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AKT and MAPK signaling pathways in hippocampus reveals the
pathogenesis of depression in four stress-induced models
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Major depressive disorder (MDD) is a highly heterogeneous psychiatric disorder. The pathogenesis of MDD remained unclear, and it
may be associated with exposure to different stressors. Most previous studies have focused on molecular changes in a single stress-
induced depression model, which limited the identification of the pathogenesis of MDD. The depressive-like behaviors were
induced by four well-validated stress models in rats, including chronic unpredictable mild stress, learned helplessness stress,
chronic restraint stress and social defeat stress. We applied proteomic and metabolomic to investigate molecular changes in the
hippocampus of those four models and revealed 529 proteins and 98 metabolites. Ingenuity Pathways Analysis (IPA) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis identified differentially regulated canonical pathways, and then we presented
a schematic model that simulates AKT and MAPK signaling pathways network and their interactions and revealed the cascade
reactions. Further, the western blot confirmed that p-AKT, p-ERK12, GluA1, p-MEK1, p-MEK2, p-P38, Syn1, and TrkB, which were
changed in at least one depression model. Importantly, p-AKT, p-ERK12, p-MEK1 and p-P38 were identified as common alterations
in four depression models. The molecular level changes caused by different stressors may be dramatically different, and even
opposite, between four depression models. However, the different molecular alterations converge on a common AKT and MAPK
molecular pathway. Further studies of these pathways could contribute to a better understanding of the pathogenesis of
depression, with the ultimate goal of helping to develop or select more effective treatment strategies for MDD.
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INTRODUCTION
Major depressive disorder (MDD) is the leading cause of disability
globally, with over 300 million people suffering from depression
worldwide [1], and it is projected to be the second leading cause
of disease and disability globally by 2030 [2]. The complexity and
heterogeneity of depression make it difficult to identify a single
underlying abnormality and suggests that there are multiple
causes of depression [3]. Although the underlying mechanism of
MDD remains elusive, stress has been recognized as a determinant
risk factor of depression [4, 5]. In addition, stress is a
heterogeneous phenomenon, and different types of recent life
events and stressors may exert their effects via different
neurobiological pathways and mechanisms, before leading to
the emergence of depression [6]. Thus, it is importance to
investigate the common and/or diverging pathogenesis of
depression caused by different types of stress.
Stress-induced depression models have been widely used and

developed as an important tool for exploring the complex
pathogenesis of MDD for over 30 years [7, 8]. There are several
stress-induced depression models to mimic the different stressors

encountered in human daily life [9]. For example, the chronic
unpredictable mild stress (CUMS) rodent model mimics the
variable and unpredictable physical and mental irritations
encountered in human daily life and reflect some of the core
symptoms in depressed humans (e.g., anhedonia, anxiety and
despair) [10], and the chronic restraint stress (CRS) model
simulates deprivation of freedom [11]. The social defeat stress
(SD) model mimics the pathogenesis of depression at a social level
and explores the biological basis of stress resilience behavior that
mimics characteristics of MDD (termed ‘susceptible’), while the
remainder do not (termed ‘resilient’) [12]. The SD model thus
recapitulates the differences in stress responses observed in
humans [13]. The learned helplessness stress (LH) model serves as
a general protocol where exposure to inescapable stress subse-
quently affects escape responding or ability to cope, presumably
by inducing a state of “helplessness” [14]. More importantly, the
results of different stress-induced depression models provide
important insight into the heterogeneous findings.
The hippocampus is regarded as the key stress-responsive brain

region involved in memory, learning and mood regulation, and
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plays an important role in the pathogenesis of depression [15].
Hippocampal structural volume reduction is related to stress and
depression [16, 17], and hippocampal neurogenesis can buffer
stress responses and depressive behavior [18]. However, different
stressors can cause heterogeneous, even diametrically opposed,
stress responses in the hippocampus [19], such as the expression
of plasticity-related proteins [20]. However, the role of different
stressors in mediating the pathogenesis of depression in
hippocampus remains unclear.
Recent technological advances and efforts in scientific discovery

have acquired an in-depth understanding of the molecular
mechanisms of depression. Due to the expansion of ‘omics’
technologies, hundreds of putative molecular proteins and
metabolites have been discovered whose presence (or altered
levels—up or down regulation) could indicate depression [21].
Meanwhile, new approaches based on omics data integration are
expected to play a key role in identifying and qualifying new
mechanisms, which is why the focus of data analysis approaches
has shifted from single-omics to multi-omics data integration
[22, 23]. Overall, multi-omics data integration allows the joint
analysis of multiple omics data types to provide a global view of
the biological system and offers insights into the nature of the
interactions between the different dataset layers [24].
However, most studies have typically focused on a single stress-

induced depression model, and combination of different models
can eventually decrease the etiological heterogeneity, and come
closer to the clinical situation than a single, or even highly
sophisticated model [25]. Thus, the combined multi-omics analysis
and experimental verification to investigate the pathogenesis of

multiple stress-induced models of depression may lay the
foundation for further research.

MATERIALS AND METHODS
A flowchart of the molecular profiling methods was shown in Supple-
mentary Fig. S1.

Animals
The animals were used as we published previously study [26]. One
hundred and forty male Sprague-Dawley rats with an initial body weight of
200–300 g (8 weeks old) were obtained from animal facilities at Chongqing
Medical University (Chongqing, China). All rats were fed in a single cage,
and a 12-hour light/12-hour dark day-night regime (lights on at 19:00) with
a constant temperature of 22 ± 1 °C and a relative humidity of 55 ± 5%.
Food and water were abundant and freely available except under food and
water deprivation. The experiments began after seven days of habituation
to environmental conditions. The screening process based on locomotor
activity test (LAT) and sucrose preference test (SPT). Then, the screened
rats were randomly assigned to the experiment or control group. The
schedule of the experimental program was shown in Fig. 1A. Animals were
maintained in accordance with the guidelines of the National Institutes of
Health [27] and approved by the Ethics Committee of Chongqing Medical
University.

Stress-induced depression models in rats
The paradigm of chronic unpredictable mild stress (CUMS), chronic
restraint stress (CRS), social defeat (SD) and learned helplessness (LH)
were reported in our previous studies [26, 28], and detailed in the
Supplementary Methods. Briefly, in the CUMS model, rats were exposed to
two arbitrary mild stressors in each day and the same stressors did not be

Fig. 1 Procedure for the four depression models protocol. A The timeline of the stress and control groups regime and behavioral
assessments. B The stimulus diagram of the CUMS model. C LH model. D CRS model. E, F SD model. CON, control group.

X. Li et al.

2

Translational Psychiatry          (2023) 13:200 



scheduled in the three consecutive days. Rats in the stress group were
randomly exposed to various stressors (e.g. cold, tail pinch and strobo-
scope) on a daily basis (Fig. 1B), while rats in the control group were
handled as usual (daily feeding with adequate food and water). In LH
model, rats in the stress group were exposed to an unavoidable,
inescapable footshocks for a total of 60 times (intensity 0.85 mA, 15 s
average duration, 15 s average interval time, while rats in the control group
were placed in the box for the same time without electric shock (Fig. 1C).
The learned helpless behaviors of latency to escape and escape failures
were then evaluated using an active escape test consisting of 30 trials of
escapable footshocks after 5 min of habituation. In CRS model, rats in the
stress group were repeatedly placed in a plastic bottle for 6 h (from 09:00
to 15:00) at the same time each day, and both stress and the control
groups were deprived of food and water during the restraint stress period
(Fig. 1D). In SD model, rats in the stress group were exposed to direct
physical contact of Long-Evans (LE) rats for 5 min (Fig. 1E), and then
exposed to comprehensive visual, olfactory and auditory exposure of LE rat
for 55min (Fig. 1F), while rats in the control group were placed in empty LE
rat home cages for 60min. The duration of those above four depression
models were three weeks. Behavioral tests of the locomotor activity test
(LAT), sucrose preference test (SPT), forced swimming test (FST), open field
test (OFT), and elevated plus-maze (EPM) have been reported in our
previous study [26] and detailed in the Supplementary Methods, and all
behavioral tests were conducted from 09:00 to 12:00 P.M. We examined
anxiety-like behaviors with the OFT and EPM, and depressive-like
behaviors with the SPT and FST.

Proteomic and metabolomic analysis
The methods of sample preparation for iTRAQ-based proteomics analysis
were reported in our previous studies [29]. The right hippocampus of rats
was used for proteomics analysis. The left hippocampus of rats was used
for metabolomic analysis, and the metabolomic results had been
published in our previous studies [26]. For each depression model, two
or three protein samples from the stress group or the control group were
pooled separately, providing three biological replicates for each group. The
pooled samples were digested according to the filter-aided sample
preparation (FASP) procedure [30], and labeled using the 8-plex iTRAQ
reagent according to the manufacturer’s instructions (Applied Biosystems).
Proteins were deemed to be differentially expressed when p-value < 0.05
and at least a 1.2-fold change (> 1.20 or < 0.83) relative to the control
group. To obtain an overview of the differentially expressed proteins, they
were functionally annotated according to biological processes via Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO)
analysis using DAVID 6.8 (https://david.ncifcrf.gov). KEGG pathway analysis
was applied to identify the significantly altered canonical pathways of
differentially expressed proteins. In the metabolomic analysis, the details of
non-targeted gas chromatography-mass spectrometry (GC-MS) analysis
were reported in our previous studies [31]. Metabolic profiling of the
processed hippocampus was achieved using an Agilent 7890 A/5975 C GC/
MSD System (Agilent Technologies Inc., USA). Metabolites with variable
importance in the projection (VIP) values > 1 and FDR < 0.05 were
considered significantly different. We used Ingenuity Pathway Analysis
(IPA, http://www.ingenuity.com) to summarize the schematic model from
the findings of proteomic and metabolic profiling.

Western blot
Hippocampal tissue was lysed in RIPA buffer with a protease inhibitor
cocktail (Roche, Mannheim, Germany). After the KEGG and IPA pathways
analysis, we screened key proteins in the pathway related to pathogenesis
of depression for further verification. The protein levels of 11 proteins were
measured by western blot in hippocampus including protein kinase B
(AKT)/ phosphor-AKT, extracellular signal-regulated kinase1/2 (ERK 1/2)/
phosphor-ERK1/2, glutamate receptor 1 (GluA1), mechanistic target of
rapamycin (mTOR) and phosphor-mTOR, dual specificity mitogen-activated
protein kinase mek-1 (MEK1) and phosphor-MEK1, dual specificity
mitogen-activated protein kinase mek-2 (MEK2) and phosphor-MEK2,
mitogen-activated protein kinase 13 (P38) and phosphor-P38, ribosomal
protein S6 kinase (P70S6K) and phosphor-P70S6K, postsynaptic density
protein-95 (PSD95) and phosphor-PSD95, synapsin-1 (Syn1), tropomyosin-
related kinase B (TrkB), GAPDH and beta Tubulin.
The proteins were separated on 7.5–10% SDS gels and then transferred

to polyvinylidene difluoride membranes (Millipore, Billerica, USA). After
blocking in 5% skimmed milk powder for 2 h, incubate the membranes
with the primary antibody at 4 °C overnight. After washing with tris

buffered saline containing Tween 20 (Beyotime Biotechnology, Shanghai,
China), the membranes were incubated with the appropriate concentra-
tion of secondary antibody (1:5,000–1:10,000, goat anti-rabbit IgG (H+ L)-
HPR Conjugate 1706515, Bio-Rad, California, USA) was placed at room
temperature for 2 h. The signals were detected with ECL kit (Millipore,
Massachusetts, USA), and analyzed with Quantity One software (Bio-Rad,
California, USA) [32–35]. The western blotting experiments and catalogue
number of the antibody were in the Supplementary Table S1.

Statistical analyses
The mean ± SEM was used to represent the results of each behavioral
test. The results of behavioral tests and western blot protein analysis
were compared by SPSS 21.0 (IBM, New York, USA) using independent
two-sample Student’s t-tests or non-parametric Mann-Whitney U-tests as
appropriate. A p-value < 0.05 was considered to be statistically
significant.

RESULTS
Depressive-like behaviors in the four depression models
Behavioral results showed in Supplementary Fig. S2, and the
results had been reported in our previous research [26]. In brief,
after screening, four models with 114 rats were included in this
study. After stress exposure, the stressed rats were divided into
susceptible and resilient groups based on whether their sucrose
preference had decreased or not from baseline to endpoint. In the
present study, only susceptible rats, designated as the stress
group, were used for further analysis, resulting in 68 rats (CUMS/
Control =9/8, CRS/Control =8/8, SD/Control=9/8, and LH/Control
=10/8). In SPT, the sucrose preference was significantly lower in
four stress groups compared to the control groups (Fig. S2E–H). In
the FST, immobility times was significantly increased in the four
models of depression compared to the control groups (Fig. S2I). In
addition, the CUMS model rats showed significantly decreased
total distance and rearing frequency in the OFT compared to
control group, with no differences in central activity between
stress groups and control groups (Fig. S2J–L). In the EPM, CUMS
model rats spent less time in the open arms and more time in the
closed arms compared to control group (Fig. S2M–P). Taken
together, the stress groups of four depression models showed a
significant profile of depression-like behaviors, and only CUMS
model showed anxiety-like behaviors.

iTRAQ based proteomic and GC-MS based metabolomic
analysis in the hippocampus of four depression models
A total of 4950 proteins were identified by iTRAQ-based proteomic
profiling of hippocampus between stress and control groups in
four depression models. The proteomic results of CUMS and SD
models were published in our previous studies [29, 36]. Based on
the criteria mentioned above, the volcano plot of a total of 529
differentially expressed proteins were identified in four depression
models (Fig. 2A), and the percentage increase or decrease of
differentially expressed proteins for each model compared to the
control groups were shown in Fig. 2B. The details of the
differentially expressed proteins in each model were shown in
Supplementary Table S2. Among them, the Venn diagram showed
170 differentially expressed proteins in CUMS model, 39 in CRS
model; 234 in SD model and 86 in LH model. Interestingly, five
commonly expressed proteins (Pex16, Hmgn2, Pja1, Smad5, Hbb-
b1) were shared in all of these four stress-induced models (Fig.
2C).
KEGG pathway analysis of 529 differentially expressed proteins

in these four depressive-like models identified a total of 24
signaling pathways, of which 16 were significantly different
(P < 0.05). At the same time, IPA pathway analysis was performed
and a total of 422 pathways were identified, 25 of which were
significantly different (FDR P < 0.05; Fig. 3A). Among them, the
most prominent and connected pathways were PI3K/AKT, MAPK
and mTOR signaling pathways. GO analysis of 529 differentially
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expressed proteins in four depression models identified into
30 significant GO terms for biological processes (BP), 45 for cellular
components (CC), and 18 for molecular function (MF) (Supple-
mentary Table S3), and the top 10 functional analysis results of
each category were shown in Fig. 3B. Briefly, in biological
processes, the most relevant were vesicle fusion, calcium ion-
regulated exocytosis of neurotransmitter, response to hydrogen
peroxide, protein transport and oxygen transport; in cellular
components, the most relevant were postsynaptic density, cell

junction, synapse, mitochondrion and peroxisomal membranes; in
molecular function, the most relevant were protein binding,
SNARE binding, oxygen binding, oxygen transporter activity and
poly RNA binding. The results of hierarchical clustering analysis,
and GO analysis of CUMS, CRS, SD and LH models were shown in
the Supplementary Fig. S3. The IPA analysis of the differential
protein of a single depression model were shown in the
Supplementary Fig. S4. Based on the criteria mentioned above, a
total of 30, 19, 25 and 24, different metabolites were identified in

Fig. 2 Proteomic analysis results of four depression models. A The volcano plot of the iTRAQ analysis. B The percentage increase or
decrease of differentially expressed proteins for each model. Red, increase; green, decrease. C Venn diagram of common and distinct proteins
in four depression models, and five commonly expressed proteins and fold change values in four stress-induced models. Red Increase, green,
decrease, Pex16 Peroxisomal membrane protein PEX16; Hmgn2, Non-histone chromosomal protein HMG-17, Pjal LOC683077 protein, Smad5
Smad5 protein, Hbb-b1 Hemoglobin subunit beta-1.

Fig. 3 The bioinformatics analysis results of four depression models. A The IPA and KEGG pathway analysis of differentially expressed
proteins in four depression models. B The Gene Ontology (GO) analysis. CUMS Chronic unpredictable mild stress, LH Learned helplessness
stress, CRS Chronic restraint stress, SD Social defeat stress, KEGG Kyoto Encyclopedia of Genes and Genomes, IPA Ingenuity Pathway Analysis.
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the CUMS, CRS, SD and LH models. Hippocampus metabolic
differences between four rat models of depression were published
in our previous research [26].

The results of western blot of AKT, MAPK and mTOR signaling
pathways in four depression models
Five rats were randomly selected from each the stress and control
groups of these four depression models for western blot analysis,
and the randomly selected rats were not biased by behavioral
differences, as detailed in the Supplementary Fig. S5. Based on
AKT, MAPK and mTOR signaling pathways, 11 key proteins (AKT/p-
AKT, ERK12/p-ERK12, GluA-1, mTOR/p-mTOR, MEK1/p-MEK1,
MEK2/p-MEK2, P38/p-P38, P70S6K/ p-P70S6K, PSD95, Syn1 and
TrkB) were chosen to be validated by western blot in four
depression models. The results of western blot were shown in the
Fig. 4 and detailed in Supplementary Fig. S6. We could find that
the AKT and MAPK signaling pathways were significantly altered,
while the mTOR signaling pathway was not. Briefly, p-AKT, p-
ERK12, p-MEK1 and p-P38 were altered in four depression models
(Fig. 4A, B, D, F). Interestingly, p-AKT and p-MEK1 were down-
regulated in CUMS, LH and SD models compared to the control
groups, while up-regulated in CRS model compared to the control
group. p-ERK12 was down-regulated in CUMS and SD models
compared to the control groups, while up-regulated in LH and CRS

models compared to the control groups. P-P38 was down-
regulated in CUMS and CRS models compared to the control
groups, while up-regulated in LH and SD models compared to the
control groups. TRKB was down-regulated in three depression
models (CUMS, LH and SD) compared to the control groups
(Fig. 4I). GluA-1 was down-regulated in CUMS and LH models
compared to the control groups (Fig. 4H), while Syn1 was down-
regulated in CRS and SD models compared to the control groups
(Fig. 4I). P-MEK2 was down-regulated in CUMS model compared to
the control group, while up-regulated in CRS model compared to
the control group (Fig. 4E). There was no difference results in p-
mTOR, p-P70S6K and PSD95 in all four depression models
between stress groups and control groups (Fig. 4C, G, H).

Schematic model of AKT and MAPK signaling pathways
among four depression models
Taken together with the results of the western blot analysis, we
found that AKT and MAPK signaling pathways were significantly
altered in the hippocampus in all of four stress-induced
depression models. We imported the significantly different
proteins (Supplementary Table S2) and metabolites [26] from
each model, together with Ingenuity Pathways Analysis (IPA)
analysis, to find the canonical pathways and validate the key
proteins in Fig. 5. The molecular network can be linked by 11

Fig. 4 The results of Western blot of hippocampus in four depression models. Representative immunoreactive bands and statistical results
showing the protein levels of hippocampus (A) AKT and p-AKT, (B) ERK12 and p-ERK12, (C) mTOR and p-mTOR, (D) MEK1 and p-MEK1, (E) MEK2
and p-MEK2, (F) P38 and p-P38, (G) P70S6K and p-P70S6K, (H) GluA1 and PSD95, (I) Syn1 and TRKB in the stress group compare with control
group. All results are represented as means ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001.
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proteins (AKT, ERK12, GluA1, mTOR, MEK1, MEK2, P38, P70S6K,
PSD95, SYN1 and TrkB) and 3 metabolites (ascorbate, arachidonic
acid and lactic acid), most of which were found to be significantly
altered in hippocampus of stress-induced models.

DISCUSSION
In the present study, proteomic and metabolomic analysis
demonstrated that differentially expressed proteins and metabo-
lites in the hippocampus of rats subjected to four stress-induced
depression models. According to the pathway analysis of KEGG
and IPA, the AKT, MAPK and mTOR signaling pathways were
identified as the most prominent pathways. Eight proteins (p-AKT,
p-ERK12, GluA1, p-MEK1, p-MEK2, p-P38, Syn1 and TrkB) in the AKT
and MAPK signaling pathways were significantly altered in at least
one depression model, while three proteins (p-mTOR, p-P70S6K,
PSD95) in the mTOR signaling pathway were not altered.
Therefore, AKT and MAPK signaling pathways were considered
pathways of interest. Previous studies found that CUMS, CRS and
LH models of depression reduced the AKT signaling pathway in
the hippocampus of mice and that CUMS activated the MAPK
signaling pathway [37–40]. Moreover, p-AKT and p-MEK1 were
commonly altered in four depression models. Protein phosphor-
ylation plays an important role in signaling processes and
regulation of protein function [41] and phosphorylation rapidly
changes signaling pathway function and alters the function of
proteins associated with the stress-induced depressive disorder
[42]. Furthermore, alterations to proteins and functioning via the
oxidative phosphorylation pathway within hippocampal synapses
had been appreciated in rodent models of stress-induced
depression [43]. A schematic model of AKT and MAPK signaling
pathway alterations were summarized according to the findings of
western blot and our previous metabolomic research in hippo-
campus of four depression models [26]. To the best of our

knowledge, this is the first study to comprehensively identify
alterations in hippocampal AKT and MAPK signaling pathways
among the four stress-induced depression models.
Although different paradigms had been used to study stress

coping, such as genetic, inheritance and environmental, there
were commonalities and differences across models [44, 45]. For
example, a major similarity between the CSDS and CORT models
was that they both exhibited dysregulation of the HPA axis [46, 47]
and both showed blunted endocrine response to stress [48, 49].
The difference was that the intrinsic components of susceptibility
in CSDS mice were largely dependent on epigenetic factors and
early life environment [50, 51], and that the BDNF het-Met variant
confers a genetic predisposition to stress-related behaviors in
response to applied stressors [52]. Meanwhile, a combined
analysis of four genetic mouse models of affective disorders
showed that the similarity between these models was highly
correlated with regional oxidative metabolism revealed by
cytochrome oxidase histochemistry, and different in that the GRi
(glucocorticoid receptor) mouse model was characterized by
several alterations in oxidative metabolism and altered functional
connectivity of the extended amygdala and stress response circuit
[53].
Our results revealed differential proteins changes in four

depression models. We found inconsistent changes in p-ERK12,
GluA1, TrkB, Syn1, and p-P38 proteins among the four depression
models. In detail, ERK was coupled to a number of neurotrans-
mitter receptors, including serotonin, adrenergic, dopamine and
glutamate receptors, which were highly associated with depres-
sion [54]. Chronic stress was associated with decreased protein
expression of extracellular signal-regulated kinase 2 (ERK1/2) in
the hippocampus. It was known that only phosphorylated proteins
exhibit full enzymatic activity, and ERK1/2 phosphorylation was
hypothesized to be an intracellular signaling mechanism mediat-
ing antidepressant efficacy in patients with depression and in

Fig. 5 The significantly altered proteins and metabolites in each model were poured into Ingenuity Pathways Analysis (IPA) analysis to
find typical pathways and validate key proteins. A schematic model of AKT and MAPK signaling pathways among four depression models in
hippocampus. UP Up-regulated, DOWN Down-regulated, NS No significance.
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animal models of depression, with supporting evidence coming
mainly from studies in rodent or in vitro models [55–57] and
postmortem studies of suicidal individuals with depression [58].
GluA1 deficiency exhibits depression-like behavior, and mRNA
coding for GluA1 was reduced in rats exposed to chronic stress
and also in human hippocampal tissue from depressed patients
[59]. In addition, chronic antidepressant treatment in rodents
elevated the expression of GluA1 subunit in the hippocampus [60].
The findings that TrkB was important for long-term survival,
differentiation, and function of newborn neurons in the adult
hippocampus [61], and that neurogenesis played a fundamental
role in depression, suggested that discovery of TrkB ligands might
open new treatment avenues for this disorder [62]. Synapsin1
(Syn1), as a synapse-associated protein, was expressed in
presynaptic membrane and regulates synapse formation [63]. A
growing number of studies indicated that alterations of Syn1 were
intimately associated with stress-induced depression [64] and that
enhancement in Syn1 participates in antidepressant process [64].
Pharmacological blockade of P38 had been suggested to prevent
learned helplessness in animal models of depression [65], which
was consistent with our results. It had been reported that BDNF
has an attenuating effect on the phosphorylation of p38 in
primary cell cortex cultures [66]. From the wide spectrum of
neuromodulators and cytokines, p38 may be involved in
depression-like behavior in sophisticated and interactive ways.
The mammalian target of rapamycin (mTOR), as a downstream
cascade of BDNF, had been implicated in protein synthesis-
dependent synaptic plasticity and can be interrupted in depres-
sion [67]. Our results showed the phosphorylation of mTOR or
p70S6K in mTOR signaling pathways were not altered in
hippocampus of four depression models. The expression of mTOR
in depression was controversial and includes increases [68],
decreases [37, 69] and no significant changes [70]. While the
different experimental conditions may affect the different results.
Chandran et al. reported that mTOR signaling pathway alterations
only occurred in the amygdala, but not in the hippocampus or
frontal cortex in stress-induced depression models [71], which
indicated brain region-specific alterations of mTOR. However,
these differences between our results may be caused by the
different stressors used. The exact nature of this mechanism needs
to be further investigated.
On the other hand, we found that the expression of p-MEK1 and

p-AKT were consistently expressed in four depression models,
down-regulated in the CUMS, LH and SD models and up-regulated
in the CRS model. Moreover, the p-MEK2 was down-regulated in
CUMS and up-regulated in CRS models. The chronic restraint
stress may inhibit the response to a second hit of restraint stress
through up-regulated MEK and AKT signaling pathways [72].
However, once these kinases were phosphorylated by upstream
MEK1 and MEK2, both ERK1 and ERK2 translocated to the nucleus,
where they further phosphorylate target proteins and inhibit or
activate transcription of many genes. An earlier study showed that
systemic injection of MEK inhibitor resulted in reduced ERK
phosphorylation and subsequent depression-like behavior in rats
[73]. Preclinical studies had shown that activated AKT promotes
resilience to depression-like stress responses [74], whereas high
levels of phosphorylated AKT in the hippocampus prolongs
contextual and sensitized fear induced by stress [75]. Thus, MEK
and AKT cascade signaling may have a critical role in stress-
induced depression. We inferred that the potential reason of the
opposite expression of MEK and AKT signaling pathways may
result from the type of stress when considering the properties of
stressors (unpredictable vs. predictable). The stressors in CUMS, SD
and LH models were mainly unpredictable, such as unpredictable
foot-shock, attack from resident rats and multiple unpredictable in
CUMS regime [7, 76, 77]. These findings provided new insights in
our understanding of the differential effects of unpredictable and
predictable stressors on depressive-like behavior.

In addition, multi-omics analysis also revealed that differentially
expressed metabolites (ascorbate, arachidonic acid and lactic acid)
commonly found in the hippocampus of four depression models
[26], indicating the crosstalk between differentially expressed
proteins and metabolites [78]. A recently published meta-analysis
revealed that the deficiency of ascorbate (vitamin C) had been
linked to depression and cognitive impairment [79]. Moreover,
chronic treatment with ascorbate in mice can decrease the
hippocampal p38 MAPK phosphorylation, a kinase associated with
the release of pro-inflammatory cytokines [80]. Arachidonic acid
was the precursor of the Omega-3 fatty acids, such as
eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA),
which were often associated with antidepressant effects [81, 82].
These effects may be regulated by omega-3 fatty acids through
transcriptional regulation by phosphorylation inhibition of ERK
pathway [83]. Recent evidence showed that lactate can activate
ERK1/2 and AKT pathways [84], and also produced antidepressant
effects in animal models by modulating hippocampal neurogen-
esis [85]. In the present study, we revealed an association between
proteins and metabolites in four depression models.
Diverse molecular alterations could converge in similar AKT and

MAPK signaling pathways. AKT was a serine/threonine protein
kinase that played a central role in the signaling network involving
MAPK and mTOR, and which regulates multiple cellular processes
including glucose metabolism, apoptosis, cell proliferation,
transcription and cell migration [86]. Depression was associated
with cellular impairments in neuronal function, which may
consequently manifest as abnormalities in neuroplasticity [87].
AKT had received extensive consideration in recent years for its
possible involvement in psychiatric conditions, and AKT deletion
evoked a change in behavior reflecting depression [87, 88].
Furthermore, the subcellular integration of the dopamine and
serotonin neurotransmission was regulated by AKT, which may
contribute to the development of several psychiatric conditions
such as MDD [89]. The mitogen-activated protein kinase (MAPK)
pathway played an important role in signal transduction by
converting extracellular stimuli into a wide range of cellular
responses including stress response, inflammatory response,
differentiation, and survival [90]. The MAPK pathway responded
to excitatory glutamatergic signaling controlling synaptic plasticity
and higher brain processes such as learning and memory.
Importantly, this pathway was related to neuropathological
processes including depression [91]. Increasing evidence sup-
ported a pivotal role of the mitogen-activated protein kinase
(MAPK) in the pathogenesis, symptomatology, and treatment of
depression, in particular the extracellular signal-regulated kinase
(ERK) subclass of MAPKs [54]. Furthermore, chronic administration
of lithium or valproate, mood stabilizers used in the treatment of
manic depression, stimulated the MAPK pathway in the rat
hippocampus [92]. Overall, our results supported the potential
involvement of proteins and metabolites in the altered signaling
pathways in hippocampus of four depression models.
There were several limitations in this study. First, only a number

of classic molecular of depression-related proteins involve in AKT,
MAPK and mTOR signaling pathways were detected by western
blot, with no evidence of functional effects of cell transduction.
Future research should incorporate a broader analysis including
the other altered proteins and pathways. Second, although most
depression model studies have been conducted with male rats,
this would cause a gender bias [93]. Further investigation should
be done in both male and female rats. Third, we did not explore
the synaptic neuroplasticity, cell proliferation, cell migration, and
apoptosis, which were associated with AKT or MAPK signaling
pathways. Further studies should be performed to concentrate on
these targets. Fourth, this study was performed in the whole
hippocampus and not the dorsal or ventral hippocampus, which is
an important distinction since the different hippocampal subfields
have different neural projections and functions [94]. Fifth, the SPT
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to assess depression-like behaviors were based on novelty,
therefore, consecutive tests may affect the observed results. Sixth,
sucrose was given to the rats prior to multi-omics tests, which may
cause alterations in metabolomics and proteomics [95–97]. Finally,
the complex features of depression cannot be totally captured by
animal models. Thus, it is crucial to translate our present findings
from animals to humans in future studies.
In summary, we integrated proteomic and metabolomic analysis

of multiple stress-induced depression models in the hippocampus
of rats, which were mainly involved in AKT and MAPK signaling
pathways. Then, nine proteins in AKT and MAPK pathways were
identified to be altered by western blot. Finally, AKT and MAPK
pathways molecular network were demonstrated when combining
with altered metabolites in hippocampus. These findings advance
our understanding of the potential pathophysiology and hetero-
geneity of depression as manifested in the hippocampus, and it
could facilitate the development of personalized medicine based
on these novel therapeutic targets for depression.

DATA AVAILABILITY
The Proteomic data were deposited in the Integrated Proteome Resources (iProX)
(https://www.iprox.cn/page/home.html; project ID: IPX0006454000).
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