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The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain
networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA

receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive
allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and
extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of
depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been
observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered
levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target
dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of
depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for
the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational
oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement
in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA

receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant
effects in patients with MDD.
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INTRODUCTION
Depression is a common and debilitating mental health disorder
that negatively impacts a person’s health and functioning and is a
leading cause of disability globally [1]. According to the Diagnostic
and Statistical Manual of Mental Disorders, 5th edition, text
revision, major depressive disorder (MDD) is characterized by
≥2 weeks of at least 5 of the following symptoms (at least 1 of
which is depressed mood or anhedonia): depressed mood,
anhedonia (loss of interest or pleasure in daily activities), feelings
of guilt/low self-esteem, changes in sleep, weight loss or loss of
appetite, psychomotor retardation or agitation, fatigue, poor
concentration, and suicidal thought that represents a change from
previous functioning. The major depressive episode must not be
due to another disorder [2]. The global annual age-standardized
prevalence of depressive disorders (MDD and dysthymia) in 2019
was estimated to be 3440.1 per 100,000 individuals [3]. Based on
the 2021 National Survey on Drug Use and Health (NSDUH) in the
United States, the annual prevalence of major depressive episodes
in adults was 8.3% and that of major depressive episodes with
severe impairment was 5.7% [4].
The etiology of depression has not yet been fully established,

but considering the heterogeneity of symptoms, underlying
genetics, and treatment responses, it is generally believed that

the cause of MDD may be multifactorial. Various genetic and
environmental factors (eg, first-degree family members with MDD,
adverse childhood experiences, stressful life events) can influence
the development of depression [2]. A genome-wide association
study of genetic and health records of 1.2 million individuals from
4 separate data banks identified variations in 178 genes that were
linked to MDD [5]. Stressful environmental signals can be
integrated into the genome via epigenetic mechanisms, such as
DNA methylation and histone modifications [6, 7]. Evidence also
shows that modified DNA methylation patterns due to stress can
affect brain plasticity and emotion in patients with depression [8].
Furthermore, brain imaging studies have shown structural and
functional changes associated with depression [9–11]. Structural
changes include a loss of glial cells, morphologic changes in
neurons, and decreased volume in the cingulate cortex, prefrontal
cortex (PFC), hippocampus, and amygdala [12]. Functional
changes in MDD involve abnormal connectivity in the central
executive, default mode, and salience networks, the key neuronal
networks controlling mood, arousal, behavior, and cognition
[13, 14]. Elevated activity of the hypothalamic-pituitary-adrenal
(HPA) axis, neurotrophic deficit, and neuroinflammation are other
potential mechanisms proposed for the development of depres-
sion [15, 16].
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More recent data implicate alterations in the sensorimotor
network as being the most consistent factor in depression [17, 18].
Evidence also suggests an association of altered connectivity in
the default mode network with postpartum depression (PPD) [19].
These functional networks communicate using several neuro-
transmitters, including amino acids such as glutamate and
gamma-aminobutyric acid (GABA), the primary excitatory and
inhibitory neurotransmitters in the brain, respectively, and
monoamines such as norepinephrine, dopamine, and serotonin
[12, 20].

Hypotheses of depression
Several hypotheses exist for the pathophysiology of depression as
it relates to altered neurotransmitter levels. The early monoamine
hypothesis, which posits that a core pathophysiologic feature of
depression is depletion of brain monoamine neurotransmitters
(eg, norepinephrine, dopamine, and serotonin), originated from
the observation that most standard-of-care antidepressant thera-
pies (ADTs) can increase extracellular concentrations of these
neurotransmitters [15, 16, 21, 22].
The glutamatergic hypothesis of depression suggests an

association between elevated glutamate levels and depression
[16, 22]. This hypothesis is based on preclinical evidence of the
antidepressant effects of N-methyl-D-aspartate (NMDA)-receptor
antagonists [23]. Glutamate binds to NMDA receptors, resulting in
excitatory neurotransmission [24]. Elevated glutamate levels lead
to overactivation of NMDA receptors and induce calcium ion
(Ca2+) influx, which in turn may lead to long-term potentiation
and long-term depression [25, 26]. However, the evidence for
elevated glutamate levels in depression is inconsistent. A
postmortem study of adults with MDD reported increased
glutamate levels in the frontal cortex of patients with MDD [27],
and a proton magnetic resonance spectroscopy study showed
increased glutamate levels in the occipital cortex of patients with
MDD [28]. Conversely, a meta-analysis of proton magnetic
resonance spectroscopy studies examining levels of glutamatergic
neurometabolites reported significant decreases in the combined
glutamine-plus-glutamate level within the medial PFC in patients
with depression compared with healthy volunteers but not in the
dorsolateral PFC or medial temporal cortex; differences in
glutamate levels between the two groups were not significant
in any of these areas [29]. Another meta-analysis showed that
glutamate levels were lower within the anterior cingulate cortex of
patients with depression compared with healthy volunteers [30].
The GABAergic deficit hypothesis proposes that defects in

GABAergic neural inhibition causally contribute to the common
phenotypes of MDD, and, conversely, the efficacy of an ADT may
be linked to its ability to restore GABAergic neurotransmission
[31]. It is based on findings of reduced levels of GABA in the
plasma, cerebral cortex, and cerebrospinal fluid (CSF), altered
expression and subunit composition of GABAA receptors, and
reduced levels of neuroactive steroids (NASs) in CSF among
individuals with depression [22, 32]. The hypothesis is also
supported by results from multidisciplinary contemporary
approaches that combined large-scale genome-wide association
studies, postmortem cytology, and functional and structural
imaging studies to clarify the shared origins of otherwise
biologically heterogeneous MDD [33, 34]. A consistent association
was noted between principal neuroimaging findings in individuals
with depression and downregulated genetic markers for cortical
somatostatin-expressing GABAergic interneurons and astrocytes
[33]. Polygenic somatostatin interneuron markers were most
expressed in the subgenual anterior cingulate, medial PFC,
anterior insula, and temporal lobes, coinciding with brain areas
where imaging studies confirmed cortical thinning and aberrant
connectivity in individuals with depression [33]. The expression of
the MDD-associated somatostatin gene marker SST was found to
be significantly negatively correlated with structural differences in

cortical regions of individuals with MDD relative to healthy
controls [34]. Impaired GABAergic signaling is also thought to be
implicated in PPD [35, 36] and bipolar disorder [37, 38].
This narrative review provides preclinical and clinical data

supporting the role of GABAergic signaling in the brain and the
GABAergic deficit hypothesis of depression, and how modulation
of GABA signaling by GABAergic compounds and NASs could
potentially be employed to treat depression. We also examine
currently approved and investigational NAS therapies and their
hypothesized mechanisms of action in depression, supporting the
potential link of science and practice for physicians and clinical
researchers. The mechanisms and novel therapies reviewed may
impact the approach to rapid treatment of MDD with improved
long-term outcomes. Publications were selected from the
literature based on their relevance to the covered topics (ie, the
role of GABA signaling and the potential role of GABAergic
compounds and NASs in MDD) and author experience and
preference.

GABAergic signaling and normal brain functioning
The complex interplay between excitatory glutamatergic neurons
and inhibitory GABAergic neurons is essential to achieving
balanced cortical neural activity [39, 40]. The glutamatergic-
GABAergic balance is tightly regulated by the biosynthesis,
transport, and signaling of the respective neurotransmitters (ie,
glutamate and GABA) in the central nervous system (CNS) [39, 40].
The biosynthesis of glutamate and GABA are interrelated via the
glutamate/GABA-glutamine cycle [41]. Briefly, glutamatergic neu-
rons release glutamate via synaptic vesicles into the synaptic cleft,
where it is taken up by astrocytes and converted to glutamine.
Glutamine is transported back to glutamatergic neurons, hydro-
lyzed to glutamate, and repackaged into synaptic vesicles [41].
GABAergic neurons release GABA into the synapse, where it is
taken up by astrocytes and ultimately converted to glutamine.
Glutamine is then transported to GABAergic neurons, where it is
converted to glutamate by glutaminase and then to GABA by
glutamate decarboxylase [42].

Physiologic role of GABA and GABAergic neurons
Excitatory glutamatergic and inhibitory GABAergic neurons
predominantly communicate through synaptic interactions [43].
GABA is present primarily in local interneurons, but also in long
projection neurons in the PFC, anterior cingulate cortex, amygdala,
nucleus accumbens, ventral tegmental area, and the hippocampus
—the regions functionally associated with decision-making,
cognition, intelligence, memory, sleep, emotions, motivation,
and pleasure [12, 44–47]. GABA plays an important role in
neuronal proliferation, migration, differentiation, and preliminary
circuit-building during brain development [44, 48] and is
implicated in the development of interstitial neurons in white
matter and oligodendrocytes [44]. GABA also regulates connectiv-
ity between the major brain functional networks (eg, default mode
and executive control networks) [49].
GABAergic projection neurons are widely distributed through-

out the brain and make dense connections between brain regions
involved in mood regulation and reward learning (Fig. 1) [12];
GABAergic interneurons play a vital role in local neural circuitry
and activity [50]. Altogether, GABAergic neurons play an important
role in regulating various physiologic brain functions, such as
learning and memory, sensorimotor processing, and neuroplasti-
city [51]. GABAergic neurons also terminate the innate physiologic
stress response by regulating the HPA axis and restoring home-
ostasis, suggesting the critical role of GABAergic signaling in
normal brain function [45].

GABA receptors
GABA mediates neural inhibition in the brain by activating the 2
major GABA receptors: (1) GABAA, ionotropic ligand-gated ion
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channels that signal via direct ligand-mediated opening; and (2)
GABAB, metabotropic G protein-coupled receptors that act
indirectly via intracellular signaling cascades [32, 52, 53]. GABAB
receptor-mediated signaling relies on the activation of G protein
signaling pathways to inhibit neurotransmitter release and
modulate action potential propagation [52, 54]. GABAB receptor
expression or activity does not appear to be consistently altered in
individuals with depression and has therefore attracted less
research interest compared with GABAA receptors in this disease
[55]. However, GABAB receptor activation has been reported to
increase membrane trafficking of GABAA receptors in dentate gyrus
granule cells, resulting in enhanced GABAA receptor current [56, 57].
GABAA receptors are widely distributed in the brain and play an

important role in many brain functions [58, 59]. In addition to
GABA, other endogenous ligands include zinc, NASs, and certain
amino acids [60–62]. GABAA receptors are encoded by 19 subunit
genes, six α (α1-α6), three β (β1-β3), three γ (γ1-γ3), three ρ (ρ1-
ρ3), and one each of the δ, ε, π, and θ subunits [63]. GABAA

receptors belong to a large heterogeneous class of pentameric
chloride channels comprising 2 α, 2 β, and 1 γ, δ, ρ, θ, or ε
subunits, with the α1β2γ2 GABAA receptors being the most
abundant [32, 53]. The complex and heterogenous nature of
GABAA receptors results in considerable diversity in their
physiology, location, and pharmacologic profile [53]. Upon GABA
binding and activation of the GABAA receptor, chloride ions flow
into the cell, leading to rapid membrane hyperpolarization and
inhibition of action potentials in the postsynaptic neuron [52, 64].
A subclass of GABAA receptors, termed GABAA-ρ (previously
GABAC) receptors, is a group of receptors composed exclusively of
ρ subunits, which are typically insensitive to GABAA allosteric

modulators (eg, benzodiazepines, barbiturates, and most NASs)
[65]. However, there are some GABAA receptor modulators that
can also engage GABAA-ρ receptors, such as pregnanolone,
allopregnanolone, and some synthetic NASs [65–67].
The subunit composition of the GABAA receptor defines its

biophysical and pharmacologic properties and whether it localizes
to a synaptic or extrasynaptic site. The widely expressed
α1–3β1–3γ2 GABAA receptors are predominantly localized to the
synapses, while the α4–6β2–3δ GABAA receptors are largely
present extrasynaptically [53, 68, 69]. Activation of low-affinity
synaptic γ subunit-containing receptors is transient and mediates
rapid phasic inhibition, while extrasynaptic δ subunit-containing
receptors mediate tonic inhibition through persistent activation
by low concentrations of ambient extracellular GABA [64, 70]. In
neurons with both synaptic and extrasynaptic conductance, the
tonic currents may produce a larger net inhibitory effect than do
the phasic currents [71].

Neuroactive steroids
Neuroactive steroids are a class of steroids that are synthesized de
novo in neurons and glia of the central and peripheral nervous
systems following transport of cholesterol into the mitochondria
(Fig. 2). Additionally, some circulating sterols (eg, progesterone,
dehydroepiandrosterone [DHEA]) can cross the blood-brain barrier
to be used as precursor molecules [64, 72–75]. Endogenous NASs
are generally categorized as: (1) pregnane-derived (eg, allopreg-
nanolone, allotetrahydrodeoxycorticosterone [allo-THDOC]); (2)
androstane-derived (eg, androstanediol, etiocholanolone); or (3)
sulfated (eg, pregnenolone sulfate, dehydroepiandrosterone
sulfate) [64, 72].

Fig. 1 Glutamatergic and GABAergic projection neurons make dense connections between brain regions that participate in mood
regulation and reward processing. Glutamatergic projections illustrated here include those from the frontal cortex to the anterior cingulate
cortex (ACC), thalamus (TH), ventral tegmental area (VTA), hippocampus (HPC) and nucleus accumbens (NAc); from hippocampus to
hypothalamus (HT), VTA, NAc and PFC; and from amygdala to HT, ACC and NAc. Major GABAergic projections are from HT to the occipital and
parietal cortex, HPC to PFC, and from NAc to TH and VTA. Only a subset of known interconnections is shown here. Depression is associated
with reduced brain volume and decreased glial cell density in various brain regions, including ACC, PFC, hippocampus, and amygdala. (Figure
is reproduced from Sarawagi et al. 2021 [12] according to the terms of the Creative Commons Attribution License [CC BY]).
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Neuroactive steroids regulate neuronal excitability via rapid
non-genomic action [64], primarily through interaction with
neuronal membrane receptors and ion channels like the
ionotropic GABAA receptors [64, 72]. Activity of NASs at neuronal
GABAA receptors occurs within minutes, compared with the slow-
onset (delayed by hours) and prolonged duration of action of
steroid hormones, which act via intracellular steroid hormone
receptors [76]. In general, NASs bind to GABA, NMDA, serotonin,
and σ-1 receptors to modulate neurotransmitter signaling [72].
They modulate excitatory-inhibitory balance and homeostatic
mechanisms, thus regulating brain functions that control mood,
aggression, cognition, memory, and pain [77]. Neuroactive
steroids can function as positive allosteric modulators (PAMs) of
both synaptic and extrasynaptic GABAA receptors to activate and
potentiate phasic and tonic currents, respectively [64, 78–80], or as
negative allosteric modulators (NAMs) to dampen the response to
neurotransmitter ligands such as glutamate and GABA [81]. NAS
GABAA receptor NAMs are activation-dependent, non-competitive
inhibitors of GABAA receptors and can also inhibit the effects of
NAS GABAA receptor PAMs [80]. NAS GABAA receptor PAMs also
regulate neuroplasticity, neuroinflammation, and HPA axis func-
tion and may play an important role in neurogenesis [36, 82–84].
Allopregnanolone, pregnanolone, and allo-THDOC are among the
more potent endogenous NAS PAMs of GABAergic neurotransmis-
sion [85].
GABAA receptor activation by NASs occurs via 2 discrete sites in

the α and β subunit transmembrane domains, one at the α-β
subunit interface for activation and the other exclusively on α
subunits for potentiation of response to NASs [62, 79]. Binding of
nanomolar concentrations of NAS GABAA receptor PAMs increases

the mean open time and decreases the mean closed time of the
GABAA receptor chloride channel in the presence of sub-
saturating concentrations of GABA, thereby increasing the
chloride current through the channel and reducing neuronal
excitability [64, 86]. In the absence of GABA, micromolar
concentrations of PAMs can directly open GABAA receptor
chloride channels [87]. Interestingly, NAS GABAA receptor PAMs
have also been shown to increase phosphorylation of certain
GABAA receptor subunits, leading to increased cell surface
expression of those GABAA receptors [88–90]
The sensitivity of GABAA receptors to NASs is determined by the

receptor subunit composition; at normal extracellular GABA
concentrations, extrasynaptic δ subunit-containing GABAA recep-
tors are more sensitive to NAS modulation compared with
synaptic γ subunit-containing GABAA receptors [91], allowing for
greater enhancement in GABAA receptor currents [92]. This
preferential interaction of NASs with extrasynaptic δ subunit-
containing receptors is secondary to GABA acting as a partial
agonist at these receptors [92]. However, allopregnanolone
modulates both γ- and δ subunit-containing GABAA receptors
within a similar potency range and may therefore enhance both
phasic and tonic currents, respectively [93].

Dysregulated GABAergic signaling
Major depressive disorder has been linked to dysregulation of the
excitatory-inhibitory balance within the brain and the reduced
ability to maintain homeostasis in response to internal or external
stimuli [12, 45, 94, 95]. Both preclinical and clinical data support an
association of depression with diverse defects in GABAergic
neurotransmission. Epigenetic changes of the GABAergic system

Fig. 2 In the biosynthesis of NASs, cholesterol is translocated into the inner mitochondrial membrane by the steroidogenic acute
regulatory protein. There it is metabolized by P450scc into pregnenolone, the precursor of all endogenous NASs. Biosynthetic enzymes are
denoted in green; neuroactive steroids and substrates are denoted in red. *Allotetrahydrodeoxycorticosterone is also known as
tetrahydrodeoxycorticosterone (same Chemical Abstract Services number). Allo-THDOC allotetrahydrodeoxycorticosterone, DHEAS
dehydroepiandrosterone sulfate, DHT 5α-dihydrotestosterone, HSD hydroxysteroid dehydrogenase, NAS neuroactive steroid, P450aro
cytochrome P450-aromatase, P450c11β cytochrome P450 11β-hydroxylase, P450c17 cytochrome P450 17α-hydroxylase, P450c21 cytochrome
P450 21-hydroxylase, P450scc cytochrome P450 side chain cleavage, PREGS pregnenolone sulfate, SULT sulfotransferase.
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have been shown to be responsible for adult hippocampus
neurogenesis and depression-like behaviors in prenatal-stressed
mice [96]. In addition, alterations in DNA methyltransferase mRNA
expression have been observed in the brains of individuals with
MDD who died by suicide compared with the brains of non-MDD/
suicide individuals, and this change in expression was associated
with gene-specific aberrations in DNA methylation in the GABAA

receptor α1 subunit promoter region within the frontopolar cortex
[97]. Alterations in the DNA methylation signatures of GABA-
related genes have also been reported in other psychiatric
disorders, including autism spectrum disorder [98], schizophrenia
[99, 100], psychosis with a history of chronic alcohol abuse [101],
and bipolar disorder [102].
A review of postmortem studies found variable expression of

various GABAA receptor subunit mRNAs of suicide victims with
depressive disorders and patients with MDD [32, 103]. A large
human gene expression analysis of cortical and subcortical
regions from the brains of depression-related suicides found that
the expression levels of genes involved in GABAergic transmission
were among the most consistently changed [104]. Genetic
alteration of the γ-subunit of the GABAA receptor disrupted the
regulatory response of GABAergic neurons and led to depressive
and anxiogenic behaviors in rodents [105–107]. Genetic studies in
mice have shown that deletion of the GABAA receptor γ subunit
led to impaired GABAergic signaling and behavioral and cognitive
deficits that could be reversed by chronic desipramine or acute
ketamine [105, 108], while deletion of the α2 subunit led to
depressive- or anxiety-like behaviors [109, 110]. Mice with
decreased GABAA receptor δ subunit expression displayed
anxiety-like behavior and maternal neglect postpartum, and
administration of the δ subunit selective agonist 4,5,6,7-tetrahy-
droisoxazolo[5,4-c]pyridin-3-ol (THIP) reduced the abnormal beha-
viors [111]. Similarly, administration of SGE-516, a NAS GABAA

receptor PAM, rescued these abnormal behaviors in this same
model [112].
GABA levels and GABAA receptor function were found to be

diminished in several brain regions in rodent models of acute and
chronic stress [113–116]. GABAA receptor agonists or GABAA

receptor PAMs prevented and reversed rodent behavioral models
of depression [117]; conversely, administration of GABAA receptor
antagonists to normal rodents caused behaviors that mimicked
these models of depression [118]. Individuals with depression
exhibit reduced functioning of GABAergic interneurons and
defects in GABAergic neural inhibition compared with healthy
controls [28, 119, 120]. Calbindin-D28K, a calcium-binding and
buffering protein critical for preventing neuronal death as well as
maintaining calcium homeostasis, is expressed ubiquitously across
multiple brain regions that are intimately involved in regulating
emotional behaviors, particularly in GABAergic interneurons in the
PFC, amygdala, and hippocampus [121]. A postmortem study
showed that the density and size of GABAergic interneurons
immunoreactive for calbindin-D28K were significantly decreased
in the PFC of individuals with MDD versus those without MDD
[122]. Positron emission tomography imaging showed reduced
GABAA receptor binding of [11C]-flumazenil in the limbic
parahippocampal temporal gyrus and right lateral superior
temporal gyrus of individuals with MDD versus healthy controls,
suggesting a decreased number of GABAA receptors and/or
reduced affinity to benzodiazepine-site ligands [123]. GABAergic
inhibitory neurotransmission in cerebral cortex, as assessed using
transcranial magnetic stimulation, has been shown to be reduced
significantly in individuals with MDD [124].
Individuals with depression, compared with healthy controls,

also exhibited diminished GABA levels in the brain, plasma, and
CSF [38, 125, 126] that are most pronounced in melancholic and
treatment-resistant depression [119, 127], and remission from
MDD was accompanied by normalization of GABA levels in the
brain [125]. Additionally, severity of anhedonia is inversely

correlated with GABA levels in the anterior cingulate cortex as
shown in adolescents with MDD [128, 129], further supporting the
correlation between dysregulated GABAergic neurotransmission
and depression. Findings of reduced levels of glutamate
decarboxylase in postmortem PFC of individuals with untreated
MDD compared with healthy controls provide additional evidence
for a link between GABAergic dysfunction and depression [130].
ADTs that affect monoaminergic neurotransmission may also
show downstream effects on GABA- and glutamatergic neuro-
transmission [22, 131]. In animal models, studies showed that
selective serotonin reuptake inhibitors (SSRIs), serotonin and
norepinephrine reuptake inhibitors (SNRIs), tricyclic antidepres-
sants (TCAs), and monoamine oxidase inhibitors (MAOIs) decrease
glutamatergic signaling [132–134]. Treatment with SSRIs or
electroconvulsive therapy in individuals with depression has
resulted in normalization of decreased plasma GABA levels in
the brain and plasma [135–137]. Due to limited study group sizes,
no significant correlation was found between measures of clinical
response and the change in cortical GABA concentrations in 2 of
these studies [136, 137]. However, in a study of inpatients with
MDD treated with SSRIs, 70% of responders had increased GABA
levels and 64% had decreased glutamate levels [135].
Dysregulated GABA neurotransmission is also linked to anxiety

and insomnia, 2 common comorbidities in individuals with
depression. An association between anxiety and GABAergic
signaling is supported by the preclinical findings of anxiety
behaviors related to chronic inhibition of GABA synthesis [138]
and the disruption of the anxiolytic-like effect of diazepam due to
diminished levels of glutamate decarboxylase [139]. Additionally,
review of the therapeutic mechanism of action for different
anxiolytics found that these drugs may share a final common
pathway involving enhancement of GABAergic neurotransmission
[131]. GABA is also believed to be involved in the regulation of
sleep [140]. Time awake after sleep onset has been found to be
inversely correlated with GABA levels in individuals with primary
insomnia, although results regarding changes in GABA levels of
individuals with primary insomnia versus healthy controls are
inconsistent [141, 142]. Furthermore, drugs targeting GABAA

receptors, such as benzodiazepines and Z-drugs, exhibit sedative
and hypnotic effects [143, 144].
GABAergic and monoaminergic neurons are interconnected,

and, consequently, GABAA receptor deficits can also alter
dopaminergic, serotonergic, and noradrenergic activity [32]
(Fig. 3). Additionally, inadequate signaling in somatostatin-
positive GABAergic interneurons in prefrontal microcircuits
(established as one of the key substrates in MDD) can potentially
produce attenuated pyramidal neuron output from the PFC and
subsequent downstream regulation of threat and danger circuits
(amygdala and bed nucleus of the stria terminalis) and sensory
and motor processing in the thalamus, mimicking monoamine
insufficiency in the brainstem [145, 146].

Role of neuroactive steroids in depression and other brain
disorders
The downregulated biosynthesis of NAS GABAA receptor PAMs has
been implicated in various psychiatric disorders (eg, MDD, PPD,
premenstrual dysphoric disorder, and posttraumatic stress dis-
order [PTSD]) [31, 147]. Changes in NAS GABAA receptor PAMs
synthesis pathways have been linked to the pathologies of
neurodegenerative and inflammatory brain diseases (eg, Alzhei-
mer’s disease, Parkinson’s disease, multiple sclerosis) based on
postmortem studies [148], as well as to self-reported pain
symptoms (eg, chest pain, muscle soreness) [149] in humans.
Levels of allopregnanolone have been shown to be significantly
decreased in individuals with PTSD, a condition that is highly
comorbid with MDD [150].
Reduced levels of allopregnanolone in the CSF and plasma have

also been reported in individuals with mood disorders such as
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MDD, in addition to decreased GABA levels [151, 152] and
decreased PFC expression of 5α-reductase, the enzyme catalyzing
the rate-limiting step in allopregnanolone biosynthesis [153].
Decreased levels of allopregnanolone in the plasma or serum were
also found in individuals with postpartum “blues” or pharmaco-
logically induced panic attacks [154, 155], in contrast to the
increased level of the 3β isomer of allopregnanolone, which
antagonizes GABAA receptor function in panic attacks [148].
Significant fluctuations in the blood and brain levels of
allopregnanolone were shown to be strongly correlated with
alterations in function and plasticity of GABAA receptors in rodents
[156, 157]. The failure to upregulate GABAA receptors in response
to the rapid drop in levels of allopregnanolone postpartum is likely
involved in the development of PPD [35].
While acute stressors can lead to increased levels of NAS GABAA

receptor PAMs (ie, allopreg-nanolone and allo-THDOC) in animal
models [36, 158], chronic stress, a major predictor of MDD, was
shown to result in altered GABAergic signaling and decreased
production of endogenous GABAA receptor PAMs (ie, allopregna-
nolone) in rodent stress models [80, 159, 160]. Chronic stress-
induced reduction in allopregnanolone levels was associated with
abnormal behaviors such as aggression, enhanced fear, depres-
sive- or anxiety-like behaviors, and impaired adult hippocampal
neurogenesis in animal models [161–164].
Selective serotonin reuptake inhibitors such as fluoxetine and

norfluoxetine can normalize decreased levels of allopregnanolone
in the brain while decreasing behavioral abnormalities associated
with mood disorders, as demonstrated in socially isolated mice
[165, 166]. Studies in individuals with depression also showed that

treatment with fluoxetine could increase allopregnanolone levels
in the CSF [151, 152], and these changes were correlated with
improvements in depressive symptoms [151]. The important role
of NAS GABAA receptor PAMs in depression is further supported
by the findings that allopregnanolone administration prevented or
normalized depressive- or anxiety-like behaviors in a social
isolation rodent model [163].

GABAA receptor positive allosteric modulators
Most GABAA receptor-targeting drugs (ie, barbiturates, benzodia-
zepines, and NASs) function via allosteric binding to the receptor
at sites distinct from the GABA binding sites (Fig. 4)
[58, 62, 79, 91, 167, 168]. GABA binding sites are located at the
α-β subunit interface on both synaptic and extrasynaptic receptors
[58]. Barbiturates, benzodiazepines, and NASs bind the GABAA

receptor at allosteric sites and increase the GABAA receptor
current by increasing chloride conductance [169]. The presence of
GABA is necessary for benzodiazepine response. Binding of
benzodiazepines to the synaptic GABAA receptor locks the
receptor into a conformation for which GABA has much higher
affinity, thus increasing the frequency of the chloride channel
opening, with minimal effect on the duration of bursts [170, 171].
Barbiturates, on the other hand, bind in the presence of GABA to
both synaptic and extrasynaptic GABAA receptors and increase the
duration of chloride channel opening without altering the
frequency of bursts [169, 171]. Only at high doses can barbiturates
directly stimulate GABAA receptors in the absence of GABA [172].
Barbiturates bind to the α-β subunit interface on synaptic and

extrasynaptic receptors and to γ-β subunit interfaces on synaptic

Fig. 3 The GABAergic and the monoaminergic neurons are interconnected. Serotonergic neurons originating in the dorsal raphe nucleus
and projecting to the prefrontal cortex (PFC) regulate excitability of GABAergic and glutamatergic neurons, which in turn, modulate the
excitability of serotonergic neurons in the dorsal raphe nucleus by the GABA-glutamate balance (left). Chronic stress affects local networks
regulating activity within the medial PFC (mPFC), leading to changes in local excitatory-inhibitory balance. In a proposed mechanistic model
(right), somatostatin-expressing GABAergic neurons provide reduced dendritic inhibition of glutamatergic pyramidal neurons in the
infralimbic mPFC under chronic stress, reducing filtering of information flow into the PFC [145]. An altered glutamate and GABA
neurotransmission might appear as a disturbance in monoamine signaling. (Part of this figure is adapted from McKlveen et al. 2019 [145], with
permission from Elsevier).
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receptors [58]. Barbiturates also non-selectively bind to the entire
superfamily of ligand-gated ion channels [173]. Barbiturates act as
antagonists of ionotropic glutamate receptors, such as α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate
receptors, thus inhibiting the bulk of fast excitatory synaptic
transmission and glutamate release throughout the CNS [173].
These actions may account for the antidepressant, anxiolytic,
hypnotic, and anticonvulsant activities of barbiturates, but may
also account for the physical and psychological addiction
potential and high rates of tolerance and dependence associated
with this class of drugs. Barbiturates also have a high overdose
potential due to a very narrow dosage margin [174]. Barbiturates
were used to treat depression, anxiety, and insomnia in the early
part of the 20th century but were generally replaced by
benzodiazepines in the 1960s because the many potential
drawbacks outweighed their usefulness [175].
Benzodiazepines are sometimes used to treat specific symp-

toms that are frequently associated with depression (eg, anxiety
and insomnia). However, while a meta-analysis showed that
treatment with the benzodiazepine alprazolam led to a higher
percentage of individuals with MDD achieving response on the
17-item Hamilton Rating Scale for Depression (HAMD-17; ≥50%
reduction in total score) or Clinical Global Impression-
Improvement (CGI-I) scale (much improved or very much
improved) compared with placebo, other benzodiazepines such

as chlordiazepoxide and diazepam did not exhibit clear anti-
depressant activity [176]. In addition, chronic use of benzodiaze-
pines more than 2–4 weeks is not recommended as it may result
in decreased GABAergic and monoaminergic function, cognitive
and psychomotor impairment, and interference with neurogenesis
[177, 178]. These concerns, in addition to the risk of dependence
and abuse [179] and an overall increase in the risk of attempting
or completing suicide [180] may further limit the potential use of
benzodiazepines in the treatment of depression [178].
Given that benzodiazepines appear to have questionable

antidepressant activity, it is speculated that lack of antidepressant
activity may be associated with the subunit composition of the
GABAA receptors with which benzodiazepines interact. Benzodia-
zepines bind at the α-γ subunit interface on synaptic GABAA

receptors (primarily augmenting phasic inhibition) [58]. Preclinical
data suggest that α1 subunit-containing GABAA receptors play a
major role in sedation and addiction [181, 182], positive
modulation of α2 subunit-containing receptors may have more
consistent antidepressant effects [109], and activation of α3
subunit-containing receptors have pro-depressant actions [183].
Benzodiazepines show a higher affinity for α1 subunit-containing
receptors [53] and concomitantly activate α2- or α3 subunit-
containing receptors [184], the net effect of which is the
promotion of sedation and addiction and a null effect on
depression. In addition, benzodiazepines may only enhance

Fig. 4 Neuroactive steroid (NAS) positive allosteric modulators (PAMs) of gamma-aminobutyric acid type A (GABAA) receptors amplify
the inhibitory signal of gamma-aminobutyric acid (GABA) in the brain. NAS GABAA receptor PAMs, such as allopregnanolone, bind to
GABAA receptors at sites distinctive from those for benzodiazepines (BZDs). NAS GABAA receptor PAMs bind to both synaptic γ subunit-
containing and extrasynaptic δ subunit-containing GABAA receptors, potentiating phasic and tonic currents, respectively. In contrast,
benzodiazepines bind to γ subunit-containing GABAA receptors only and primarily augment phasic inhibition. Extrasynaptic GABAA receptors
containing δ subunits are insensitive to benzodiazepines [32, 53, 62, 64, 78, 79, 91, 92, 167].
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phasic inhibitory currents through their binding to synaptic (γ
subunit-containing) GABAA receptors [185]. GABAA receptor PAMs
that bind to both synaptic and extrasynaptic GABAA receptors and
enhance both phasic and tonic inhibitory currents, respectively,
may have greater therapeutic utility than benzodiazepines in
treating depression.
The ability of NASs to target both synaptic and extrasynaptic

GABAA receptors is especially important in conditions where
synaptic GABAA receptors are downregulated, a condition which
could lead to benzodiazepine tolerance [185]. NASs can interact
with most GABAA receptors, including the benzodiazepine-
insensitive receptors containing α4 and α6 subunits or lacking
the γ subunit [91]. In addition to allosteric modulation of GABAA

receptors, NAS GABAA receptor PAMs can also exert metabotropic
effects on GABAergic inhibition via activation of the G protein-
coupled membrane progesterone receptors (mPRs); mPR-
dependent modulation of GABAA receptor phosphorylation results
in increased cell surface expression of GABAA receptors and thus a
sustained elevation in tonic current [90], further differentiating
them from benzodiazepines, which are associated with a down-
regulation of GABAA receptors [186]. The tonic current is resistant
to the competitive GABAA receptor antagonist gabazine, confirm-
ing that it is not generated from GABA binding to these receptors
[187].

CURRENT TREATMENT OPTIONS FOR MDD IN CLINICAL
PRACTICE
The 8 general groups of approved drugs for MDD are: SSRIs, SNRIs,
TCAs, tetracyclic antidepressants (TeCAs), MAOIs, atypical and

multimodal antidepressants, NMDA receptor antagonists, and
GABAA receptor modulators (Table 1) [188–194].
Standard-of-care ADTs used in the current pharmacologic

management of MDD primarily target monoamine neurotrans-
mitter systems. Compared with first-generation ADTs (TCAs and
MAOIs), SSRIs and SNRIs have generally been shown to cause
relatively fewer adverse effects and therefore appear to be more
widely used [195, 196]. A meta-analysis of the efficacy and
tolerability of SSRIs against TCAs in patients with MDD showed
that although TCAs demonstrated similar efficacy with SSRIs (with
superior efficacy in hospitalized patients), they are associated with
significantly more adverse effects due to their inhibition of
cholinergic, α-1 adrenergic, and histaminergic receptors [197].
TCAs are also more likely to induce toxicity and can be fatal if
overdosed [198]. Although efficacious, MAOIs are not commonly
prescribed because of potentially fatal reactions including
increased blood pressure, heart attack, stroke, or serotonin
syndrome when used together with foods containing high levels
of tyramine (eg, aged cheese, spoiled meat, soy sauce) or other
drugs [199, 200]. Monoaminergic ADTs often require 4 to 6 weeks
or longer to take effect [201–203]. In addition, the STAR*D Study
has shown that as many as approximately 50% of patients may
not respond adequately [203]. Relapse rates can be high in
patients taking standard-of-care ADTs, especially in those who
require multiple treatment steps, as demonstrated in the STAR*D
Study among patients with MDD (relapse rates ranged from
40%–70% during a 12-month naturalistic follow-up) [202].
Novel ADTs with targets that have been implicated in the

neurobiology of depression beyond monoamines (eg, glutamate
and GABA), are being investigated. For example, while the

Table 1. Antidepressants in Current Clinical Practice and Their Hypothetical Mechanisms of Action in Depression.

Class Mechanism of action Common side effects

SSRI Selectively inhibit serotonin transporters at the
presynaptic neuronal axon terminal, thereby limiting
serotonin reuptake [195]

Sexual dysfunction, sleep disturbances, weight
changes, anxiety, dizziness, dry mouth, headache,
fatigue, gastrointestinal distress [188, 195]

SNRI Prevent the reuptake of both serotonin and
norepinephrine by blocking both of their presynaptic
transporters [196]

Nausea, insomnia, dry mouth, headache, increased
blood pressure, sexual dysfunction, weight gain,
dizziness, fatigue, somnolence, constipation, sweating
[188, 238]

TCA and TeCA Block the reuptake of serotonin and norepinephrine at
the presynaptic neuronal terminals [191, 239]

Weight gain, sedation, dry mouth, nausea, blurred
vision, constipation, confusion, urinary retention,
tachycardia, dizziness, increased appetite [188, 239]

MAOI Block monoamine oxidase enzyme that breaks down
monoamine neurotransmitters (eg, norepinephrine,
serotonin, dopamine, histamine) [240, 241]

Dry mouth, nausea, diarrhea, constipation, drowsiness,
insomnia, dizziness, weight gain, fatigue, sexual
dysfunction, hypotension [188, 240]

Serotonin modulator Inhibit the presynaptic reuptake of serotonin and
modulate various 5-HT receptor subtypes [192–194]

Vary by agent but commonly include sexual
dysfunction, diarrhea, nausea, dizziness, headache,
sedation [192–194]

Atypical and Multimodal Various mechanisms of action (eg, NDRI; block α2
adrenergic receptors/antagonize the 5-HT receptor;
antagonize serotonergic 5-HT2C receptors; inhibit
monoamine reuptake/antagonize nicotinic Ach
receptor; antagonize NMDA receptor/activate σ-1
receptor) [190, 192–194, 242]

Vary by agent, but commonly include dry mouth,
dizziness, lightheadedness, headache blurred vision,
sedation, constipation, low blood pressure, confusion,
weight gain, nausea [191–194, 243]

NMDA receptor antagonist
(ketamine/ esketamine)

Bind to and inhibit NMDA receptors on GABAergic
interneurons, which leads to a transient surge in
glutamate release and AMPA receptor upregulation,
triggering the release of brain-derived neurotrophic
factor and a wave of synaptogenesis [190, 205]

Dissociation, dizziness, sedation, nausea/vomiting,
vertigo, anxiety, hypoesthesia, lethargy, blood
pressure increased, feeling drunk, euphoric mood,
blurred vision, headache, dry mouth, restlessness [207,
244]

GABAA receptor modulator
(brexanolonea)

Augment GABAA receptor activity through positive
allosteric modulation of the receptors [31]

Sedation/somnolence, dry mouth, loss of
consciousness, flushing/hot flush [191, 211]

aApproved specifically for postpartum depression.
5-HT 5-hydroxytryptamine (serotonin), Ach acetylcholine, GABAA gamma-aminobutyric acid type A, MAOI monoamine oxidase inhibitor, NDRI norepinephrine
and dopamine reuptake inhibitor, NMDA N-methyl-D-aspartate, SNRI serotonin and norepinephrine reuptake inhibitor, SSRI selective serotonin reuptake
inhibitor, TCA tricyclic antidepressant, TeCA tetracyclic antidepressant.

A.J. Cutler et al.

8

Translational Psychiatry          (2023) 13:228 



mechanism of action for the antidepressant effects of ketamine is
not fully understood, it is thought that it may block NMDA
receptors on GABAergic interneurons, thereby preventing their
activation [204]. Subsequently, downstream disinhibition of gluta-
matergic neurons causes a glutamate surge. Increased extracellular
glutamate initiates activation of postsynaptic AMPA receptors,
leading to potentiation of BDNF and mTORC1 synaptogenic
signaling pathways (Table 1) [190, 204, 205]. In addition, one study
found that the antidepressant effects of ketamine were blocked
when naltrexone, an opioid antagonist, was administered prior to
ketamine [206], suggesting that the antidepressant effect of
ketamine may be dependent on opioid receptor activation and
not necessarily due to neurological actions mediated by NMDA
receptors. Ketamine’s S-enantiomer, esketamine, was recently
approved by the U.S. Food and Drug Administration (FDA) for
treatment-resistant depression and MDD with acute suicidal
ideation or behavior [207]. In contrast to standard monoaminergic
ADTs, ketamine has demonstrated rapid antidepressant effects that
peak at approximately 24 h and are sustained for approximately
1 week after administration in adults with MDD or bipolar
depression [208]. However, the long-term use of ketamine may
induce urologic toxicity [209], and chronic abuse of ketamine can
negatively affect brain structure and functioning and cause
cognitive impairment [210].
Newer ADTs targeting dysregulated GABA neurotransmission

are also being developed. These include GABAA and GABAB

receptor modulators (allosteric modulators, NASs, agonists, and
antagonists), and GABAergic interneuron-targeting neuropep-
tides [45].

Neuroactive steroids for treatment of depression
Among the more recent additions to the treatment landscape,
brexanolone, a NAS GABAA receptor PAM that is chemically
identical to endogenous allopregnanolone (Table 1), was
approved in 2019 by the FDA to treat adults with PPD (Table 2)
[211]. This indication was expanded in 2022 to include patients
≥15 years of age [212]. Prior to the approval of brexanolone, the
standard of care for PPD was psychotherapy, psychotropics, or
combination treatment. Medications adapted from MDD treat-
ment but not specifically approved for PPD included SSRIs, SNRIs,
and TCAs [213]. In pivotal phase 2 and 3 clinical trials, adult
women with PPD who received brexanolone demonstrated
significant improvement in depressive symptoms compared with
those who received placebo; improvement was rapid (at Hour 60)
and sustained (through day 30) [214–216]. Brexanolone was
generally well tolerated in these trials [214, 216]. An intravenous
preparation of brexanolone was used because of low oral
bioavailability and high in vivo clearance of endogenous
allopregnanolone [216]. While the use of brexanolone can be
limited by the relatively long, continuous infusion time (60 h),
these data have led to an increased interest in the therapeutic
potential of GABAA receptor-modulating NASs.
Another NAS, PRAX-114 is a primarily extrasynaptic GABAA

receptor PAM in oral formulation that was being investigated for
the treatment of MDD [217, 218] (Table 2). Interim results from a
non–placebo-controlled, 3-arm, fixed-dose, phase 2 safety and
tolerability study conducted in Australia showed improvements
from baseline in depression severity as assessed by HAMD-17 total
score reductions following a 14-day treatment course with PRAX-

Table 2. Neuroactive Steroid-based Drugs for the Treatment of Depression That Have Been Approved or are Currently Under Investigation.

Drug Structure Development phase Indication

Brexanolone FDA-approved in 2019 [211] PPD

Zuranolone Phase 3 PPD
MDD

PRAX-114 Not available Phase 2/3a MDD

PH10 Phase 2a MDD

aThe phase 2/3 trial was completed and failed to meet its primary endpoint.
FDA US Food and Drug Administration, MDD major depressive disorder, PPD postpartum depression.
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114 [219]. Changes from baseline (CFB) in the HAMD-17 total score
(reductions of 15–19 points) were observed in all 3 arms over an
8-day period. The safety and efficacy of a 28-day treatment course
with PRAX-114 as monotherapy for severe MDD were also
assessed in the phase 2/3, randomized, double-blind, placebo-
controlled Aria trial (N= 216) [217]. However, this study failed to
meet its primary endpoint of CFB in HAMD-17 total score on day
15, nor did it meet any of the secondary endpoints [220]. The
sponsor has closed screening in its randomized, double-blind,
placebo-controlled phase 2 trial as adjunctive and monotherapy
treatment for patients with MDD and inadequate response to
antidepressant treatment (N= 110), has stopped enrollment in a
PTSD phase 2 trial, and has discontinued an essential tremor trial.
The sponsor has no plans to pursue further development of PRAX-
114 for psychiatric disorders.
PH10 is an investigational, synthetic NAS from the family of

pherines, formulated as a nasal spray, currently under clinical
development for treatment of MDD [221] (Table 2). PH10 acts on
nasal chemosensory receptors to modulate neural circuits in the
brain, including connections to the limbic amygdala and other
basal forebrain structures, leading to antidepressant effects [221].
In a 3-arm (high-dose, low-dose, and placebo) phase 2a pilot study
in patients with MDD (N= 30), treatment with PH10 led to a
greater improvement in depressive symptoms as assessed by CFB
(reductions) in HAMD-17 total score compared with placebo after
8 weeks of treatment, with minimal side effects and potentially a
rapid (week 1) onset of effects [221, 222]. Mean CFB in HAMD-17
total score at week 8 were 17.8 (high dose), 16.3 (low dose), and
10.9 for placebo (overall p= 0.07; high dose p= 0.02; low dose
p= 0.10). HAMD-17 responder rates of the 3 doses at week 8 were
80% (high dose; p > 0.05), 90% (low dose; p > 0.05), and 60%
(placebo), and remission rates were 60% (p > 0.05), 80% (p < 0.05),
and 20%, respectively. Adverse events that were more common
with PH10 compared with placebo included increased appetite,
daytime sleepiness, nasal dryness, headache, and bitter taste. A
phase 2b trial of PH10 nasal spray for the treatment of MDD has
been planned [223]. In addition, future development as a
treatment for PPD, treatment-resistant depression, and suicidal
ideation is under consideration [224].
Zuranolone is an oral, investigational, synthetic NAS and PAM of

both synaptic and extrasynaptic GABAA receptors that upregulates
GABAA receptor expression and enhances inhibitory GABAergic
signaling [225]. It is currently in clinical development and being
investigated as an oral, 14-day treatment for adults with MDD or
PPD (Table 2). Zuranolone has a pharmacokinetic profile that
enables oral once-daily dosing with increased bioavailability
[226, 227]. In two phase 3 trials in adults with PPD assessing
zuranolone 30mg (N= 150) or zuranolone 50mg (N= 195), those
who received a once-daily, 14-day treatment course of zuranolone
demonstrated significant improvements in depressive symptoms as
assessed by CFB (reductions) in HAMD-17 total score at day 15
compared with those who received placebo [228, 229]. Mean CFB in
HAMD-17 total score at day 15 were 17.8 (vs placebo 13.6; p < 0.05)
with zuranolone 30mg and 15.6 (vs placebo −11.6; p < 0.05) with
zuranolone 50mg. Rapid (day 3) and sustained (day 45) improve-
ments in depressive symptoms were significantly greater with
zuranolone than with placebo (p < 0.05) in both studies. HAMD-17
response rates at day 45 (end of study) were 75.3% (vs placebo
56.5%; nominal p > 0.05) and 61.9% (vs placebo 54.1%; nominal
p > 0.05), and remission rates were 53.4% (vs placebo 30.4%;
nominal p < 0.01) and 44.0% (vs placebo 29.4%; nominal p > 0.05) in
the 2 studies [228, 229]. In a phase 2 trial (zuranolone 30mg,
N= 89) and a phase 3 trial (zuranolone 50mg, N= 534) in adults
with MDD, those who received treatment with zuranolone
demonstrated significantly greater improvements in depressive
symptoms as assessed by CFB (reductions) in HAMD-17 total score
at day 15 compared with those who received placebo [230, 231];
mean CFB in HAMD-17 total score at day 15 were 17.4 (vs placebo

10.3; p < 0.05) and 14.1 (vs placebo −12.3; p < 0.05), respectively.
Another phase 3 trial assessing zuranolone 20mg (N= 194) and
30mg (N= 194) in patients with MDD did not meet its primary
endpoint [232]; mean CFB in HAMD-17 total score at day 15 was
12.5 with zuranolone 30mg compared with 11.1 with placebo
(N= 193) (p > 0.05). Rapid (by day 2 or 3) improvement in
depressive symptoms were observed in these 3 trials in MDD
(nominal p < 0.05 vs placebo) [233]. HAMD-17 response rates at day
42 (end of study) were 61.9% (vs placebo 56.4%; nominal p > 0.05)
in the phase 2 trial, 52.9% (vs placebo 45.9%; nominal p > 0.05) in
the phase 3 zuranolone 50mg trial, and 43.4% (vs placebo 41.5%;
nominal p > 0.05) in the phase 3 zuranolone 20 or 30mg trial;
HAMD-17 remission rates were 45.2% (vs placebo 33.3%; nominal
p > 0.05), 30.8% (vs placebo 29.6%; nominal p > 0.05), and 24.3% (vs
placebo 25.9%; nominal p > 0.05), respectively [230–232]. Use of
standard ADTs at baseline was allowed in these trials, providing the
patient was on a stable dose. Zuranolone as a co-initiation therapy
was evaluated in a phase 3 trial; rapid and significantly greater
improvement from baseline in HAMD-17 total score was observed
at day 3 with zuranolone versus placebo when co-initiated with
standard-of-care ADTs in adults with MDD (p < 0.001) [234].
Moreover, in an ongoing open-label study that includes assessment
of the need for repeat treatment courses with zuranolone over 1
year, of enrolled adults with MDD who responded at day 15 to
treatment (≥50% reduction from baseline in HAMD-17 score) with
an initial 14-day treatment course of zuranolone 50mg and
continued beyond day 28, 79.5% received a total of 1 or 2
treatment courses during their time of up to 1 year in the study
[235, 236]. Zuranolone was generally well tolerated. In clinical trials,
adverse events that were more common (>5% in zuranolone) with
zuranolone compared with placebo included somnolence, dizzi-
ness, sedation, and fatigue. The overall incidence of serious adverse
events was low, reported in <2% of zuranolone-treated patients
across the trials. No patient enrolled in any clinical trial to date
(February 2023) has reported developing withdrawal syndrome
after discontinuation of zuranolone.

CONCLUSIONS
Treatment responses to standard-of-care oral antidepressants
have been suboptimal in many individuals with MDD, potentially
due to slow onset of effects, low response rates, adverse effects,
and the need for chronic treatment. There remains an unmet need
for novel and effective treatments with rapid, robust, and
sustained antidepressant effects; with better safety and tolerability
than standard-of-care ADTs, and ideally without the need for
chronic treatment. The development of novel therapeutics for
MDD relies on a deep, comprehensive, and evolving under-
standing of the pathophysiology of depression.
There has been increased interest in GABAA receptor-based

treatment approaches for MDD. Recent research on the proposed
mechanism of action of NASs for PPD and MDD underscores the
potential role of GABAergic signaling in the pathophysiology of
depression. Although the placebo effect in depression may be a
factor associated with failure to establish efficacy of novel
treatments in clinical trials [237], data reviewed here indicate that
NAS GABAA receptor PAMs may potentially offer rapid and
sustained antidepressant benefits for individuals with MDD.
Further research is necessary to better understand the role of
NAS GABAA receptor PAMs in MDD.
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