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Childhood attention-deficit/hyperactivity disorder (ADHD) symptoms are believed to result from disrupted neurocognitive
development. However, evidence for the clinical and predictive value of neurocognitive assessments in this context has been
mixed, and there have been no large-scale efforts to quantify their potential for use in generalizable models that predict individuals’
ADHD symptoms in new data. Using data drawn from the Adolescent Brain Cognitive Development Study (ABCD), a consortium
that recruited a diverse sample of over 10,000 youth (ages 9–10 at baseline) across 21 U.S. sites, we develop and test cross-validated
machine learning models for predicting youths’ ADHD symptoms using neurocognitive abilities, demographics, and child and
family characteristics. Models used baseline demographic and biometric measures, geocoded neighborhood data, youth reports of
child and family characteristics, and neurocognitive tests to predict parent- and teacher-reported ADHD symptoms at the 1-year
and 2-year follow-up time points. Predictive models explained 15–20% of the variance in 1-year ADHD symptoms for ABCD Study
sites that were left out of the model-fitting process and 12–13% of the variance in 2-year ADHD symptoms. Models displayed high
generalizability across study sites and trivial loss of predictive power when transferred from training data to left-out data. Features
from multiple domains contributed meaningfully to prediction, including neurocognition, sex, self-reported impulsivity, parental
monitoring, and screen time. This work quantifies the information value of neurocognitive abilities and other child characteristics
for predicting ADHD symptoms and provides a foundational method for predicting individual youths’ symptoms in new data across
contexts.
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INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is a common
psychiatric diagnosis of childhood characterized by difficulty
maintaining focus, disorganization, impulsivity, and excessive
movement in inappropriate contexts [1]. Although the formal
diagnosis of ADHD has guided most extant research and clinical
practice, there is growing acknowledgment that symptoms of
ADHD likely reflect a dimensional trait that varies across the entire
population [2–4]. ADHD symptoms in youth have been linked to
many negative outcomes, including poorer academic achieve-
ment [5], substance use and externalizing behavior [6], and
persistent financial difficulties [7].
As influential theoretical models posit that aberrations in

neurocognitive development are a central cause of childhood
ADHD symptoms [8, 9], measures of neurocognitive performance
have been widely used in both etiological research [10–12] and
clinical practice [13]. However, the evidence base for such
measures is mixed. Although medium- to large-sized effects of
ADHD diagnosis on neurocognitive performance are commonly
observed in group comparisons [14, 15], individuals with ADHD
cannot be effectively distinguished using neurocognitive data
alone [16–19]. Furthermore, evidence that such measures display
disadvantages relative to subjective rating scales for predicting

ADHD symptoms and associated impairment [20–23] has driven
ongoing debate about whether cognitive measures contain useful
information for characterizing or predicting the ADHD phenotype
[13, 19, 24, 25].
Against this backdrop, current evidence for the relevance of

neurocognitive performance to childhood ADHD symptoms
exhibits several serious gaps. Studies examining predictors from
multiple measurement domains “head-to-head” are essential for
determining whether neurocognitive data reduce uncertainty
about the clinical phenotype to a non-trivial degree over and
above contributions from other domains and therefore add value
for etiological research and clinical management. However,
comparative studies are relatively rare and typically use limited
sets of measures [19–22], making it difficult to comprehensively
quantify the information value of different measurement domains.
Also notably lacking in this area are studies that use machine
learning and cross-validation methods to systematically evaluate
the performance of predictive models using independent data (i.e.,
data that were not used to train themodel). Such tests are critical for
establishing the robustness and generalizability of predictive
models when applied to the broader population [26], which is
essential for harnessing neurocognitive and other predictors to
inform research and clinical practices across diverse settings.
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To address these gaps, we turned to the Adolescent Brain
Cognitive Development Study (ABCD) [27, 28], a large-scale
longitudinal consortium study of over 10,000 U.S. children who
were recruited at ages 9–10. ABCD presents an unprecedented
opportunity for developing predictive models of ADHD symptoms
due to its size and inclusion of diverse communities that make up
the U.S. population. Furthermore, ABCD’s consortium structure, in
which data are collected at 21 different sites across the U.S.,
provides a natural “leave-one-site-out” cross-validation approach
for evaluating whether models generalize to unseen study sites
that vary in their geographic location, participant demographics,
and investigative teams [29].
In the current study, we leverage ABCD to develop and test

generalizable machine learning models for predicting ADHD
symptoms in independent data using neurocognitive testing
and features from other relevant measurement domains (demo-
graphics, geocoding, and child reports of personality, family
structure, and social context). We index ADHD symptoms at the
baseline, 1-year, and 2-year follow-up time points using a multi-
rater approach, considered the gold standard for minimizing rater
biases and measuring impairments across contexts [30, 31]. As
individuals’ ADHD symptoms tend to display high temporal
stability across this developmental period [32–35], we primarily
focus on predicting individuals’ trait levels of ADHD symptoms
rather than longitudinal changes. Leave-one-site-out cross-
validation is used to assess the accuracy of multivariate predictive
models in unseen data and quantify the predictive contributions
of neurocognitive testing versus other measurement domains.

SUBJECTS AND METHODS
Sample and ADHD symptom data
Data were from the curated data release version 4.0 of the ABCD Study
(https://nda.nih.gov; https://doi.org/10.15154/1,523,041), a large-scale con-
sortium that recruited 11,878 children, ages 9–10, across 21 study sites and
is following them throughout their adolescence. Participants were
recruited with a sampling strategy designed to closely reflect the
demographic diversity of the U.S., as described elsewhere [28]. The study
protocol was approved by local institutional review boards at each site.
Parents and caregivers provided written informed consent child partici-
pants provided verbal assent.
Given the importance of considering multiple raters when assessing

ADHD [30, 31], we used both parent-report data from the Child Behavior
Checklist (CBCL) [36, 37] and teacher-report data from the Brief Problem
Monitor (BPM) [38] to construct the ADHD symptoms variable. However, as
teacher-report data from roughly half or more of the ABCD sample were
missing at each wave (due to factors including non-responses or parents
declining permission to contact teachers), these missing data had to be
accounted for. Recent work in the ABCD sample on the evidence-based
definition of ADHD [39] used multiple imputation to replace missing
teacher-report data based on evidence that imputation is unlikely to inflate
effects of interest and, at worst, will underestimate effects. As parent-
report data, which we used to impute the missing teacher-report data in
ABCD, typically have only a modest relation with teacher reports [31], we
took several steps to gauge the impact of the imputation procedure on our
measurement and predictions of ADHD symptoms. As described in
Supplementary Material, we determined that the factor loadings
Supplementary Tables 1 and 2), fit indices, and factor scores (Supplemen-
tary Fig. 1) of the cross-rater ADHD symptoms measurement model
(detailed below) were generally robust to imputation. We also conducted
all primary analyses focused on predicting ADHD symptoms at the 1-year
timepoint twice: first within all individuals who met our broader inclusion
criteria with missing symptom data imputed as needed using the mice [40]
R package (“full” sample) and second only within individuals who had
complete data from both parents and teachers at the 1-year timepoint
(“complete data” sample). As detailed below, the general pattern of
findings was similar between these analyses.
We focused on predicting symptoms at the 1-year timepoint because

the number of individuals without missing ADHD symptom data (n= 5915
prior to other exclusions) was substantially greater than at either the
baseline (n= 3960) or 2-year (n= 4164) time points. Although the aim of
the study was to predict individuals’ ADHD symptom level as a relatively

stable trait rather than to predict changes in symptoms across time points,
we also conducted analyses aimed at gauging how changes across time
points relate to the features and accuracy of the predictive models.
Specifically, we predicted ADHD symptom data at the 2-year timepoint to
assess how much prediction suffers when the symptom measurements are
further temporally separated from the baseline measures used in the
model. We then computed residual change scores (Δ) by regressing
individuals’ ADHD symptoms scores at the 1-year and 2-year time points,
separately, on their baseline symptoms. Residuals from these regressions
reflect changes in individuals’ symptoms that occurred from the baseline
to these time points. We then attempted to predict both sets of residual
change scores.
Participants were excluded from analyses if they (1) had siblings across

different ABCD sites at baseline (which compromises test data indepen-
dence in cross-validation), (2) were unaffiliated with one of the main
21 sites at baseline, (3) were missing all parent- and teacher-report items
used to measure ADHD symptoms, or (4) were one of 300 unrelated
individuals randomly selected for an independent subsample used to
generate priors for computational cognitive modeling of baseline cognitive
tasks. These exclusion procedures left 11,530 individuals with available
ADHD symptom data at baseline, 10,933 individuals at the 1-year
timepoint, and 10,104 individuals at the 2-year timepoint, with reductions
in the later time points reflecting attrition in ABCD. The “complete data”
subsample of participants with complete parent- and teacher-report ADHD
symptom data at the 1-year timepoint consisted of 5900 individuals. For
analyses predicting residual difference scores, 10,931 individuals had both
baseline and 1-year data, while 10,103 individuals had both baseline and
2-year data.

Cross-rater measure of ADHD symptoms
We fit a bifactor structural equation model to parent-report items from
the Attention Problems Syndrome scale and ADHD DSM-oriented scale
of the CBCL and teacher-report items from the Attention/Hyperactivity
Problems scale of the BPM using the R package lavaan [41]. This method
allows common variance in ADHD symptoms indicated across raters—
the outcome of interest—to be measured via a general factor while
rater-specific variance is accounted for by orthogonal parent- and
teacher-report subfactors. To prevent data bleed in cross-validation, we
re-estimated the model in each training fold (which involved repeating
the multiple imputation step for analyses involving missing symptom
report data) and used the estimated model to generate symptom scores
in both the training fold and the associated test data. Consistent with
the well-known stability in the rank-ordering of children’s ADHD
symptoms across development [32–35], we found that the ADHD
symptoms factor showed correlations of 0.66 to 0.77 across study time
points. Hence, the ADHD symptom measure reflects a relatively stable
trait during this developmental period. The measurement model’s
development, loadings, fit, and temporal stability are described in
Supplementary Material.

Predictor variables
To prevent predictive models from becoming optimistically biased by
shared-method variance [42] or rater biases, we excluded parent and
teacher rating scales from consideration as predictive features. Instead, we
focused on objective (e.g., demographics, geocoding), child-reported, and
neurocognitive test features. The 54 features from the baseline timepoint
that were used in predictive models are summarized here and further
detailed in Supplementary Material and Supplementary Tables 3–5.
Basic demographic features included age, sex, race, ethnicity, parental

marital status, parental income, and parental education. Geocoded
variables inferred from the Census tract of the child’s primary residence
[43] included neighborhood poverty, as indexed by an Area Deprivation
Index aggregate measure developed in prior work [44]; total crimes; lead
exposure risk; and measures of educational quality and opportunity (e.g.,
high-school graduation rate). We also included the basic biometric
variables of body mass index (BMI) and waist circumference.
Child self-report features included measures of personal, family, and

system-level characteristics. Children’s self-reported impulsivity was
measured by the BIS/BAS [45] and UPPS [46]. Children’s perceptions of
parental monitoring, family conflict, their school system, and neighbor-
hood crime were derived from ABCD culture and environment assess-
ments [47]. Children’s estimates of their time spent engaged in screen
media on typical weekdays and weekend days were obtained from the
ABCD Screen Time Questionnaire [48, 49].
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Neurocognitive features included age-corrected scores from all seven
subtests of the NIH Toolbox, which were designed to span the cognitive
domains of episodic memory, working memory, attention, processing
speed, and verbal ability [50]. They also included total memory recall from
the Rey Auditory Verbal Learning Test (RAVLT) [51], age-corrected scores
from the Matrix Reasoning Task [52], accuracy rate from the Little Man Task
of visuo-spatial processing [53], and the single-item Cash Choice Task of
delay of gratification [54]. We included parameters of the diffusion decision
model (DDM) [55] estimated using trial-level data from tasks administered
during neuroimaging: the stop-signal task (SST) and n-back. The DDM is a
computational model that allows the estimation of parameters indexing
specific mechanisms of cognitive performance, including cognitive
efficiency (“drift rate”), caution in responding (“boundary separation”),
and perceptual/motor processes (“nondecision time”), some of which have
been found to relate to ADHD [12]. The DDM described the data from all
tasks well (Supplementary Figs. 2–4)

Machine learning and cross-validation procedures for
predicting ADHD symptoms
We used two modeling strategies that take complementary approaches
toward extracting predictive information from intercorrelated feature sets.
The first, principal components regression (PCR) [56], involves using principal
components analysis (PCA) [57] to identify a smaller number of dimensions
that can explain individual variation in the set of predictive features and then
entering individuals’ expression scores for each component into a linear
regression. The second, least absolute shrinkage and selection operator
regression (LASSO) [58, 59], includes a regularization parameter, λ, that
penalizes regression coefficients for less important features, causing them to
either be reduced or excluded from the model altogether.
Each approach has distinct strengths. PCR provides a comprehensive

predictive model representing latent dimensions that explain intercorrela-
tion across all available features. PCR can therefore be used to estimate the
degree of predictive information individual features contain regardless of
their intercorrelations. LASSO instead generates a sparse predictive model by
excluding redundant features. In this way, the inclusion of a feature in LASSO
is a clear indication that it contributes meaningfully to prediction, but the
exclusion of a feature by LASSO does not necessarily mean it lacks predictive
information, as it could contain information that is valuable but redundant
with interrelated features. We, therefore, interpreted results from PCR to
gauge the predictive value of individual features regardless of their possible
redundancy and used LASSO to develop more parsimonious models.
We used leave-one-site-out cross-validation [29] to train all models and

test their generalizability. For each left-out ABCD site, predictive models
were trained in data from all other sites and used to generate predicted
values for the ADHD symptoms score in both the training data and the
held-out test site. Missing data were addressed with multiple imputation
models estimated in training data with the mice package. The correlation
coefficient (r) between predicted and actual symptom scores in the test
data was used to gauge model accuracy. To further prevent our analytic
decisions from biasing conclusions, we set aside data from three ABCD
sites in a ‘lockbox’ prior to variable selection and only evaluated model
performance in lockbox sites once all other analyses were finalized.
Procedures for model estimation and cross-validation are detailed in
Supplementary Material and the analysis code is available on the Open
Science Framework: https://osf.io/zf82n/.

Interpretation of feature and domain contributions to
prediction
Feature contributions to prediction were quantified with feature weights,
averaged across the models trained in all 18 iterations of the leave-one-
site-out cross-validation procedure. Weights were computed for each
feature in the comprehensive (PCR) models by multiplying the matrix of
feature loadings on each component by the matrix of components’ linear
regression coefficients from the predictive model.
For the sparse (LASSO) modeling method, we aimed to assess feature

weights from the most parsimonious model possible. As LASSO can be
unstable across samples, we only included features in this final LASSO
model that were both (1) included by LASSO across all 18 training and (2)
included across both halves of a split-half analysis in which LASSO was fit
to data from nine sites, drawn at random, and separately fit to data from
the other nine sites. We evaluated whether this parsimonious model, made
up of only the most robust features, performed similarly to models in
which all features were entered. We then averaged this model’s regression
coefficients across training folds to generate feature weights.

To quantify the relative predictive power of variables from neurocog-
nitive, child self-report, and demographic (including geocoded and
biometric) measurement domains for predicting individuals’ trait ADHD
symptoms, we alternately evaluated model performance when the
variables in each domain were exclusively used for prediction, as well as
when they were deliberately left out.

RESULTS
Predictive models of trait ADHD symptoms show high
generalizability to unseen data across ABCD sites
Figure 1 displays correlation (r) values for relations between actual
and predicted ADHD symptoms in the 18 sites included in the
primary analyses when each site was left out of its respective
model-training data set. Figure 2 shows scatterplots of these
relations for the three sites with the largest sample size. Prediction
of ADHD symptoms at the 1-year time point was generally
consistent across ABCD sites and was nearly identical, on average,
across the comprehensive (PCR) and sparse (LASSO) predictive
modeling methods. For the “full data” sample with missing ADHD
symptom data imputed (n= 8972), average r values across left-out
sites (PCR r= 0.40, CI= 0.38–0.42; LASSO r= 0.39, CI= 0.38–0.41)
indicated that the models explained roughly 15–16% of the
variance in symptoms. For the “complete data” sample that
included only individuals with complete ADHD symptom data
(n= 4855), the models explained roughly 20% of the variance in
left-out sites (PCR r= 0.46, CI= 0.43–0.48; LASSO r= 0.45,
CI= 0.42–0.47). Remarkably, in both cases, the level of model
performance in left-out sites was nearly identical to the average
model performance within the training folds (full data PCR= 0.41,
LASSO= 0.41; complete data PCR= 0.46, LASSO= 0.45), indicat-
ing the models were highly generalizable to unseen data.
Results were similar in sensitivity analyses in which children who

were prescribed stimulant medication at the time of their baseline
visit were excluded from the full sample with imputed symptom
data (8.0% excluded; PCR r= 0.38, CI= 0.36–0.40; LASSO r= 0.37,
CI= 0.36–0.39) and from the sample of individuals with complete
symptom data (8.2% excluded; PCR r= 0.44, CI= 0.41–0.46; LASSO
r= 0.43, CI= 0.40–0.46). Hence, the overall efficacy of the models
was broadly robust to possible medication effects on predictive
features. Furthermore, when we evaluated model performance in
the three lockbox sites, we found the models were similarly
accurate, both for the full sample with imputed symptom data (PCR
r= {0.41,0.39,0.38}; LASSO r= {0.42,0.37,0.36}) and for the sample
of only individuals with complete symptom data (PCR
r= {0.46,0.44,0.45}; LASSO r= {0.47,0.40,0.41}).
We also evaluated whether the modeling methods were similarly

effective at predicting ADHD symptoms at the 2-year time point
(with all missing ADHD symptom data imputed, given the lower
proportion of individuals with complete data at this time point). The
resulting models were able to explain 12–13% of the variance in
ADHD symptoms for sites left out of the model-fitting process (PCR
r= 0.36, CI= 0.33–0.39; LASSO r= 0.35, CI= 0.31–0.38) and con-
tinued to show high generalizability across the primary sites (Fig. 1)
and across the three lockbox sites (PCR r= {0.39,0.37,0.41}; LASSO
r= {0.39,0.36,0.39). Given that the temporal separation between the
baseline data and 2-year ADHD symptom measures was twice that
of the primary analyses, this represents a modest reduction in
predictive performance when compared to the 1-year sample with
imputed data (15–16%) and likely reflects the fact that the ADHD
symptoms measure itself shows a high degree of temporal stability
across study waves.

Features with the most predictive information are a mixture
of neurocognitive, demographic, and child self-report
variables
Feature weights from the comprehensive (PCR) models predict-
ing 1-year ADHD symptoms in the full sample (Fig. 3) represent
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each feature’s degree of predictive information, regardless of
whether that information is unique to this feature or part of a
broader latent dimension of individual variability (i.e., is also
reflected in other features). These weights indicated that most
neurocognitive indices, including measures of reasoning,
memory, verbal ability, processing speed, and the DDM’s
cognitive efficiency (“drift rate”) parameter, showed strong
negative predictive relations with ADHD symptoms. Neurocog-
nitive features with relatively weak weights included other DDM
parameters and measures of n-back cognitive load effects. Child
self-report features indicated that greater impulsivity, greater
screen time, lower parental monitoring, greater family conflict,
and lower involvement/engagement in school were most

predictive of symptoms. Of the basic demographics, male sex
played an outsized role in prediction. Of the geocoded
variables, measures of neighborhood poverty (Area Deprivation
Index and school poverty) were the most predictive. In contrast,
measures of lead exposure risk and neighborhood crime
contributed relatively little. Biometric measures also contributed
little.
These patterns of feature weights were highly consistent with

those in analyses of the subsample of individuals with complete
1-year symptom data (Supplementary Fig. 5) and analyses
predicting symptoms at the 2-year time point (Supplementary
Fig. 6), suggesting that predictive features were robust to missing
data imputation and outcome measurement timepoint.

Fig. 1 Accuracy and generalizability of predictive models. For each application of predictive modeling, plots display site sample sizes and
correlation coefficients (r) for the relation between predicted and actual ADHD symptom measures in all 18 sites when data from each site
were left out of the respective training set. The top row displays r values for models predicting ADHD symptoms at the 1-year time point in
the full sample with missing symptom data imputed (left) and in the subsample of individuals with complete data (right). The middle row
displays r values for models predicting 2-year symptoms, and the bottom row displays r values for models predicting changes in symptoms
from baseline. Green triangles represent models that use principal component regression (PCR), while blue circles represent those that use
LASSO. The shaded region at right shows the average r values across sites and their 95% confidence intervals (CIs).
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Fig. 2 Comparisons of predicted and actual symptom scores. Scatterplots depict the relation between predicted and actual symptom scores
in the three study sites with the largest sample sizes for all reported principal components regression (PCR) analyses involving the full matrix
of predictive features.
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A parsimonious model including only neurocognition, sex,
impulsivity, parental monitoring, and screen time achieves
near-maximal predictive performance
When forming the sparse LASSO model for the primary analysis
predicting 1-year ADHD symptoms in the sample with missing
symptom data imputed, we found that only 13 features were
consistently selected across all training folds and both halves of
the split-half analysis. The final sparse LASSO model that
included only these 13 features displayed a performance that
was practically identical to the more complex PCR and LASSO
models in which all features were entered (r= 0.39,
CI= 0.37–0.41). It also performed only slightly worse than the
more complex models when applied to the lockbox sites
(rs= {0.41,0.37,0.35}). Hence, this sparse modeling strategy
selected a parsimonious set of important features that achieve
near-maximal predictive accuracy. These 13 key features (Fig. 3)
included sex, six neurocognitive measures (tests of multiple
cognitive domains and the DDM cognitive efficiency para-
meters), screen time, parental monitoring, and children’s self-
reported impulsivity. Most of the same features, with the
exception of parental monitoring, were also included in the
sparse model for the sample with complete ADHD symptom
data at the 1-year time point and the sparse model for
predicting ADHD symptom data at the 2-year time point
(Supplementary Figs. 5, 6), suggesting that they are robustly
predictive of ADHD symptoms.

Neurocognitive testing meaningfully boosts predictive power
When used on their own, data from the neurocognitive, child self-
report, and demographic (including geocoded and biometric)
domains explained roughly 7%, 10%, and 6% of the variance in
1-year symptoms, respectively, in unseen data when the full 1-year
sample was considered (Table 1). When neurocognitive, child self-
report, and demographic data were selectively left out of analyses,
the resulting models explained roughly 12%, 11%, and 14% of the
variance, respectively, indicating that information from all three
measurement domains was necessary to achieve maximal perfor-
mance (16%). In the subset of individuals with complete 1-year
symptom ratings, neurocognitive, child self-report, and demo-
graphic data explained roughly 10%, 13%, and 7% of the variance
(Table 2). When neurocognitive, child self-report, and demographic
data were selectively left out of these analyses, the resulting models
explained roughly 16%, 15%, and 18% of the variance, respectively,
compared to 20% for the model with information from all three
domains. Therefore, neurocognitive data appear to explain roughly
4% of the variance over and above other domains, and this added
value is consistent across the analyses of the full sample and subset
with complete symptom data.

Models predicting residual symptom change scores have
lower accuracy but highlight similar predictive features
Models predicting residual change scores were able to explain
roughly 2% of the variance in symptom change between the

Fig. 3 Feature weights for models predicting ADHD symptoms at the 1-year timepoint in the full sample with missing symptom data
imputed. The bar plots display feature weights, averaged across training folds and ranked by absolute value, for the comprehensive PCR
models and the sparse LASSO models. The sparse LASSO model only included 13 of the most relevant features (i.e., those consistently
selected in all training folds as well as both halves of the split-half analysis). Weights are color-coded by variable domain: blue =
demographic/geocoded/biometric, red = child self-report, orange = neurocognitive testing. Continuous features are shown separately from
categorical features because the predictor variables were scaled differently; continuous features were z-scored (mean = 0, SD= 1), while
categorical features were coded as dummy variables with 0 = reference group versus 1 = feature present. RAVLT Rey Auditory Verbal Learning
Test, NIHTB NIH Toolbox, WISC Wechsler Intelligence Scale for Children, SST Stop Signal Task, UPPS Impulsive Behavior Scale, BIS Behavioral
Inhibition System, BAS Behavioral Approach System, HS High School, BMI body mass index.
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baseline and 1-year time points (PCR r= 0.15, CI= 0.13–0.16;
LASSO r= 0.15, CI= 0.13–0.17) and 1–2% of the variance in
symptom change between the baseline and 2-year time points
(PCR r= 0.12, CI= 0.09–0.15; LASSO r= 0.13, CI= 0.10–0.16).
Prediction of change at the 1-year time point was mostly
consistent across study sites, but the prediction of change at
the 2-year time point was less consistent and was very poor for
several sites (Fig. 1). As detailed above, the difficulty of predicting
changes in symptoms was anticipated due to the well-known trait-
like nature of ADHD symptoms and their high stability across
waves of the study. Nonetheless, feature weights for predictors of
1-year symptom change (Fig. 4) and 2-year symptom change
(Supplementary Fig. 7) showed a very similar pattern to feature
weights predicting trait ADHD symptoms; cognitive measures,
self-reported impulsivity, sex, and screen media use continued to
be the most important predictors in these models.

DISCUSSION
We developed and tested machine learning models that use
baseline neurocognitive, child self-report, and demographic
features to predict children’s parent- and teacher-reported ADHD
symptoms in the demographically diverse ABCD sample. We
found that these models are highly generalizable across ABCD

sites and robustly explain 12–20% of the variance in unseen data
across several sensitivity analyses that varied in the time point at
which ADHD symptoms were measured and the strategy used to
address missing symptom data. Demographic, child self-report,
and neurocognitive features all contributed meaningfully to
prediction. Neurocognition accounted for roughly 4% of the
variance beyond other domains and was featured heavily in a
sparse predictive model that achieved comparable performance
to more complex models.
Our findings are significant for addressing the longstanding

debate on the clinical and practical utility of neurocognitive
abilities for predicting ADHD symptoms [13, 16, 20–23]. When
included in multivariate predictive models with diverse features
from other domains, neurocognitive measures display clear
added value. Although the results from the current study cannot
be directly translated to clinical practice, they argue for the
renewed consideration of neurocognitive measures in the
clinical characterization of ADHD. The reliance of current clinical
guidelines [60] on only a single measurement modality,
informant rating scales, likely has significant drawbacks due to
rater biases and effects of method variance [42] on measure-
ment integrity (e.g., leading to inflated correlations with
impairment measures drawn from the same modality and
suppressed correlations with impairment measures from

Table 2. Average model performance across training folds and across held-out test sites, as indexed by the correlation coefficient (r) for the relation
between predicted attention problems and actual attention problems at the 1-year time point in the sample of individuals who had complete
symptom data.

Predictors PCR models LASSO models

Training r mean Test r mean Test r CI Training r mean Test r mean Test r CI

Full predictor set 0.46 0.46 0.43–0.48 0.45 0.45 0.42–0.47

Sparse/LASSO-selected predictors - - - 0.45 0.45 0.42–0.47

Neurocognitive data only 0.32 0.31 0.27–0.34 0.31 0.29 0.25–0.33

Child self-report data only 0.36 0.36 0.33–0.38 0.35 0.35 0.32–0.38

Demographic data only 0.29 0.27 0.24–0.30 0.28 0.27 0.25–0.30

Neurocognitive data left out 0.41 0.39 0.37–0.42 0.40 0.40 0.38–0.42

Child self-report data left out 0.39 0.39 0.36–0.41 0.39 0.38 0.36–0.40

Demographic data left out 0.42 0.42 0.39–0.46 0.42 0.41 0.38–0.44

Confidence intervals (95% CIs) are reported for the mean r value across the 18 test sites. CIs are not computed for the mean r value across training folds
because of the large degree of overlap between folds, which makes them non-independent.
PCR principal components regression, LASSO least absolute shrinkage and selection operator regression.

Table 1. Average model performance across training folds and across held-out test sites, as indexed by the correlation coefficient (r) for the relation
between predicted attention problems and actual attention problems at the 1-year time point in the full sample of individuals with missing symptom
data imputed.

Predictors PCR models LASSO models

Training r mean Test r mean Test r CI Training r mean Test r mean Test r CI

Full predictor set 0.41 0.40 0.38–0.42 0.41 0.39 0.38–0.41

Sparse/LASSO-selected predictors - - - 0.40 0.39 0.37–0.41

Neurocognitive data only 0.28 0.26 0.24–0.29 0.27 0.26 0.24–0.28

Child self-report data only 0.33 0.32 0.29–0.34 0.32 0.31 0.29–0.33

Demographic data only 0.25 0.24 0.20–0.27 0.24 0.23 0.20–0.26

Neurocognitive data left out 0.37 0.35 0.32–0.38 0.36 0.35 0.32–0.38

Child self-report data left out 0.34 0.33 0.31–0.35 0.33 0.33 0.31–0.34

Demographic data left out 0.38 0.37 0.35–0.39 0.37 0.36 0.34–0.38

Confidence intervals (95% CIs) are reported for the mean r value across the 18 test sites. CIs are not computed for the mean r value across training folds
because of the large degree of overlap between folds, which makes them non-independent.
PCR principal components regression, LASSO least absolute shrinkage and selection operator regression.
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different modalities). Future work should assess whether
neurocognitive measures can be used alongside informant
scales or integrated with them in cross-modality measurement
models (e.g., [61]) to improve measurement of the ADHD
phenotype and its relations with impairment (especially impair-
ment measures beyond informant ratings, such as grades and
financial outcomes).
Although the magnitude of neurocognitive measures’ added

value (r2 difference ~0.04) corresponds to a “moderate-sized”
effect by common heuristics, comparison to empirical benchmarks
(e.g., effects of anti-inflammatory and anti-histamine drugs, both
of which are smaller) [62, 63] suggests it is non-trivial. Further, as
the benefits of predictive informatics methods can be expected to
cumulate (i.e., moderate improvements in prediction for indivi-
duals can translate to large overall impacts at the population level
[62]), our findings suggest neurocognitive features could mean-
ingfully improve the prediction of childhood ADHD symptoms at
the level of large systems (e.g., national policies, healthcare
enterprises) if not the level of individuals.
Relevant to this work, sparse models suggested that, in addition

to a 6-test neurocognitive battery, the inclusion of only children’s
sex, self-reported impulsivity, parental monitoring, and screen
time was sufficient to achieve predictive accuracy comparable to
models involving all 54 features investigated. The success of such
a parsimonious model may prove particularly relevant for
prediction in applied settings by reducing the number of
measures needed.

Neurocognitive measures across many domains displayed
negative relations with symptoms, consistent with recent evi-
dence that neurocognitive development in youth largely reflects
domain-general factors [64]. Computational model (DDM) para-
meters reflecting individuals’ accumulation of goal-relevant
information across different tasks contributed significantly to
prediction, while parameters reflecting other processes (e.g.,
n-back load effects, caution in responding) contributed little. This
pattern is consistent with the hypothesis that domain-general
efficiency of evidence accumulation is a key cognitive under-
pinning of ADHD [65]. However, as noted by a recent review of
computational modeling applications to ADHD [12], most current
tasks used in this literature are limited in their ability to allow for
the accurate estimation of diverse model parameters due to
having low numbers of trials and lacking experimental manipula-
tions that are designed to modulate specific parameters. Hence, it
is possible that novel tasks that allow for the estimation of a
broader array of computational mechanisms (e.g., social cognition,
reinforcement learning) could elucidate more specific cognitive
predictors of ADHD symptoms.
Our findings notably contrast with two recent head-to-head

comparisons of neurocognitive and survey-based measures that
found neurocognitive measures contribute little to the prediction
of ADHD [23] or related real-world outcomes [66]. A key reason for
this discrepancy may be that the outcome variables in both
studies were based on ratings by the same rater who completed
self-report survey measures that were used as predictors, which

Fig. 4 Feature weights for models predicting changes in ADHD symptoms from the baseline timepoint to the 1-year timepoint in the full
sample with missing symptom data imputed. The bar plots display feature weights, averaged across training folds and ranked by absolute
value, for the comprehensive PCR models and the sparse LASSO models. The sparse LASSO model only included eight of the most relevant
features (i.e., those consistently selected in all training folds as well as both halves of the split-half analysis). Weights are color-coded by
variable domain: blue = demographic/geocoded/biometric, red = child self-report, orange = neurocognitive testing. Continuous features are
shown separately from categorical features because the predictor variables were scaled differently; continuous features were z-scored
(mean= 0, SD= 1), while categorical features were coded as dummy variables with 0 = reference group versus 1 = feature present. RAVLT Rey
Auditory Verbal Learning Test, NIHTB NIH Toolbox, WISC Wechsler Intelligence Scale for Children, SST Stop Signal Task, UPPS Impulsive
Behavior Scale, BIS Behavioral Inhibition System, BAS Behavioral Approach System, HS High School, BMI body mass index.
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allowed shared-method variance [42] to bias models toward
surveys. The current study deliberately avoided this confound by
excluding parent and teacher rating scales from the predictor
matrix.
Beyond neurocognition, our analyses also highlight several

other important predictors of childhood ADHD symptoms. Some
are consistent with prior work, including lower parental monitor-
ing [67] and self-reported impulsivity [68]. One of the most
prominent and intriguing, however, is children’s estimates of their
time spent engaging in screen media. Previous work in ABCD has
found screen time to be associated with externalizing psycho-
pathology, fluid cognitive ability, and neuroimaging markers
[69, 70], but the current findings provide novel evidence that
screen time is uniquely predictive of ADHD symptoms. As some of
these important predictors, including both screen media use and
parental monitoring, may be malleable or responsive to behavioral
interventions, they represent potential targets for treatment.
However, given that our prediction models do not necessarily
reflect causal relationships, caution is warranted in this area.
Although models effectively predicted individuals’ overall level

of ADHD symptoms at the 1-year and 2-year time points,
predictions of symptom change from baseline to these time
points were far less accurate. This was expected given prior
research demonstrating that individuals’ ADHD symptoms are
typically stable across development (especially the short intervals
of 1–2 years available in the current study) [32–35], and the
observation of strong correlations (r= 0.66–0.77) of the ADHD
symptoms measure between time points. Predicting the differ-
ence between two highly correlated measures of the same trait is
inherently challenging because much of the systematic variance in
the individual measures is reflected in their correlation, and their
difference will, therefore, necessarily contain a large portion of
error variance relative to systematic variance [71, 72]. Indeed, the
cross-timepoint correlations observed here are in the same range
as test-retest reliability correlations reported for the rating scales
from which the ADHD measure was derived [37, 38], suggesting
differences in scores witnessed at 1- to 2-year intervals are largely
due to error in the symptom measures themselves. Hence, for
traits as stable as ADHD symptoms, changes across these intervals
are unlikely to be meaningful. The residual change score analyses
provide converging evidence for the importance of the features
identified in the primary analyses predicting trait ADHD symp-
toms. However, rather than a prediction of “change over time”,
these results may simply reflect the prediction of systematic
variance in ADHD symptoms at the outcome timepoint that is
present after residualizing for the imperfect baseline measure of
the same trait.
It is also notable that overall predictive model performance was

slightly worse in the full sample with missing ADHD symptom data
imputed than in the smaller subsample with complete symptom
data. This performance reduction could indicate an underestima-
tion of model accuracy due to the imputation of teacher-report
data with parent-report data, which are typically modestly related
in a large portion of the sample or could reflect systematic
differences between individuals with complete data and those
with missing teacher ratings. Regardless, the similarity in
contributions of predictive features and feature domains across
these two analyses suggests that their role in predicting ADHD
symptoms is robust to whether symptom data are imputed.
Similarly, although predictions of the 2-year symptoms were less
accurate than those of the 1-year symptoms, likely due to the
greater temporal separation from baseline, the overall pattern of
results suggests that ADHD symptoms represent a stable trait with
relatively consistent predictors across time.
In summary, this study demonstrates that machine learning

models can effectively utilize information about neurocognition
and other youth characteristics, including sex, self-reported
impulsivity, and screen time, to generate predictions about

childhood ADHD symptoms that generalize to unseen data from
diverse samples. This work provides a foundation for efforts to
enhance the prediction of ADHD symptoms in ABCD and across
broader research and clinical contexts.
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Data from the ABCD Study can be accessed through the NIMH Data Archive (NDA)
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