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The genetic architecture of fornix white matter microstructure
and their involvement in neuropsychiatric disorders
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The fornix is a white matter bundle located in the center of the hippocampaldiencephalic limbic circuit that controls memory and
executive functions, yet its genetic architectures and involvement in brain disorders remain largely unknown. We carried out a
genome-wide association analysis of 30,832 UK Biobank individuals of the six fornix diffusion magnetic resonance imaging (dMRI)
traits. The post-GWAS analysis allowed us to identify causal genetic variants in phenotypes at the single nucleotide polymorphisms
(SNP), locus, and gene levels, as well as genetic overlap with brain health-related traits. We further generalized our GWAS in
adolescent brain cognitive development (ABCD) cohort. The GWAS identified 63 independent significant variants within 20
genomic loci associated (P < 8.33 × 10−9) with the six fornix dMRI traits. Geminin coiled-coil domain containing (GMNC) and NUAK
family SNF1-like kinase 1 (NUAK1) gene were highlighted, which were found in UKB and replicated in ABCD. The heritability of the six
traits ranged from 10% to 27%. Gene mapping strategies identified 213 genes, where 11 were supported by all of four methods.
Gene-based analyses revealed pathways relating to cell development and differentiation, with astrocytes found to be significantly
enriched. Pleiotropy analyses with eight neurological and psychiatric disorders revealed shared variants, especially with
schizophrenia under the conjFDR threshold of 0.05. These findings advance our understanding of the complex genetic architectures
of fornix and their relevance in neurological and psychiatric disorders.
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INTRODUCTION
The fornix is a C-shaped white matter bundle located in the
center of the hippocampaldiencephalic limbic circuit [1]. It is the
predominant efferent tract connecting the hippocampus to the
mammillary bodies, thalamic nuclei, and prefrontal cortex [2],
and mainly controls the formation of spatial memory, episodic
memory, and executive functions [3]. Memory impairments were
significantly related to fornix diffusion tensor imaging (DTI) traits
in previous studies [4]. Using in vivo and in vitro magnetic
resonance imaging (MRI) data, and mice models, researchers
have strengthened the hypothesis that the fornix plays a role in
Alzheimer’s disease (AD), and can be used as a disease
biomarker and a therapeutic target [5]. In addition, one DTI
study further demonstrated a disruption in fornix integrity in
male patients with schizophrenia (SCZ) [6]. This suggests that
the fornix is not only involved in memory-related brain disorders
but may also be involved in the development of psychiatric
disorders. Nonetheless, as most studies have imaged or
stimulated large areas of the fornix, it is currently unclear the
genetic architecture of the fornix and its involvement in these
brain disorders.

Parameters from diffusion MRI (dMRI) techniques, such as DTI
and neurite orientation dispersion and density imaging (NODDI)
can lead to a better understanding of the fornix microstructure.
DTI permits in vivo assessment of neural microstructure by
utilizing the diffusion properties of water in constrained compart-
ments and can provide a measure of the coherence of neuronal
fibers [7]. The two most commonly studied metrics are fractional
anisotropy (FA) and mean diffusivity (MD). FA describes the
directional diffusivity of water along the fiber bundle, which
reflects the fiber integrity [8]. Changes in FA closely reflect altered
myelination or demyelination [9]. MD represents the overall
diffusivity in a given voxel, with lower values indicating less
diffusivity [8]. Several studies of diffusivity within the human fornix
have identified changes that occur with normal aging [10] and in
neurodegenerative diseases [11]. FA decreases with aging while
MD increases, possibly reflecting degradation, breakdown, or
deterioration in fiber integrity [12]. Moreover, the more complex
models like NODDI are contributing additional information on
different diseases at the clinical level. NODDI provides orientation
dispersion index (OD), intra-cellular volume fraction (ICVF), and
isotropic or free water volume fraction (ISOVF) maps that reflect
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the morphology of axons and dendrites and their branching
complexity [13]. OD could detect water diffusivity. The higher
ISOVF indicated increased extracellular water volume, expected in
neuroinflammatory states [14].
A comprehensive knowledge of the forniceal white matter

microstructure could serve to inform clinicians of cognitive
subpathways and corresponding memory deficits that arise from
neurodevelopmental and neurodegenerative diseases. However,
the genetic underpinnings of the fornix region remain under-
explored. Here, we aimed to: (1) illuminate the genetic architecture
of the fornix white matter microstructure using three DTI models
(FA, MD, and MO) and three NODDI models (OD, ICVF, and ISOVF) by
performing the first and largest genome-wide association study
(GWAS) to date; (2) and investigate its involvement in common
brain disorders, especially those reported in previous observational
studies. The analytical workflow of this study is shown in Fig. 1.

MATERIALS AND METHODS
Participants description and quality control procedures
We used the brain dMRI data from 41,984 genotyped individuals from the
UK Biobank (UKB) (http://www.ukbiobank.ac.uk/) [15] under accession
number 19542. UKB has received ethical approval from the National Health
Service National Research Ethics (ref: 11/NW/0382) and obtained informed
consent from its participants. The generalization sample comprised dMRI
and single nucleotide polymorphisms (SNP) data from the Adolescent
Brain Cognitive Development (ABCD) cohort collected from 21 acquisition
sites [16]. The ABCD study was approved by the Institutional Review Board
(IRB) of the University of California San Diego (IRB# 160091) and all of the
study sites obtained approval from their local IRBs. Parents or guardians
provided written informed consent, and children assented before
participation. The present study was conducted in accordance with the
Declaration of Helsinki.
Our analytic sample was restricted to white British individuals whose

data were used in calculating principal components (PCs). We applied
standard quality control (QC) procedures to the UKB v3 imputed genetic
data by removing SNPs with call rate < 0.95, imputation quality score < 0.5,
a minor allele frequency (MAF) < 0.01, failing the Hardy–Weinberg
equilibrium tests at P < 1 × 10–06, or duplicated, and further filtered out
individuals with abnormal sex chromosome, putative sex chromosome
aneuploidies, heterozygosity rate outliers, having more than 10 putative
third-degree relatives, or missing genotype rate ≥ 5% using PLINK [17]. For
ABCD, we downloaded the genetic data from the third release and
subsequently applied similar post-imputation QC procedures. After QC, the
final analytic sample size in UKB and ABCD were 30,832 and 3613,
respectively. The mean intraclass correlation coefficients (ICCs) were
excellent for all of the six phenotypes (ICC= 0.813–0.972) in UKB (Table
S1). Comparatively speaking, the ICCs were poor but relatively acceptable
(ICC= 0.303–0.490) in ABCD.

Genetic association analyses and identification of genomic
loci
GWAS was run via PLINK 1.9 [17] adjusting for age, age2, sex, scanning site,
intracranial volume (ICV), and the first 10 genetic PCs. We first performed
univariate GWAS of the individual traits, then the resulting residuals for the
6 traits were jointly fed into the multivariate omnibus statistical test
(MOSTest) analysis [18]. MOSTest implements permutation testing to
identify genetic effects across multiple phenotypes [19], yielding a
multivariate GWAS summary statistic across all six features.
Genomic risk loci were identified using the Functional Mapping and

Annotation (FUMA) of the GWAS SNP2GENE online platform [20] (version
1.3.7, http://fuma.ctglab.nl/). Allele linkage disequilibrium (LD) correlations
were computed from the European panel of the 1000 Genomes phase 3
data. Independent significant SNPs were identified by the statistical
threshold (5 × 10–08/6= 8.33 × 10–09) and independency (r2 ≤ 0.6) [21].
Lead variants were defined as those significant variants that are
independent of each other at r2 < 0.1 [21]. Candidate SNPs were defined
as all SNPs in LD (r2 ≥ 0.6) with one of the independent significant SNPs in
the genetic loci [21]. Genomic risk loci were characterized by merging LD
blocks that are located close to each other (<250 kb apart) [21].
The NHGRI-EBI GWAS catalog [22] was subsequently searched for

independent significant SNPs and relevant SNPs (SNPs in LD with them) to

look for reported associations with any other traits. We mainly focused on
traits related to brain imaging, cognitive functions (e.g., general cognitive
ability), neurodegenerative diseases (e.g., AD), and neuropsychiatric
disorders (e.g., depression, SCZ, and bipolar disoder [BD]).

SNP-based heritability
SNP-based heritability analyses were conducted using linkage disequili-
brium score (LDSC) regression [23]. Heritability describes the proportion of
phenotypic variance explained by genetic variance, in which genomic
inflation factors (λGC), LDSC intercepts, and LDSC ratios for each GWAS
were calculated. We used precomputed LD scores calculated by 1000
Genomes European data. In addition, we calculated the pairwise genetic
correlation estimates between the six fornix phenotypes using LDSC v1.0.1.

Gene mapping, gene-based association, and gene-set analysis
FUMA [20] annotates significantly fornix-linked SNPs with functional
categories, including Combined Annotation-Dependent Depletion (CADD)
scores [24], RegulomeDB scores [25], and 15-core chromatin states [20],
using a hypergeometric test. A CADD score above 12.37 is suggestive of a
deleterious protein effect [24], whereas a lower RegulomeDB score
indicates a higher probability of regulatory function. Categories 1–7 of
chromatin states are considered open chromatin states [26]. Positional,
expression Quantitative Trait Loci (eQTL), and 3D chromatin interaction
mappings [20] were used to map all of the independent significant variants
to genes. Positional mapping was used to map SNPs to protein-coding
genes based on the physical distance within 10 kb in the human reference
assembly (GRCh37/hg19). eQTL was used to map SNPs to genes when they
are associated with variation in gene mRNA expression levels. Chromatin
interaction mapping was performed to map SNPs to genes based on brain-
associated Hi-C chromatin conformation capture datasets. We used default
values for all of the parameters and applied an false discovery rate (FDR) of
0.05 to define significant associations.
Genome-wide gene-based association analysis (GWGAS) was performed

using GWAS summary statistics as input into multimarker analysis of
genomic annotation (MAGMA) (v1.08) [27] with default settings, which made
use of the European panel of the 1000 Genomes phase 3 data as the
reference. The major histocompatibility complex (MHC) region was excluded
before the analysis. The Bonferroni-corrected significant threshold was
P= 0.05/18,879 genes= 2.65 × 10–06. In addition, we performed a gene-set
analysis using the g:Cocoa (compact comparison of annotations) function in
g:Profiler web server for curated gene sets and Gene Ontology (GO) terms.

Cell specificity analysis
To assess whether genes are disproportionately expressed in certain cell
types, we investigated associations with several gene expression profiles
using MAGMA’s gene expression analysis. We used the CELL TYPE function
in FUMA to test whether fornix-linked genes were associated with
differential expression levels across different cell types. FDR-corrected P
values < 0.05 were considered significant.

Genetic correlations with other DTI and brain volumetric
phenotypes
We used LDSC [23] to estimate the pairwise genetic correlations (rg)
between fornix traits and 22 DTI phenotypes reported by Zhao et al.’s
GWAS [28]. For the brain cortical phenotypes, we chose Grasby et al.’s
GWAS [29], who reported the cortical area and thickness using the ENIGMA
database. For the subcortical phenotypes, we utilized Hibar et al.’s GWAS
[30]. Genetic correlations for which the P values survived the FDR
correction (P < 0.05) were considered significant.

Genetic overlap between fornix white matter and brain
health-related traits
To further examine the genetic overlap between fornix phenotypes and 10
brain health-related traits, GWAS summary statistics for cognitive traits (AD
[31] and reaction time [32]), psychiatric traits (anxiety disorders [33], BD
[34], depression [35], and SCZ [36]), vascular traits (stroke [37] and white
matter hyperintensities [WMH] [38]), and others (epilepsy [39] and multiple
sclerosis (MS) [40]) were obtained. LDSC regression analyses were applied
to detect the genetic correlations.
Further cFDR (condFDR and conjFDR) methods using MATLAB R2018b

and Python 3.7.7 were employed to investigate the shared loci between
fornix phenotypes and the eight brain disorders. Using the associations
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Fig. 1 The analytical workflow of the study. GWAS genome-wide association study, ABCD adolescent brain cognitive development; PC
principal component, SNP single nucleotide polymorphism, FA fractional anisotropy, MD mean diffusivity, MO diffusion tensor mode, OD
orientation dispersion index, ICVF intra-cellular volume fraction, ISOVF isotropic or free water volume fraction.
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between genetic variants and the secondary phenotype, the condFDR
analysis re-ranked test statistics and recalculated the associations between
these variants and the primary phenotype, thus prioritizing variants for
follow-up analyses [41]. We plotted the empirical cumulative distribution of
nominal P values for all SNPs in one phenotype (e.g., fornix FA) and for
subsets of SNPs with significance levels in another phenotype (e.g., SCZ)
below the indicated cutoffs (P ≤ 1, P ≤ 0.1, P ≤ 0.01, and P ≤ 0.001). The
enrichment is visualized as successive leftward deflections from the null
distribution in conditional Quantile–Quantile (Q–Q) plots. All P values were
corrected for inflation using a genomic inflation control procedure,
considering that the empirical null distribution in GWASs is affected by
global variance inflation [41]. We next made use of the conjFDR [42]
method, which is an extension of condFDR and defined by the maximum
of the two condFDR values for a specific SNP, to detect the genetic loci
shared between traits. This method estimates a posterior probability that
an SNP is null for either or both traits at the same time, given that the P
values for that SNP are lower than the observed P values in both the
primary and secondary phenotypes. Regions of complex LD patterns, such
as MHC (chr 6: 25119106–33854733) and 8p23.1 (chr 8:
7242715–12483982) regions, apolipoprotein E (APOE) for AD, and
microtubule-associated protein tau (MAPT) for Parkinson’s disease (PD)
were excluded before performing the analysis. The FDR significance cutoffs
were 0.01 for condFDR and 0.05 for conjFDR, in line with prior studies [43].

RESULTS
GWAS results of fornix white matter microstructure
The GWAS made use of data from 30,832 UKB brain imaged
samples (47.1% females; age range: 40–70 years; Table S2), with six
fornix phenotypes (FA, MD, MO, OD, ICVF, and ISOVF), accounting
for age, age2, sex, imaging site, ICV, and the first 10 genetic PCs.

The location of the fornix region in the human brain and the fiber
bundles and their partitions were depicted in Fig. 2A.
The univariate GWAS identified significant hits for all of the six

phenotypes after correcting for the number of traits analyzed
(Bonferroni-corrected P < 5 × 10–08/6= 8.33 × 10–09) and a total of
63 independent significant SNPs, tagging 20 independent
genomic loci (Fig. 2B, Tables S3, S4). The Q–Q plots depicted that
potential population stratification and/or cryptic relatedness are
well controlled after genomic correction (Fig. S1). Specifically, 10
of the 20 genetic loci were associated with fornix FA; 13, 7, 2, 10,
and 10 loci were associated with MD, MO, OD, ICVF, and ISOVF of
the fornix, respectively. Five of the 20 genetic risk loci were
associated with only one trait; within 4 of them were associated
with ICVF and one with FA. The subsequent multivariate GWAS
identified a total of 20 genetic loci and a total of 44 independent
significant SNPs under the P < 5 × 10–08 (Tables S4, S5). Overall, 11
of the 20 loci identified in the multivariate GWAS were replicated
in the univariate GWAS, leading to a total of 29 unique genomic
loci associated with fornix phenotypes (Fig. 2C).

Generalization in ABCD cohort
The fornix-associated significant SNPs of the UKB sample were
further evaluated in the generalization GWAS of the ABCD cohort
(N= 3,613; 47.0% females; age range: 9–11 years), in which only
the data on FA and MD were available. We found that 7 out of the
20 independent significant SNPs for FA discovery GWAS had the
same effect direction in the generalization, and 14 of 25 for MD
GWAS (Table S3). Moreover, 4 of the discovery lead SNPs had
uncorrected P < 0.05, whereas 21 had uncorrected P > 0.05 in the

Fig. 2 The comparison of genetic loci between the univariate and multivariate GWAS. A The location of the fornix in the human brain
(colored in red) and the subdivisions from the sagittal view. B The Manhattan plot of genetic variants underlying univariate GWAS of the
fornix. Different colors represent different phenotypes, with the horizontal red line denoting GWA significance (P < 8.33 × 10–09). C The
comparison of genetic loci between the univariate and multivariate GWAS. The left column indicates the 20 genetic loci identified by the
univariate GWAS, whereas the right column indicates the 20 loci identified by the multivariate GWAS. The heatmap shows the significant
genetic loci for, from left to right, FA, MD, MO, OD, ICVF, and ISOVF. Significant loci in the univariate GWAS (P < 8.33 × 10–09) are marked with an
asterisk. 11 of the 20 loci identified in the univariate GWAS were replicated in the multivariate GWAS. GWAS genome-wide association study,
FA fractional anisotropy, MD mean diffusivity, MO diffusion tensor mode, OD orientation dispersion index, ICVF intra-cellular volume fraction,
ISOVF isotropic or free water volume fraction, SNP single nucleotide polymorphism.
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generalization cohort for MD. The Geminin coiled-coil domain
containing (GMNC) and NUAK family SNF1-like kinase 1 (NUAK1)
gene were found in UKB (P= 1.30 × 10–30 for GMNC;
P= 3.98 × 10–22 for NUAK1) and replicated in ABCD
(P= 1.15 × 10–04 for GMNC; P= 5.26 × 10–03 for NUAK1).

Functional annotation and gene-based association
We mapped SNPs to genes via positional, eQTL, and chromatin
interaction strategies in FUMA [20] (Tables S6–S8). The size of each
of the locus and the number of mapped genes are shown in the
Fig. 3A. Positional mapping showed that a majority of these
independent significant SNPs were significantly enriched for
noncoding regions, i.e., 42.0% for intergenic, and 35.0% for
intronic (Fig. 3B, Table S3). About 87.0% of the SNPs had a
minimum chromatin state of 1–7, indicating a location within
regulatory regions. CADD scores indicated 3 SNPs (rs12146713,
rs140589730, and rs62056161) as pathogenic with scores > 12.37.
GWGAS was performed by MAGMA [27], and 45 unique genes

(P < 2.65 × 10–06) were detected (Table S9). No genes were
identified for OD; the mapped genes of the rest five white matter
traits are shown in Fig. 3C. In summary, these four strategies
identified a total of 135 unique genes, where 19 were implicated
by one mapping strategy, 75 genes by two strategies, 30 by three
strategies, and 11 by all of the four types of gene mapping
(Fig. 3D). The list of the 11 genes was depicted in the wordcloud
plot (Fig. 3E). For example, the indicated GNA12, falling into the
Gprotein subfamilies of G12 and Gq, has been indicated to
negatively regulate cell adhesion [44]. It has been reported to play
a key role in the genetic architecture underlying normal gray
matter density variation in frontal and parietal regions [45] and
was also a risk gene for SCZ [46].
Functional enrichment analysis identified 9 GO sets significantly

associated with fornix traits (P < 0.05) using g:Profiler web server
(Table S10). Overall, we found three associations with “cell
development and differentiation”-related sets, including “cell
development (GO:0048468), P= 7.77 × 10–03”, “cell differentiation

(GO:0030154), P= 0.012”, and “cellular developmental process
(GO:0048869), P= 0.014” pathways.

SNP-based heritability and pairwise correlation
SNP-based heritability (h2) was 23% for FA, 26% for MD, 13% for
MO, 10% for OD, 17% for ICVF, and 27% for ISOVF, illustrating
themselves as genetically determined traits (Fig. 4A, Table S11).
The pairwise correlation results indicated that these six indicators
were moderate to highly correlated, ranging from −0.33 for ICVF
and ISOVF to 0.99 for MD/OD and ISOVF (Fig. 4B; Table S12).

Concordance with previous studies
Association lookups for the independent significant variants in the
NHGRI-EBI GWAS catalog [22] were performed (Table S13). 15 of
these 20 loci were previously reported to be related to brain
volumes and white matter microstructure traits. We also noted that
10p12.31 was related to education attainment and 3q22.2 with
cognitive performances. However, 4 of these 20 loci have not been
reported to be related to imaging or cognitive/psychiatric traits
before, namely the loci of 6q24.1, 10q21.1, 11p11.2, and 17q21.31.

Genetic overlap with brain DTI and volumetric traits
We used the GWAS results to estimate the genetic overlap with
brain DTI and volumetric traits via LDSC [23]. A total of 10, 12, 10,
8, 12, and 11 brain DTI traits were associated with FA, MD, MO, OD,
ICVF, and ISOVF, respectively (PFDR < 0.05, Table S14; associations
with PFDR < 0.001 were shown in Fig. 4C). For example, positive
significant genetic correlations with the column and body of
fornix (rg= 0.96, PFDR= 9.94 × 10–172), the body of corpus
callosum (rg= 0.45, PFDR= 3.26 × 10–10), genu of corpus callosum
(rg= 0.40, PFDR= 4.84 × 10–10), anterior corona radiata (rg= 0.34,
PFDR= 1.07 × 10–09), fornix (cres)/stria terminalis (rg= 0.36,
PFDR= 1.37 × 10–05) and cingulum (rg= 0.28, PFDR= 3.38 × 10–04),
and reverse correlation with the posterior limb of the internal
capsule (rg=−0.28, PFDR= 1.05 × 10–04) for fornix FA were
identified.

Fig. 3 Functional annotation and gene mapping. A Overview of the genomic loci sizes and a number of variants. B Distribution of functional
consequences of SNPs in significant genomic loci. C The genes identified by GWGAS for the five fornix phenotypes (FA: pink, MD: orange, MO:
green, ICVF: blue, ISOVF: cyan). D Venn diagram of the number of genes mapped by the four different strategies, i.e., positional (green), eQTL
(blue), chromatin interaction mapping (yellow), and identification by the GWGAS (red). A total of 213 genes were identified by all four
approaches. E Seven genes were identified by all of the four mapping strategies, showed by the wordcloud plot. SNP single nucleotide
polymorphism, FA fractional anisotropy, MD mean diffusivity, MO diffusion tensor mode, OD orientation dispersion index, ICVF intra-cellular
volume fraction, ISOVF isotropic or free water volume fraction, eQTL expression quantitative trait loci, GWGAS genome-wide gene-based
association analyses.
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Most of the six fornix traits were reported to be related with the
area of paracentral (rg=−0.24, PFDR= 0.025 for FA; rg= 0.21,
PFDR= 0.029 for MD; rg=−0.28, PFDR= 0.023 for ICVF; rg= 0.20,
PFDR= 0.042 for ISOVF) and cuneus (rg=−0.21, PFDR= 0.029 for
MD; rg=−0.21, PFDR= 0.023 for ISOVF), the thickness of superior
temporal (rg= 0.28, PFDR= 2.56 × 10–03 for FA; rg=−0.26,
PFDR= 2.56 × 10–03 for MD; rg= 0.28, PFDR= 0.029 for MO; rg=
−0.52, PFDR= 3.49 × 10–04 for OD; rg=−0.26, PFDR= 2.56 × 10–03

for ISOVF), and parahippocampal (rg=−0.23, PFDR= 8.40 × 10–03

for MD; rg=−0.23, PFDR= 5.13 × 10–03 for ISOVF), and thalamus
(rg= 0.50, PFDR= 4.22 × 10–03 for FA; rg=−0.51,
PFDR= 2.56 × 10–03 for MD; rg=−0.65, PFDR= 8.40 × 10–03 for
OD; rg=−0.46, PFDR= 5.13 × 10–03 for ISOVF; Table S15, Fig. 5).

Cell-type analysis
We determined the neuronal cell types to which gene signals of
fornix white matter were significantly enriched via LDSC [23]
(Table S16). We found significant evidence of association for
astrocytes (PsychENCODE_Adult database, MD: PFDR= 0.022; OD:
PFDR= 0.036; ISOVF: PFDR= 0.036; Fig. 6A). Astrocytes are the most
abundant cell type in the brain, playing vital roles in governing
key steps in synapse formation and plasticity [47].

Genetic overlap with brain-health-related disorders
LDSC regression [23] was used to estimate the overlap between
the genetic architectures of fornix and ten brain-health-related
traits (Fig. 6B; Table S17). Overall, three traits showed significant
consistent genetic correlations across the genome with reaction
time (FA: rg=−0.14, PFDR= 3.60 × 10–03; MD: 0.13, 1.50 × 10–03;
ISOVF: 0.119, 5.0 × 10–03). Four traits were related to WMH,
amongst which were FA (rg=−0.51; PFDR= 6.60 × 10–06), MD
(rg= 0.45; PFDR= 2.30 × 10–05), ICVF (rg=−0.53; PFDR= 0.012),
and ISOVF (rg= 0.41; PFDR= 1.16 × 10–04).

We leveraged the genetic overlap to discover more genetic
underpinnings of fornix white matter microstructure by employ-
ing condFDR statistics with eight disorders: AD, anxiety disorders,
BD, major depressive disorder (MDD), SCZ, stroke, epilepsy, and
MS (Table S18). The conditional Q–Q plots indicated successive
increments of SNP enrichment, consistent with polygenic overlap
across fornix traits and SCZ. We discovered a total of 21 genetic
loci for FA, 21, 11, 6, 23, and 26 loci for MD, MO, OD, ICVF, and
ISOVF, separately (Fig. 7A). We further performed conjFDR analysis,
which enables the detection of genetic loci shared between traits
(Table S19). ConjFDR analysis revealed several shared loci between
the six fornix traits with the eight disorders (Fig. 7B). Strikingly, we
also identified 7 loci significantly overlapping between SCZ with
FA, 9 loci with MD, 2 with OD, 5 with ICVF, and 9 loci significantly
overlapping with ISOVF (Fig. 7C).

DISCUSSION
Using brain dMRI data from 30,832 UKB white British participants,
this is the first large-scale GWA analysis of fornix white matter
microstructure, identifying 20 independent genetic loci across 14
chromosomes. GMNC and NUAK1 were found to be closely related
to the fornix. Bioinformatics analyses revealed the enrichment of
biological pathways of cell development and differentiation, as
well as astrocyte-specific functional enrichments. Findings also
highlighted the importance of fornix in brain disorders, especially
in SCZ. Together, these results shed light on the genetic
architecture of fornix, its biological functions, and the possibly
important roles in common brain disorders.
The fornix is the predominant bundle of efferent fibers

connecting the hippocampus to other brain structures [2, 48]
and one of the key regions controlling memory and executive
functions [49]. This is the first large-scale GWAS of fornix white

Fig. 4 Heritability estimates and genetic overlap with other DTI traits. A LDSC-based heritability estimate for the six fornix phenotypes. All
traits were significantly heritable, with heritability estimates ranging from 10% for OD to 27% for ISOVF. B Pairwise correlation matrix between
the six fornix traits. These six traits were moderately to highly correlated, ranging from −0.33 to 0.99. C Volcano plots visualize the genetic
correlation estimates between the six fornix traits and other DTI traits. Red, blue, and grey dots indicate positive, negative, and non-significant
genetic associations, respectively. Correlation estimates that survived FDR adjustment (PFDR < 0.001) are annotated with brain region names.
SNP single nucleotide polymorphism, LDSC linkage disequilibrium score, DTI diffusion tensor imaging, FA fractional anisotropy, MD mean
diffusivity, MO diffusion tensor mode, OD orientation dispersion index, ICVF intra-cellular volume fraction, ISOVF isotropic or free water
volume fraction, FDR false discovery rate.
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matter microstructure by revealing 20 unique genomic loci
associated with the 6 traits. Five of the 20 genetic risk loci were
associated with only one trait (4 of them were associated with
ICVF, and one with FA), suggesting that these six different
indicators might have different genetic basis. DTI is the most
commonly used model to measure water diffusion in the fornix
tissue, providing an opportunity to detect subtle abnormalities in
white matter [50]. Generally, the reduced white matter FA value of
a neural structure represents a decrease in the neural structure’s
microstructural integrity [51], whereas increased MD may indicate
immaturity or degeneration of this region. However, the conven-
tional DTI model does not take into account restricted and
hindered diffusion [13]. The NODDI model makes up for that by
determining changes in the histological compartments. NODDI
provides OD, ICVF, and ISOVF maps that reflect the morphology of
axons and dendrites and their branching complexity [52]. OD

could detect water diffusivity [13]. The higher ISOVF indicated
increased extracellular water volume, expected in neuroinflam-
matory states [14]. The differences in GWAS discovered loci
among different metrics suggest that future research should not
only focus on traditional DTI indicators but also pay more
attention to other more complex measures of white matter
microstructure, which may provide more detailed information to
researchers and clinicians. We highlighted the GMNC and NUAK1
gene, which were found in UKB and replicated in ABCD. GMNC has
been identified as an essential regulator of axon guidance and
ephrin signaling and is also involved in neuronal plasticity and
regulation of gene expression [53, 54]. Recently, GMNC was further
identified as loci for cerebrospinal fluid (CSF) phosphorylated Tau
levels [55–58], and was also associated with lateral ventricular
volume [55]. NUAK1, one of the AMP-activated protein kinase
(AMPK)-related kinases [59], was reported to play an important

Fig. 5 Genetic relationships with brain volumetric phenotypes. Different MRI brain volumetric structures were shown here, with cortical
area (left panel), cortical thickness (middle panel), and subcortical volumes (right panel). Warm and cool colors indicate positive and negative
associations, respectively. Significant correlations were annotated with brain region names (passed the two-sided PFDR < 0.05). FA fractional
anisotropy, MD mean diffusivity, MO diffusion tensor mode, OD orientation dispersion index, ICVF intra-cellular volume fraction, ISOVF
isotropic or free water volume fraction, FDR false discovery rate.
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role in regulating tau levels, indicating that NUAK1 to be a novel
therapeutic entry point for tauopathies [60].
We employed many strategies to annotate SNPs to genes, and

then genes to functions. As is known to all, genetic variants
associated with common diseases are usually located in noncoding
parts of the human genome [61]. Positional mapping showed that
most of these independent significant SNPs were significantly
enriched for noncoding regions, and to be more specific, within
regulatory regions. Therefore, describing the complete functional
noncoding elements, as well as exploring their biological roles, is of
crucial importance. Three SNPs had CADD scores > 12.37, indicating
themselves as pathogenic. For example, the nearest gene of
rs140589730 is LPAR1, which was reported to participate in
regulating cell proliferation, migration, survival, and apoptosis, and
could cause neurodevelopmental disorders and neuropsychiatric
diseases [62]. A list of 11 genes was supported by all four mapping
methods. GNA12 was reported to play a key role in the genetic
architecture underlying normal gray matter density variation in
frontal and parietal regions [45] and was also a risk gene for SCZ [46].
TIE1 could control angiopoietin function in vascular remodeling and
inflammation [63]. Overexpression of circSTAG1 could notably
attenuate astrocyte dysfunction and depressive-like behaviors in
mice models [64]. The functions of other genes have been reported
mostly in cancer, but rarely in brain disorders. MLLT10 (also known as
AF10) [65] and SKIDA1 [66] are commonly observed in acute
leukemias and are indicative of a poor prognosis. Upregulation of
the long noncoding RNA CASC10 could promote cisplatin resistance
in high-grade serous ovarian cancer [67]. The oncogenic role of
CDC20 in a variety of human malignancies was reported [68].
Whether these genes are involved in the development of brain
disorders, and by what pathways and mechanisms, are still not clear,
and hopefully future research can fill in the gap.
Using the LDSC regression method, we revealed significant

genetic correlations between fornix and distinct cortical measures
(the area of paracentral and cuneus, the thickness of superior
temporal and parahippocampal), and subcortical measures

(thalamus and pallidum). These above-mentioned brain regions
are significantly associated with cognitive and memory functions.
The fornix and parahippocampal-cingulum are two prominent
limbic white matter tracts that connect the medial temporal lobe
structures to other memory-related brain structures [69]. Jang
et al.’s study showed that the posterior body of the fornix has
widespread connectivity to cortical and subcortical regions, such
as the pre- and post-central gyri [70]. We also identified significant
correlations with several DTI phenotypes, e.g., the body of the
corpus callosum, genu of the corpus callosum, anterior corona
radiata, and cingulum. The strong genetic basis and inner link
across brain structures were revealed. The sets of identified genes
showed the highest expression in astrocytes, the second common
type of neuroglia cells in the fornix, followed behind oligoden-
drocytes [71]. The primary function of these neuroglia cells is to
form myelin, maintain homeostasis, and provide support and
protection for neurons amongst others [72]. Astrocyte dysfunction
has proven to be a common crossroads in neurodegenerative
disorders, such as AD [73], and psychiatric diseases, such as SCZ
[74]. Subsequent studies with neuroimaging data across the life
span are needed to validate these findings and determine
whether the genetic patterns in the fornix region differ across
the life cycle.
Significant genetic correlations between fornix white matter

with reaction time (an assessment scale of cognitive ability) were
revealed. DTI studies suggest that forniceal measures correlate
with episodic memory during brain development and aging [75].
A relationship between worse performance in a test of verbal
memory or recall and reduced FA in the crus of the left fornix was
identified [76]. Changes in white matter parameters have been
observed in many DTI studies of AD, for example, decreased FA in
the right fornix [77]. Researchers have proposed a theoretical
rationale—activation of the fornix with electrical stimulation—as a
therapeutic target for memory modulation [78]. Prospective
randomized and double-blinded human trials are ongoing to
evaluate the true potential of deep brain stimulation (DBS) to

Fig. 6 Cell-type analysis of the genes and their overlap with common brain-health-related traits. A Cell-type analysis indicated that most
of the genes were significantly enriched in astrocytes. The x-axis of the histogram represents the cell types (green: astrocyte, purple:
oligodendrocyte, blue: microglia, orange: neuron) and the y-axis represents the −log10(P), with the horizontal dotted line denoting the FDR
significance (PFDR < 0.05). Significant cell-type enrichments are marked with an asterisk. B Genetic correlations between fornix and ten brain-
health-related traits were assessed using LDSC regression. Warm and cool colors indicate positive and negative associations, respectively.
Significant positive correlations with reaction time and WMH were revealed, as indicated by a black frame (passed the two-sided PFDR < 0.05).
FA fractional anisotropy, MD mean diffusivity, MO diffusion tensor mode, OD orientation dispersion index, ICVF intra-cellular volume fraction,
ISOVF isotropic or free water volume fraction, AD Alzheimer’s disease, BD bipolar disorders, MDD major depression disorders, SCZ
schizophrenia, WMH white matter hyperintensities, MS multiple sclerosis, FDR false discovery rate.
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rescue memory deficits [3]. Shared genetic loci between fornix
white matter microstructure and SCZ were further identified by
conjFDR analysis. SCZ is thought to be a neurodevelopmental
disorder. White et al. reported a study that showed a reduction in
fornix volume in adolescents with SCZ [79]. Verbal and spatial
memory is known to be impaired in patients with SCZ. One
previous study revealed a significant association between reduced
FA in the fornix and visual/spatial memory impairments in patients
with SCZ [80]. DTI tractography studies revealed abnormalities in
WM integrity in several structures, e.g. the fornix [81]. Given that
the clinical manifestations of SCZ are quite diverse, coupled with
the numerous brain regions shown to be involved (i.e., prefrontal
cortex, thalamus, and anterior cingulate), it has been challenging
to identify the primary causes of this disorder and the mechanisms
by which the fornix are involved [82]. Moreover, lesions in the

fornix are also involved in the development of MS. MS patients
were reported to have reduced FA in the fornices in comparison
with that in healthy controls [76, 83].
DWI has some known limitations. First, it neither can reveal the

direction of information flow nor can distinguish between the
different fibers that constitute a pathway (e.g., excitatory vs.
inhibitory) [84]. Second, much of the fornix is located in the third
ventricle, inferior to the corpus callosum, and, as such, is
completely surrounded by CSF. This location makes the fornix
particularly difficult to image due to ever-present susceptibility
artifacts [85]. Therefore, the genetic loci found for the fornix may
not be specific to this site. Third, the intrinsic morphological
properties of the fornix bundle determined the inconsistencies of
the imaging results: (1) it is a highly curved white matter structure,
making it difficult to apply tractography algorithms that rely on

Fig. 7 Genetic shared loci between fornix white matter microstructure and eight brain disorders. A Enhanced discovery of genetic loci for
each of the six fornix traits when condFDR analyses were run for each of the six traits conditioned on the eight brain disorders. B ConjFDR
analysis detected shared genetic loci across the six fornix traits and the eight clinical conditions. C For SCZ and the six fornix traits, conjFDR
Manhattan plots are shown, illustrating the −log10 transformed conjFDR values for each SNP on the y-axis and chromosomal positions along
the x-axis. The dotted horizontal line represents the threshold for significant shared associations (conjFDR < 0.05). Independent lead SNPs are
encircled in black. FA fractional anisotropy, MD mean diffusivity, MO diffusion tensor mode, OD orientation dispersion index, ICVF intra-cellular
volume fraction, ISOVF isotropic or free water volume fraction, AD Alzheimer’s disease, BD bipolar disorders, MDD major depression disorders,
SCZ schizophrenia, MS multiple sclerosis, condFDR conditional FDR, conjFDR conjunctional FDR.
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angular thresholds; (2) diverging fiber populations in the medial
region of the fornix bundle known as the hippocampal
commissure may complicate estimation of directional diffusion
[86]. Last, the NODDI model itself has recently come into question
as it relies on single diffusion encoding instead of spherical tensor
encoding which would better quantify microscopic anisotropy.
In summary, the current study provides new insights into the

genetic architecture of fornix white matter by identifying the
significant genetic loci through GWAS, the functional annotation
for biological processes, analyzing genetic overlap with other
traits, and showing evidence for involvement in common brain
disorders. Taken together, these results advanced our under-
standing of the genetic architecture of the fornix and shed light
on further research into the neurobiological basis of its anatomy
and associations with brain disorders.

DATA AVAILABILITY
Our GWAS summary statistics for the fornix microstructure can be accessed via a
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and ABCD (https://abcdstudy.org/).
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imputationserver.sph.umich.edu/), FUMA (https://fuma.ctglab.n/l), MAGMA (https://
ctg.cncr.nl/software/magma/, also implemented in FUMA), g:Profiler (https://
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