity of brain
morphology across the large age range.
While MetS is a constellation of conditions, yet there is currently

a limited understanding of the relative importance of each MetS
component in maintaining brain integrity. Research has suggested
that multiple metabolic abnormalities often occur concurrently [1],
making it difficult to disentangle their individual effects due to the
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complex interplay among various metabolic risk factors. In a
partial least squares correlation analysis conducted on younger
adults, blood pressure was found to have the least contribution to
the latent variable that maximizes the covariance between cortical
thickness and MetS [18]. Gaining a better understanding of this
differential pattern in middle-aged to older populations is crucial,
as it could inform the prioritization of preventative measures and
treatment efforts against MetS-induced brain damage.
Recently, increasing attention has been paid to the estimate of

brain age using MRI images via machine learning approaches
[23, 24]. The gap between brain age and chronological age (brain-
age gap) has been used to characterize brain aging. Patients with
Alzheimer’s disease (AD) and schizophrenia exhibit a greater brain-
age gap than healthy controls [25, 26]. It has been shown that the
brain-age gap is correlated with a broad range of cardiovascular and
metabolic risk factors [23, 24]. These findings suggested that the
brain-age gap may be a good indicator of brain health. Nevertheless,
few studies evaluated which metabolic component can be best used
to reverse brain aging among the five metabolic components.
Moreover, it is unclear whether MetS-related brain morphological
abnormalities can be used to distinguish stroke and neurodegen-
erative diseases from metabolic brain aging.
To answer the above questions, this study leveraged the large-

scale community-dwelling cohort of the UK Biobank study with
broad measures, including demographics, socioeconomics, lifestyle
status, MetS, and brain magnetic resonance imaging (MRI) in
middle- to older-aged participants [27]. This study aimed to explore
the associations of individual MetS components and the MetS
overall severity with brain morphology in an aging population
without major health problems (a metabolic aging group), where
MetS and its components were characterized in a continuous
manner and brain morphology was assessed using cortical surface
area and thickness, as well as subcortical volumes. Our findings

allowed the full investigation of the common and distinctive brain
patterns among all the five MetS components and clarified the
discrepancy in the existing findings [12–21, 28, 29]. Partial least
squares (PLS) regression was employed to predict brain age based
on the MetS-associated brain morphology. We expected that MetS
accelerates brain aging. The more severe MetS is, the more aging
the brain is. As MetS is a risk factor for neurodegenerative diseases
and stroke, we expect that the PLS model can distinguish brain
aging in neurodegenerative diseases and stroke from metabolic
aging. This study provides direct analysis of the link among MetS,
brain age, neurodegenerative diseases, and stroke.

METHODS
Participants
This study employed the sample from UK Biobank which collects biological
and medical data on ~500,000 adults aged between 40 and 70 years old
(https://www.ukbiobank.ac.uk). We included participants with brain MRI
data (N= 40,712) and excluded participants because of (1) withdrawal of
consent (N= 1037); (2) poor quality of the T1-weighted brain image
(N= 39); (3) missing the data of any MetS (N= 7598); and (4) missing any
covariate (N= 259), resulting 31,778 participants. This study then defined a
metabolic aging group and a neurodegenerative disease group. To form a
metabolic aging group, this study further excluded participants with a
history or current diagnosis of cancers, cardiovascular, neurological, and
psychiatric diseases (Table S1 of the Supplementary Material for details),
resulting in 23,676 participants. This study formed a neurodegenerative
disease and stroke group (N= 1445) in which participants had a history or
current diagnosis of any of the following neurodegenerative diseases:
multiple sclerosis (N= 235), dementia (N= 83), stroke (N= 1042), and
Parkinson’s disease (N= 107). Twenty-two participants had multiple
diseases. Neurodegenerative diseases and stroke were identified with
reference to the algorithms developed by the UK Biobank Outcome
Adjudication group [30]. Figure 1 summarizes the flowchart of the sample
selection for the metabolic aging and neurodegenerative disease groups.

Fig. 1 Flowchart of the participant selection for the metabolic aging group and neurodegenerative disease and stroke groups.
Participants with good quality T1-weighted brain image, all metabolic syndrome and covariates variables were included. Of these, 23,676 with
no major disease were included in the metabolic aging group, and 1445 participants with a history or current diagnosis of multiple sclerosis,
dementia, Parkinson’s disease, or stroke were included in the neurodegenerative disease and stroke groups.
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Standard protocol approvals, registrations, and patient
consents
Ethics approval was provided by the National Health Service, National
Research Ethics Service (reference 11/NW/0382). Participants signed
written informed consent and were allowed access to their health records
from the UK National Health Service. This study was conducted under UK
Biobank application number 57831.

MRI acquisition and analysis
The brain MRI was acquired in three imaging centers (Cheadle, Newcastle,
and Reading) using 3T Siemens Skyra scanners with a standard 32-channel
RF receive head coil [31]. The T1-weighted image was obtained using
Magnetization Prepared Rapid Acquisition Gradient-Echo (MPRAGE) with
1 × 1 × 1mm resolution, a field-of-view of 208 × 256 × 256mm, TI/TR/
TE= 880/2000/2.01ms, and a flip angle of 8°.
The T1-weighted MRI was processed through the longitudinal analysis

pipeline in FreeSurfer (version 7.1.1) [32]. A post-processing quality check was
conducted by one well-trained researcher based on the instruction given at
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData.
This study extracted cortical surface area, thickness, and subcortical volumes
to quantify brain morphology. The surface area and thickness were aligned
voxel-wise to the FreeSurfer template. The cortical surface area and thickness
were smoothed at 10mm full width at half maximum to increase the signal-
to-noise ratio and reduce the impact of misregistration.

Metabolic syndrome (MetS)
This study included five components of MetS, including waist circumfer-
ence, triglyceride, HDL, hypertension, and fasting glucose, based on the
National Cholesterol Education Program Adult Treatment Panel III (NCEP‐
ATP III) and International Diabetes Federation (IDF) [1]. Waist circumference
was measured with a Seca 200 measuring tape after participants had
removed bulky clothes. Triglyceride and HDL concentrations in the blood
serum were quantified on Beckman Coulter AU5800 analyzers. Blood
pressure (BP) was assessed twice using Omron 7015IT monitors, where the
second reading has been suggested to be used [33]. Due to a small
number of participants with fasting glucose measures, this study employed
hemoglobin A1c (HbA1c) to quantify the average blood glucose (sugar)
levels for the last 2 to 3 months via a Bio-Rad VARIANT II Turbo analyzer
[34]. Detailed information about blood biochemistry methods and quality
control procedures is available online [35].
This study also quantified the severity of metabolic syndrome (MetS

severity) as the number of MetS components that fall into the NCEP‐ATP III/
IDF criteria [1]: (1) elevated waist circumference (≥102 cm in males and
≥88 cm in females), (2) evaluated triglycerides (≥1.7 mmol/L or under
triglyceride medication), (3) reduced HDL (<1.0 mmol/L in males and
<1.3mmol/L in females or under HDL medication), (4) elevated BP
(≥130mmHg systolic or ≥85mmHg diastolic or under hypertension
medication), (5) elevated blood glucose (HbA1c ≥42.0 mmol/mol or under
diabetes treatment) [34].

Covariates
This study selected potential covariates based on possible associations
with MetS and brain morphology [36, 37]. The following covariates were
included in self-reported questionnaires: demographics (age at the
imaging visit, sex, ethnicity, handedness, and brain size), socioeconomic
status (Townsend deprivation index, the number of years for education,
and employment status), and lifestyle (smoking and alcohol consumption
frequency). Ethnicity was categorized into white (97%) and non-white (3%).
The brain size was estimated as brain segmentation volume via FreeSurfer.
Missing data on the number of years of education were inferred from the
education qualification level. This study followed the criteria defined in
Davies et al. [38], that is, College or University Degree corresponds to 16
years, A levels or AS levels or equivalent is 13 years, O levels or GCSEs or
equivalent, and a Certificate of Secondary Education (CSE) or equivalent
corresponds to 11 years, National Vocational Qualification (NVQ) or Higher
National Diploma (HND) or Higher National Certificate (HNC) or equivalent
and other professional qualifications (e.g., nursing and teaching) are 10
years, Never attend school is 0 years. Employment status was classified into
four groups: working, unemployed, retired, and others. Smoking status was
categorized into three groups: never, former, and current. Alcohol
consumption frequency was coded from never (as 0) to the most frequent
(as 5). This study also included imaging sites (Cheadle, Reading, and

Newcastle) as a covariate to control potential differences in brain
morphology due to different scanners.

Statistical analysis
This study compared the demographics, socioeconomics, and lifestyle
characteristics in the metabolic aging group and the neurodegenerative
disease and stroke group with the imaging sample. The Mann-Whitney U
test and chi-squared (χ2) test were respectively used for continuous and
categorical variables.
Due to the difference in the sample sizes of the metabolic aging group

and the neurodegenerative disease and stroke group, this study also
conducted a propensity score matching analysis using the “MatchIt”
package in R (v4.2.1; R Core Team 2022) [39] to extract participants from
the metabolic aging group whose demographic, socioeconomic status,
and lifestyle were matched to those in the neurodegenerative groups or
the stroke group. Student’s t-test was used to examine the difference in
metabolic syndromes of the metabolic aging group with each of the
neurodegenerative disease and stroke groups.
Linear regression was used to examine associations of brain

morphology with individual MetS components in the metabolic aging
group. Given the moderate to high correlations observed between the
five MetS components (Fig. 2), we employed a two-step regression
approach to evaluate the unique effect of each MetS component on brain
morphology. We first regressed out the effects of the other four MetS
components from the brain morphological measure (cortical surface
area/cortical thickness/subcortical volumes). In the next step, the
residuals from the first step served as dependent variables, and the
MetS component of interest as an independent variable while controlling
for the demographic, socioeconomic, and lifestyle covariates listed in
Table 1.
We also employed the same regression model to examine the

associations of overall MetS risk with brain morphology, where the brain
morphology measures (cortical surface area/cortical thickness/subcortical
volumes) as dependent variables and the MetS severity as an independent
variable while adjusting for the demographic, socioeconomic, and lifestyle
covariates listed in Table 1.
These regression models were applied to each vertex on the cortex

using the SurfStat toolbox (http://www.math.mcgill.ca/keith/surfstat) and
subcortical volumes in MATLAB. The same sample size was 23,676 for all
the statistical models. Statistical results were corrected for multiple
comparisons based on random field theory (RFT) for cortical surface area
and thickness and false discovery rate (FDR) for subcortical volumes at a
significance level of 0.01.
We then examined which MetS component best explained brain

morphology. We computed the Akaike information criterion (AIC) [40] for
the above five regression models related to individual MetS components. If
the deviation of the lowest AIC from others is above two, then the
regression model with the lowest AIC is defined as the winning model and
the corresponding MetS component is the best variable to explain brain
morphology [41]. We applied this procedure at every vertex on the cortical
surface and each subcortical region.
Next, we employed PLS [42] to predict the brain biological age of the

metabolic aging group, where the standardized cortical and subcortical
morphological measures associated with any MetS component were
used as features and chronological age was the predictive variable. Ten-
fold cross-validation was used to evaluate the performance of PLS. The
MetS-related brain-age gap was calculated as the difference between
the estimated brain age and chronological age. The chronological age
was further regressed out from the brain-age gaps to adjust for age bias
[43]. We employed the Kolmogorov–Smirnov (KS)-test to examine
whether the brain-age gap distribution in participants with greater
MetS severity is different from that in participants with less MetS
severity. In other words, we tested whether greater MetS severity
accelerates brain aging. FDR was used to correct statistical p values at a
significance level of 0.05.
We then hypothesized that the MetS-related brain-age gap is larger in

neurodegenerative diseases and stroke groups when compared to the
metabolic aging group. The brain-age prediction model trained on the
metabolic aging group was directly applied to the neurodegenerative
diseases and stroke groups. Moreover, we tested whether the brain-age
gap estimated based on the brain morphology associated with a specific
MetS component can well distinguish a specific neurodegenerative
disease or stroke from the metabolic aging group. KS-tests were used to
assess the difference in the distributions of the brain-age gaps
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estimated by the specific-MetS-associated PLS model in the metabolic
aging and specific neurodegenerative disease and stroke groups.
Statistical results were corrected via FDR at a corrected p value of
0.05. All analyses were carried out in MATLAB R2017b (The MathWorks,
Inc., USA).

RESULTS
Demographics
Table 1 lists the demographic, socioeconomic, and lifestyle
characteristics in the whole imaging sample, the metabolic
aging, and neurodegenerative disease groups. The metabolic
measures were acquired in the first visit to the UK Biobank study,
while brain images used in this study were acquired 8.8 ± 1.7
years later. Compared to the whole imaging sample, the
metabolic aging group was slightly younger, metabolically
healthier, more educated (all p < 0.001), and more likely to be
female (p= 0.004), non-white (p= 0.04), employed (p < 0.001),
and non-smokers (p= 0.013). Participants in the neurodegen-
erative disease and stroke group were older, more metabolically
unhealthy, less educated, and more likely to be male, retired,
and smokers either in the past or present (all p < 0.001, except
for hypertension status, p= 0.03) when compared to the
metabolic aging group. The proportion of participants in the
three imaging sites was different between the metabolic aging
group and neurodegenerative disease and stroke groups
(p < 0.001).
When matching the demographic, socioeconomic, lifestyle

variables, and the sample size, participants in the neurodegen-
erative disease groups (dementia, Parkinson’s disease, multiple
sclerosis) and the stroke group exhibited significantly higher

metabolic severity (p < 0.05) (Table S3–S6 in the Supplementary
Material).

Associations of metabolic syndromes with brain morphology
Figure 3 shows the significant associations of each MetS with
cortical surface area, thickness, and subcortical volumes. For all
five MetS components, a consistent pattern emerged in the
central and superior frontal gyri, whereby worse MetS status was
associated with increased cortical surface area and decreased
thickness. Nevertheless, there were distinct associations of brain
morphology with individual MetS components.
Higher waist circumference was additionally associated with

larger cortical surface area and thinner cortical thickness in the
lateral frontal lobe, supramarginal gyrus, lateral temporal lobe,
posterior cingulate cortex, and insula. The thickness in the medial
temporal lobe also decreased with increasing waist circumference
(Fig. 3b). Moreover, greater waist circumference was associated
with the larger bilateral putamen, right caudate, and thalamus, as
well as right amygdala (Fig. 3c).
The triglyceride and HDL had similar effects on brain

morphology. Greater triglyceride or lower HDL was associated
with increased cortical surface area and decreased cortical
thickness in the bilateral central gyrus, supramarginal gyrus, and
middle temporal gyrus (Fig. 3d, e, g, h). The putamen and pallidus
showed significant associations (Fig. 3f, i). However, only the
bilateral nucleus accumbens and the right thalamus were
associated with HDL but not with triglyceride.
Hypertension had the least effects on brain morphology

compared to the other four metabolic syndromes. Beyond the
common pattern, greater hypertension was related to reduced
thickness in the parahippocampal gyrus, posterior cingulate

Fig. 2 Heatmap among metabolic syndrome, demographic, socioeconomic, and lifestyle variables in the metabolic aging group. Only
significant correlations are displayed (FDR-corrected p < 0.01). HbA1c hemoglobin A1c.
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cortex, and insula, as well as to an increased volume in the
bilateral caudate and putamen (Fig. 3k, l).
The effect of HbA1c was much stronger than that of

hypertension and dyslipidemia, but weaker than that of waist
circumference. Higher HbA1c was significantly associated with
larger cortical surface area and thinner cortical thickness in the
lateral orbitofrontal cortex, frontal gyrus, motor region, lateral
temporal lobe, and superior and inferior parietal cortex. The
association between higher HbA1c and thinner cortex spread to
the posterior cingulate cortex, medial temporal lobe, and
precuneus (Fig. 3m, n). Our findings also showed HbA1c-
associated thalamus, pallidus, and hippocampus volume reduc-
tions (Fig. 3o).

Associations of the MetS severity with brain morphology
The statistical maps between the MetS severity and cortical
morphology (Fig. 4a, b) were similar to the consistent pattern
observed in individual MetS components (Fig. 3). That is, greater
MetS severity was associated with increased cortical surface area
and decreased thickness in the central and superior frontal gyri.
Moreover, elevated MetS severity was related to cortical surface
area expansion and thickness reduction in the lateral temporal
lobe, posterior cingulate cortex, insula, and medial temporal lobe.
Furthermore, increased severity of MetS was associated with an
increased volume in the right amygdala and caudate, and bilateral
putamen, as well as with a reduced volume in the pallidus, where
the strongest effects were in the bilateral putamen and pallidus
(Fig. 4c).

The most contributed MetS component to brain morphology
All the above statistical analyses were run on the same sample of
23,676. This study employed AIC to examine which MetS
component most contributed to brain morphology. Figure 4d–f
illustrates the representative MetS that most contributed to the
cortical surface area, thickness, and subcortical volumes. Waist
circumference best explained the considerable variance in most of
the MetS-associated cortical regions, thalamus, putamen, and
pallidus. HbA1c explained the frontal and supramarginal thickness
and right hippocampus volume. Dyslipidemia played a role in
explaining the surface area in the frontal, parietal, and lateral
medial cortex and the amygdala volume. HDL was most
associated with the temporal cortical surface area, left amygdala,
and accumbens volumes. Among the five metabolic symptoms,
hypertension had the least influence on brain morphology, except
on the caudate volume.

Metabolic syndrome accelerates brain aging
When combining all brain morphological features associated with
any one of the five MetS components, MetS-related brain
morphology accurately predicted chronological age in the
metabolic aging group (correlation r= 0.80; Fig. 5a). A root-
mean-square error was 4.45 years and a mean absolute error was
3.56 years.
Figure 5b, c respectively illustrate the probability and

cumulative distributions of the brain-age gaps at each MetS
severity level. The mean brain-age gaps were −0.37 ± 3.45,
−0.11 ± 3.57, 0.16 ± 3.59, 0.33 ± 3.62, 0.76 ± 3.57, 0.91 ± 3.64
years as increasing the MetS severity from 0 to 5, respectively.
KS-tests showed significantly increasing brain-age gaps from no
MetS to the MetS level of 1 (KS-test= 0.039, FDR-corrected
p < 0.001), between the MetS levels of 1 and 2 (KS-test= 0.038,
FDR-corrected p < 0.001), and between the MetS levels of 3 and 4
(KS-test= 0.062, FDR-corrected p= 0.005). But, there was no
statistically significant difference in the distribution of the brain-
age gap between the MetS severity levels of 2 and 3 (KS-

Table 1. Characteristics of participants.

Characteristics Summary

Imaging
sample

Metabolic
aging
group

Neurodegenerative
disease and
stroke
group

(N= 31,778) (N= 23,676) (N= 1445)

Metabolic syndrome (MetS)

Waist
circumference (cm)

87.9 (12.5) 87.4 (12.4)*** 90.4 (12.9)***

Triglyceride
(mmol/L)

1.64 (0.95) 1.62 (0.94)*** 1.76 (1.06)***

HDL (mmol/L) 1.48 (0.38) 1.49 (0.37)*** 1.41 (0.36)***

Hypertension 61.9% 59.6%*** 71.3%*

HbA1c (mmol/mol) 35.0 (5.06) 34.8 (4.95)*** 35.6 (5.75)***

MetS severity 1.52 (1.19) 1.44 (1.17)*** 1.76 (1.31)***

Demographics

Age (years) 63.6 (7.53) 62.8 (7.45)*** 65.5 (7.58)***

Sex, Male 47.5% 46.3%** 55.0%***

Ethnicity

White 97.2% 96.9%* 97.6%

Non-white 2.8% 3.1%* 2.4%

Handedness

Right-handedness 89.1% 89.1% 89.9%

Left-handedness 9.4% 9.5% 8.4%

Ambidexterity 1.5% 1.4% 1.7%

Brain size (cm3) 1193.5
(111.8)

1194.3
(112.4)

1194.8 (113.8)

Socioeconomic

Townsend
deprivation index

−1.91 (2.70) −1.90 (2.71) −1.87 (2.70)

The number of
years for education
(years)

13.9 (2.58) 14.0 (2.55)*** 13.8 (2.74)***

Employment status

Paid 69.3% 72.5%*** 59%***

Retired 24.7% 21.5%*** 33.2%***

Unemployed 1.2% 1.2%*** 0.8%***

Others 4.8% 4.8%*** 7.0%***

Lifestyle

Smoking status

Never smoked 61.0% 62.4%** 55.9%***

Ex-smoker 32.8% 31.5%** 37.0%***

Current smoker 6.2% 6.1%** 7.1%***

Alcohol
consumption
frequency

3.31 (1.39) 3.31 (1.38) 3.24 (1.47)

Imaging site

Cheadle 61.5% 60.8% 65.6%***

Reading 13.1% 13.3% 9.9%***

Newcastle 25.4% 25.9% 24.5%***

Neurodegenerative disease and stroke (N)

Multiple sclerosis 235

Dementia 83

Parkinson’s disease 107

Stroke 1042

Values are shown as mean (SD) or %. The groups are compared in two
ways: first, between the imaging sample and the metabolic aging group,
and second, between the metabolic aging group and the neurodegen-
erative disease and stroke group.
HDL high-density lipoprotein, HbA1c hemoglobin A1c.
***p < 0.001, **p < 0.01, *p < 0.05.
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test= 0.027, FDR-corrected p= 0.11) and between the MetS
severity levels of 4 and 5 (KS-test= 0.048, FDR-corrected
p= 0.82). These results suggested the acceleration of brain
aging due to the elevated MetS severity.

MetS-related brain-age gap predicts neurodegenerative
diseases and stroke
The PLS model that was trained based on all MetS-associated
brain morphology in the metabolic aging group estimated

greater brain-age gaps for participants with dementia
(2.44 ± 5.30 years, KS-test= 0.23, FDR-corrected p < 0.001),
multiple sclerosis (1.94 ± 5.09 years, KS-test= 0.21, FDR-
corrected p < 0.001), Parkinson’s disease (1.28 ± 4.19 years,
KS-test= 0.17, FDR-corrected p= 0.006), and stroke
(0.47 ± 4.00, KS-test= 0.07, FDR-corrected p < 0.001), compared
with the metabolic aging group. These findings suggested that
the MetS-related brain-age gap can be a good indicator of
neurodegenerative diseases and stroke.

Fig. 3 Statistical maps for the associations of metabolic syndromes with cortical surface area (left column), cortical thickness (middle
column), and subcortical volumes (right column) in the metabolic aging group. Rows from top to bottom display the association with waist
circumference (a–c), triglyceride (d–f), high-density lipoprotein (HDL) (g–i), hypertension (j–l), and hemoglobin A1c (HbA1c) (m–o),
respectively. The results were adjusted for age at the MRI visit, sex, Townsend deprivation index, ethnicity, age completed full-time education,
smoking status, alcohol consumption frequency, employment status, brain size, and imaging sites. Significant brain regions are displayed at
the corrected p value <0.01 for cortical morphology. L left, R right, Acc accumbens, Amyg amygdala, Caud caudate, Hipp hippocampus, Pall
pallidum, Put putamen, Thal thalamus. **p < 0.001, *p < 0.01.
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When the PLS regression only employed the brain morphology
identified by individual MetS, the brain-age gap for dementia was
much larger than that in the metabolic aging group (see Fig. 6a,
all FDR-corrected p < 0.01). The largest difference in the brain-age
gap occurred when using the PLS regression learned from the
brain morphology associated with weight circumference (KS-
test= 0.29, FDR-corrected p < 0.001), HDL (KS-test= 0.29, FDR-
corrected p < 0.001), and HbA1c (KS-test= 0.29, FDR-corrected
p < 0.001). Similarly, waist circumference and hypertension-

related PLS regressions showed the largest deviation of the
brain-age gap in the stroke group from the metabolic aging
group (see Fig. 6b), and waist circumference-related brain-age
gaps best distinguish the Parkinson’s disease group (see Fig. 6c).
The PLS regressions of all MetS components showed the largest
deviation of the brain-age gap in the multiple sclerosis group
from the metabolic aging group (see Fig. 6e). The detailed KS-test
values and corresponding p values are reported in Table S2 of the
Supplementary Material.

Fig. 4 Summary of associations between the metabolic syndrome and brain morphology. Panels (a)–(c) illustrate the statistical maps for
the associations between the metabolic syndrome severity (MetS severity) and cortical surface area, cortical thickness and subcortical
volumes, respectively. Panels (d)–(f) shows the metabolic syndrome component that most contributed to cortical surface area, cortical
thickness and subcortical volumes, respectively. Significant brain regions are displayed at the corrected p value <0.01 for cortical morphology.
HDL high-density lipoprotein, HbA1c hemoglobin A1c, L left, R right. Acc accumbens, Amyg amygdala, Caud caudate, Hipp hippocampus, Pall
pallidus, Put putamen, Thal thalamus. **corrected p < 0.001, *corrected p < 0.01.

Fig. 5 Brain age prediction. Panel (a) illustrates the scatterplot of the chronological age and the predicted brain age. Each dot represents one
participant. The color of the dots represents the number of participants in that location. Panel (b) shows the brain-age gap distribution in
terms of the MetS severity. The dashed line indicates the mean of each distribution. Panel (c) shows the cumulative distribution of the MetS-
related brain-age gap at each MetS severity level.
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DISCUSSION
This study capitalized on the brain structural images and clinical
data from the UK Biobank and explored the associations of the
five metabolic components with the brain morphology, such as
cortical surface area, thickness, and subcortical volumes. Our
findings suggested that widespread cortical morphology, particu-
larly in the frontal, temporal, sensorimotor cortex, and basal
ganglia were commonly associated with the five metabolic
components. The elevated MetS severity accelerated brain aging.
Moreover, our findings demonstrated that the MetS-related brain-
age gap can well distinguish stroke and neurodegenerative
diseases from aging but it does not specify the type of these
diseases. Therefore, our findings to some degree supported that
the MetS-related brain morphological model can be used as a risk
assessment for stroke and neurodegenerative diseases.
This study conducted a comprehensive analysis of the five

metabolic components and brain morphological measures based on
a large sample size of the aging population without major illness.
Our findings highlighted the cortical surface area and thickness of
the frontal lobe, sensorimotor region, and temporal lobe, as well as

basal ganglia volumes commonly in association with all five
metabolic symptoms. These findings were largely consistent with
existing findings related to the MetS dichotomous diagnosis [13, 14].
Individuals with greater MetS severity experienced faster brain
aging. Those at the greatest severity of MetS had an average 1-year
larger brain-age gap than those without risk. According to the NCEP‐
ATP III/IDF definition, only those who met three or more criteria are
considered to have MetS [1], while our results showed that attention
should be drawn even when one or two metabolic problems were
present. In particular, obesity assessed by waist circumference
showed the strongest association with the widespread brain
morphology among the five metabolic components even after
controlling for the whole brain volume. A recent study has shown
that older brain age associated with obesity and poor metabolic
components can be reversed following bariatric surgery-induced
weight loss. The overall effect seemed to be driven by a global
change across all brain regions and not from a specific region [44].
Hence, our findings provided further evidence that prioritizing
adjusting obesity among the five metabolic components may be
more helpful for improving brain health in aging populations.

Fig. 6 Cumulative distributions of brain-age gaps in the neurodegenerative disease groups based on the brain morphology associated
with each metabolic syndrome (MetS). Panels (a)–(d) show the cumulative distributions of brain-age gaps in the dementa, stroke, Parkinson’s
disease, and multiple sclerosis group, respectively. The brain-age gaps were predicted using all brain morphology that were associated with
any one of the five MetS components. The dashed line represents the brain-age gaps in the aging group based on the brain morphology
associated with overall MetS. Kolmogorov–Smirnov test was used to verify whether there was a significant difference in the cumulative
distributions between the brain-age gap in each neurodegenerative disease group and the aging group. Abbreviations: HDL, high-density
lipoprotein; HbA1c, hemoglobin A1c. ***corrected p < 0.001, **corrected p < 0.01, *corrected p < 0.05.
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We discovered significant correlations between the MetS
severity and the volumes of the right caudate and amygdala, in
line with previous large-scale studies that showed increased
volumes of these structures in association with obesity [28, 45–47].
Furthermore, the distinct patterns of the brain morphological
associations with the five individual MetS components mainly
occur in the subcortical and cortical basal regions, particularly the
basal ganglia, amygdala, and orbitofrontal cortex. These structures
have been implicated in food-related reward circuits [48, 49].
Excessive stimulation of these circuits has been proposed to
contribute to overeating and is associated with obesity and the
other MetS components [14, 50]. It is unclear whether these
circuits play a crucial role in differentiating the associations of
individual MetS components with brain morphology. However, it
is possible that the increase in the amygdala and caudate volumes
may compensate for the cortical atrophy of these reward circuits.
Our results also suggest a lateralization effect of the caudate

and amygdala with the MetS severity, which persisted even after
adjusting for handedness. However, the evidence for lateralization
in the food appetite network is inconclusive, with some studies
indicating a left preference [51, 52] and others pointing to a right
tendency [53, 54]. Given only two subcortical regions exhibited a
significant lateralization effect related to the MetS severity in our
study, we advise against drawing strong conclusions regarding
the lateralization effect in the context of MetS.
Additionally, we identified two physiologically adjacent regions,

the putamen and pallidum, that displayed opposite relationships
with the MetS severity. A previous UK Biobank study also found
contrasting associations between the putamen and pallidum
volumes with obesity [47]. However, the biological significance of
these opposite relationships remains unclear.
Our study suggested that the MetS-associated brain morphologi-

cal features can be considered as an indicator of brain aging. That is,
individuals with the most MetS severity had a greater brain-age gap
than those without MetS. The PLS model, trained based on the MetS-
associated brain features in the relatively aging population, can be
directly applied to stroke and neurodegenerative diseases, such as
dementia, Parkinson’s disease, and multiple sclerosis, in the UK
Biobank study. The PLS model can identify patients with these
neurodegenerative diseases and stroke with a greater brain-age gap
than that in the metabolic aging group. These findings can also be
supported by the thinning in the medial temporal lobe, including the
entorhinal cortex and parahippocampal cortex, temporal pole, and
posterior cingulate cortex, associated with waist circumference and
the severity of MetS and the hippocampal volume reduction
associated with HbA1c and the severity of MetS. Previous histological
and imaging studies have shown that the volume reduction in the
entorhinal cortex, parahippocampal gyrus, and hippocampus is
pathologically associated with early AD [55, 56]. Indeed, the brain
features related to waist circumference, HbA1c, and the severity of
MetS can well distinguish AD from the aging group. Hence, our
findings provided neural support that obesity, diabetes, and MetS
were associated with an increased risk of AD [5, 57, 58]. Similarly, our
findings suggested that waist circumference most contributed to a
volumetric reduction in the basal ganglia, a hallmark of Parkinson’s
disease [59]. The brain morphology related to waist circumference
well distinguished Parkinson’s disease from aging. Likewise, the brain
morphology associated with individual five MetS components
predicted greater brain-age gaps in stroke and multiple sclerosis
than aging. By comparisons, several studies have measured the brain
age of patients with brain disorders and found that the brain-age
gap in schizophrenia was on average 3 years larger, that in mild
cognitive impairment and AD was on average 6 and 10 years larger,
respectively [25, 26]. Notably, individuals with neurodegenerative
diseases or stroke also experienced a higher metabolism than
healthy individuals. Hence, the MetS-associated brain morphology is
sensitive to detecting stroke and neurodegenerative diseases but not
specific to any type of disease.

Several limitations are worth noticing. First, this study was cross-
sectional. The longitudinal analysis would be crucial to under-
standing the trajectory of the MetS influence on brain morphology in
aging. Second, the UK Biobank imaging sample lives in less deprived
areas and is healthier than the wider UK population [60–62], which
may limit generalizability. Last but not least, this study limited the
analysis to brain morphology. The UK Biobank study also provides
other brain MRI modalities, including functional MRI and diffusion
MRI [27], which need further investigation of MetS effects on brain
functional and structural organization.
In conclusion, the five key metabolic syndromes significantly

affected widespread brain morphology and elevated brain aging
in the aging population. The MetS-related morphology well
predicted elevated brain aging in stroke and neurodegenerative
diseases, suggesting its role in estimating the risk of individuals.
Our study suggested that prevention and timely treatment of
metabolic syndromes, especially abdominal obesity, is needed for
improving brain health.
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