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Late-life depression occurring in older adults is common, recurrent, and malignant. It is characterized by affective symptoms, but
also cognitive decline, medical comorbidity, and physical disability. This behavioral and cognitive presentation results from altered
function of discrete functional brain networks and circuits. A wide range of factors across the lifespan contributes to fragility and
vulnerability of those networks to dysfunction. In many cases, these factors occur earlier in life and contribute to adolescent or
earlier adulthood depressive episodes, where the onset was related to adverse childhood events, maladaptive personality traits,
reproductive events, or other factors. Other individuals exhibit a later-life onset characterized by medical comorbidity, pro-
inflammatory processes, cerebrovascular disease, or developing neurodegenerative processes. These later-life processes may not
only lead to vulnerability to the affective symptoms, but also contribute to the comorbid cognitive and physical symptoms.
Importantly, repeated depressive episodes themselves may accelerate the aging process by shifting allostatic processes to
dysfunctional states and increasing allostatic load through the hypothalamic–pituitary–adrenal axis and inflammatory processes.
Over time, this may accelerate the path of biological aging, leading to greater brain atrophy, cognitive decline, and the
development of physical decline and frailty. It is unclear whether successful treatment of depression and avoidance of recurrent
episodes would shift biological aging processes back towards a more normative trajectory. However, current antidepressant
treatments exhibit good efficacy for older adults, including pharmacotherapy, neuromodulation, and psychotherapy, with recent
work in these areas providing new guidance on optimal treatment approaches. Moreover, there is a host of nonpharmacological
treatment approaches being examined that take advantage of resiliency factors and decrease vulnerability to depression. Thus,
while late-life depression is a recurrent yet highly heterogeneous disorder, better phenotypic characterization provides
opportunities to better utilize a range of nonspecific and targeted interventions that can promote recovery, resilience, and
maintenance of remission.
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INTRODUCTION
Late-life depression (LLD) is major depressive disorder (MDD)
occurring in adults age 60 years or older [1]. It is common, with
~5% of community-dwelling elders meeting DSM5 diagnostic
criteria [2] and 10–16% of older adults exhibiting clinically significant
depressive symptoms that may not meet full criteria [2, 3]. LLD is a
malignant illness that increases disability [4], contributes to poorer
medical outcomes [5], and is associated with increased suicide risk
and mortality [6, 7].
LLD is further characterized by poor or impaired cognitive

performance. Reduced executive functioning is common, affecting
verbal fluency, response inhibition, set-shifting, working memory,
and problem-solving [8]. Individuals with LLD also exhibit poor
performance in other cognitive domains, including episodic
memory, visuospatial skills, and processing speed [9–11]. Slower
processing speed is particularly important, partly mediating
impaired performance in other cognitive domains [11–13]. Although
cognitive performance improves with successful treatment, deficits

typically persist, and older depressed adults have an increased risk of
dementia [14].
Such adverse outcomes may be related to LLD’s recurrent nature

[15]. LLD is often a recurrent or chronic illness [16], although
continuing antidepressant medication during remission reduces
recurrence risk [17, 18]. However, even withmaintenance treatment,
~35–40% of depressed elders experience recurrence in 2 years, with
over 50% experiencing recurrence over four years [16, 18, 19].
Recurrence is particularly relevant for individuals with an initial

onset of depression in early- or midlife. These individuals often
experience multiple prior depressive episodes and are now in the
geriatric age range. Individuals with early-onset LLD, typically
defined as occurring before age 50–60 years, exhibit greater
residual depression severity over time, more frequent suicidal
thoughts, and a greater risk of recurrence following remission
[16, 20]. Early-onset depression is characterized by stronger familial
history and genetic loading, greater anxiety and reactions to
stressful life events, maladaptive personality traits, and hormonal
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fluctuations associated with early-life reproductive events [21–26].
Individuals with late-onset depression are more often widowed,
present with more apathy and somatic symptoms, poorer cognitive
performance, greater cognitive decline and medical morbidity, and
more severe atrophic and vascular changes on neuroimaging
[26–32]. Although useful for clinical characterization, this age of
onset dichotomization obfuscates potentially important differences
in causal factors that influence the onset or recurrence of
depression across the lifespan. Moreover, it does not address a
parallel hypothesis that depression itself is toxic, with recurrent
episodes increasing the allostatic load or “wear and tear” on the
body, contributing to accelerated brain aging and vulnerability to
poor longitudinal clinical, cognitive, and medical outcomes [15].
Based on past work [15], we present a model (Fig. 1) where

disruption of functional brain network homeostasis contributes
first to subclinical depressive symptoms and decreased stress
tolerance. If unchecked, this progresses to discrete depressive
episodes and reduced cognitive performance. Various biological
and environmental factors across the lifespan increase the
vulnerability of key networks to disequilibrium, with potentially
modifiable behavioral and social factors contributing either to
vulnerability or resilience. In turn, depressive episodes alter
physiological systems that accelerate aging processes and
contribute to adverse longer-term outcomes.
Building on this model, we first present a network-based model

of depression. We then focus on etiological influences across the
lifespan that increase depression risk, primarily focusing on those
salient to later life. Next, we consider depression as a contributor
to accelerated aging. Finally, we review treatment for LLD and
how interventions may support resilience to future episodes.

NEURAL NETWORKS IMPLICATED IN DEPRESSION
Altered neural network function is thought to result in the
behavioral manifestations of depression [33]. The triple network
model (Fig. 2) [33, 34] posits that depression is related to the
aberrant function of the default mode network (DMN), cognitive
control network (CCN), and anterior salience network (ASN).
Positive valence system circuits involved in reward function are

additional contributors [35, 36], although this has received less
attention in LLD [37]. These networks likely influence depressive
behavior across the lifespan, although the etiological factors
contributing to network dysfunction change with aging. Although
heterogeneity in LLD prevents sweeping generalizations [38],
there is support for this network-centric model [34, 39].
The DMN is implicated in self-referential processes [40]

including rumination [41], making it a target of investigation
in depression [33, 42]. However, there is little consensus on how
the DMN is altered in depression [43]. Early studies reported
hyperconnectivity within the DMN relative to healthy controls
[42], though recent meta-analyses reported no difference in
DMN connectivity [44] or even hypoconnectivity between DMN
regions [45]. DMN functional connectivity appears to be altered
in LLD [46, 47] and such differences may persist into
remission [46].
The CCN is primarily involved in top-down executive functions

[48]. Substantial evidence suggests CCN integrity differentiates
healthy controls from depressed individuals [42] and influences
treatment response [49]. The CCN may be especially relevant in
LLD characterized by executive dysfunction [50, 51], where
aberrant functional connectivity of the CCN (particularly the
dorsolateral prefrontal cortex [DLPFC] hub), is associated with
executive deficits [52].
The ASN is implicated in switching and control of attentional

processes [53], and ASN dysfunction in depression biases
individuals towards negative stimuli and processing [54, 55].
Unlike the DMN, the ASN has proven relatively reliable in
distinguishing between healthy controls and depressed indivi-
duals [42, 44, 56]. Both structural and functional connectivity of
the ASN are reduced in LLD [57].
Alterations in the positive valence system are additive.

Conceptually, much work focuses on the dopaminergic mesolim-
bic pathway, projecting from the ventral tegmental area to the
ventral striatum, nucleus accumbens, and medial temporal
structures [37]. Dysfunction in this system influences a range of
reward functions including valuation, decision-making, effort, and
learning [37, 58]. Behaviorally, this contributes to anhedonia,
motivational disturbances, and willingness to expend effort [37].

Fig. 1 Lifespan model of late-life depression. Symptoms of depression are the behavioral manifestation of increasingly disrupted brain
networks. Multiple influences contribute to network fragility and dysfunction across the lifespan, with some being linked to clear
developmental periods. These may be additive and cumulative over time, although other risk and resiliency factors may be modifiable and
targeted by specific treatments. Unchecked, repeated depressive episodes and their associated physiological responses may have deleterious
effects contributing to accelerated aging.
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Neural networks and aging
The connectivity and function of these networks change with age.
Cross-sectional and longitudinal studies demonstrate that frontal
regions comprising the associative networks described above (plus
the dorsal attention network) exhibit reduced intra-network
connectivity and increased inter-network connectivity with aging
[59–69]. These changes may reflect a decline in network efficiency
and/or serve as a compensatory mechanism that maintains normal
brain function in context of gray matter loss or white matter
degradation [70, 71]. Supporting this latter hypothesis are studies
showing increased activation in frontal regions in older adults
compared to younger adults that are associated with better
cognitive performance with aging [72]. Increased prefrontal
activation is further associated with reduced white matter integrity,
again supporting compensation [73, 74]. These age-related network
changes have been replicated using both structural and functional
network measures, further associating aging with lower strength
and density of structural connections and decoupling of structural
and functional connectivity, particularly in network hubs [63]. This
may represent a rerouting of information flow in the brain intended
to circumnavigate degraded white matter pathways or avoid
regions that have suffered neuronal loss. The ability of the brain to
successfully “rewire” during aging may be crucial for maintaining
cognitive performance and reflect cognitive reserve [70]. Moreover,
age-related changes may contribute to network fragility, increasing
risk for LLD. While there is some evidence that network organization
properties may differ according to age of onset [57], clear
differences in neural network configuration between early- and
late-onset LLD have not been identified.

FACTORS CONTRIBUTING TO DEPRESSION VULNERABILITY
Early- and midlife risk factors
Older depressed adults carry the same vulnerabilities that
increased risk for depression earlier in life. As the list of potential
contributors to MDD risk is beyond this review, we focus on
mechanisms of relevance to LLD.
Genetic factors that influence MDD vulnerability likely persist

with aging. Genome-wide association studies (GWAS) identified
several hundred potential genetic risk variants, including genes
involved in synaptic structure and neurotransmission [75].

In order to influence depression risk, such genetic factors would
need to directly or indirectly alter brain network function or
stability [76]. However, concerns persist about translating these
findings to the individual level, both due to the contributions of
small-effect polymorphisms that may be missed on GWAS, and
due to diagnostic heterogeneity within MDD [77]. What risk
genes contribute to depression vulnerability may change across
the lifespan, particularly if they affect brain aging. For example,
some work supports that vascular risk genes may be germane in
LLD [78].
Adverse childhood experiences (ACEs), such as abuse, parental

loss, and bullying, are associated with a host of health disorders,
including depression [79]. They are also associated with differences
on neuroimaging and cognitive testing [80]. ACEs may contribute to
depression vulnerability through hypothalamic–pituitary–adrenal
(HPA) axis responses leading to increased activity of corticotropic
releasing factor neurons [81]. ACEs can further result in epigenetic
changes [24] that may increase depression vulnerability by
influencing glucocorticoid signaling, serotonergic function, and
neurotrophic factors [24]. The relationship between ACEs and
depression vulnerability persists into later life [82, 83], where the
relationship between ACEs and depression may be mediated by
inflammation [82]. Stressful events occurring in adulthood or later
life also increase the risk for new depressive episodes and
depression persistence [84, 85].
Personality traits are similarly associated with depression. Traits

that influence how individuals interact with and respond to their
environments originate from variability in functional brain networks
[22]. They arise from a complex interplay between brain develop-
ment, genetic predisposition, and early environmental exposures.
Neuroticism, a predisposition to experience psychological distress
and negative mood states, is well-studied and shares some
conceptual overlap with LLD [86]. Higher levels of neuroticism in
LLD are associated with poorer antidepressant response and greater
risk of cognitive decline [86–88].
Reproductive events including puberty, menstrual cycling,

pregnancy, and menopause are associated with both new-onset
and recurrent depression [23]. These events contribute to a higher
risk of depression for women than men [89], particularly during
reproductive years [90]. These relationships are due to fluctuations
of ovarian hormones that influence neurotransmitter function,

Fig. 2 Network model of late-life depression. The model details findings within each intrinsic functional network and between functional
networks, specifically the default mode network (DMN), the cognitive control network (CCN), and the anterior salience network (ASN).
Disruption in network connectivity influences the cognitive processes, giving risk to the behavioral manifestations of depression. Impaired
function of the positive valence system involving the mesolimbic system likely also contributes to depressive behavior [37], although how this
system interacts with interacts with intrinsic functional networks in LLD is not entirely clear. The model and figure [34] used with permission.
Reprinted from Gunning et al. [34], Copyright 2021, with permission from Elsevier.
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neuroendocrine processes, and inflammation [91]. Menopause is
particularly relevant to aging, with decreased estrogen production
potentially reducing its neuroprotective effects [92]. A longer
exposure to endogenous estrogens, operationalized as an older
age at menopause, is associated with a lower risk of subsequent
depression [93], while earlier menopause, including surgically-
induced menopause, is associated with cognitive decline and
dementia [94].
Other exposures influence MDD, including comorbid mental

health disorders, substance misuse, and traumatic brain injury
[95]. Medical comorbidity also contributes, including a bidirec-
tional relationship between depression and obesity [96] that
may be mediated through immune system activation and
inflammation [96]. Obesity increases the risk for other morbid-
ities associated with LLD, including pain syndromes, vascular risk
factors, and disability [97, 98].

Later-life risk factors
Despite LLD being associated with a range of medical comorbid-
ities, few may directly contribute to depression pathogenesis. Age-
related morbidities that are a focus of mechanistic models include
inflammation, vascular disease, and neurodegeneration (Table 1).

Inflammation. The inflammation hypothesis proposes that
immune dysregulation influences vulnerability to and the develop-
ment of LLD [99]. Neurovegetative depressive symptoms are akin to
immune responses to infectious diseases including lethargy,
cognitive slowing, and reduced appetite [100, 101]. In younger
adults, elevated pro-inflammatory cytokines levels in response to
psychological stress are associated with depressive symptoms [101]
and induction of peripheral inflammation results in fatigue and
worsening of mood [102, 103]. Depressed patients across the adult
lifespan can exhibit elevated levels of pro-inflammatory cytokines
including c-reactive protein (CRP), interleukin-6 (IL-6) and tumor
necrosis factor (TNF) alpha and lower anti-inflammatory cytokine
levels [104, 105]. Higher pro-inflammatory cytokine levels are

associated with depression severity, suicide risk, and poor treatment
response in adult and geriatric samples [105–107]. Pro-inflammatory
cytokines are associated with worse function in executive processes,
memory, and processing and motor speed [108].
Aging is itself associated with chronic, low-grade inflammation,

dubbed “inflammaging” [109]. This process has multiple contribu-
tors, including immune system aging, mitochondrial changes, and
gut microbiota [110, 111]. These changes may be secondary to
common pro-inflammatory medical conditions that increase depres-
sion risk, including diabetes, cardiovascular disease, autoimmune
disorders, rheumatoid arthritis, cirrhosis, and kidney disease
[112–115]. These comorbidities may explain the observed relation-
ship between depression and inflammation, as evidenced by a study
that did not associate LLD with higher levels of central or peripheral
inflammatory cytokines. However, this study employed rigorous
entry criteria for medical comorbidities that excluded almost 95% of
potentially eligible participants [116]. This raises issues about its
generalizability and highlights the extent of comorbidity between
LLD and medical illnesses.
Although most work examines peripheral inflammatory markers,

it remains relevant to brain function. The CNS was long considered
to be immunoprotected due to the blood-brain barrier. However,
immune responses via peripheral immune cell secretion of pro-
inflammatory cytokines can convey the inflammatory response to
brain microglia via humoral and neural pathways [117, 118].
Microglia can thus become activated by peripheral cytokines
inducing a neuroinflammatory response [119]. Both aging and
psychological stress further prime microglia toward an activated
state, tilting the CNS toward a pro-inflammatory state [120, 121]. In
the aged brain, activated microglia exhibit an exaggerated response
to pro-inflammatory cytokines, inducing oxidative stress and
delayed clearance of neurotoxic molecules, resulting in disrupted
neuronal function, impaired neurogenesis, and neural degeneration
[119, 120]. Central inflammation further affects multiple neurotrans-
mitter systems, contributing to reduced serotonin synthesis via
induction of indoleamine 2,3-dioxygenase [100], glutamate system

Table 1. Support for etiological hypotheses of late-life depression.

Inflammation Vascular Neurodegeneration

Clinical • Neurovegetative symptoms (lethargy,
reduced appetite)

• Greater medical morbidity
• Increased levels of pro-inflammatory
cytokines; Decreased levels of anti-
inflammatory cytokines

• Associated with treatment resistance and
poor antidepressant efficacy

• Dysphoria, anhedonia, apathy,
psychomotor retardation,
functional disability

• Higher rates of vascular risk factors
• Increased disability and mortality

• Apathy, subjective memory loss
• AD pathology or development of
dementia associated with poor
antidepressant efficacy

Cognitive • Executive dysfunction, slowed processing
and motor speed, reduced memory

• Executive dysfunction, reduced
processing speed and visuospatial
skills, retrieval-based memory
deficits

• Depression co-occurring with
dementia worsens cognitive
performance

• Amnestic cognitive profile (often, but
not always)

Imaging • Peripheral inflammatory markers linked
with:
• altered fronto-subcortical activation
• gray and white matter volume loss

• Higher markers of central inflammation
found in anterior cingulate and temporal
cortices

• WMH volumes increase over time
• Higher WMH volumes worsen
cognitive outcomes

• Persistent depressive symptoms
exhibit greater change in WMH
volume over time

• LLD with greater beta-amyloid
deposition have:
• greater temporal lobe volume loss
• lower functional connectivity in
fronto-subcortical regions

• functional DMN alterations

Negative
findings

• When excluding comorbid medical
conditions, studies do not show
relationship between depression and
inflammatory cytokines

• Inconsistent findings between LLD,
vascular burden, and
antidepressant response.

• Some report less beta-amyloid
deposition in LLD compared to
controls

• APOE ε4 does not clearly influence
development of LLD

AD Alzheimer’s disease, APOE apolipoprotein E, CSF cerebrospinal fluid, DMN default mode network, LLD late-life depression, WMH white matter
hyperintensities.
Table inspired by and adapted from Alexopoulos [164].
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dysregulation [122–124], and altered dopamine synthesis, binding,
and reuptake [37, 125–128].
While less examined in LLD, chronic inflammation induces an

altered cellular environment in the brain parenchyma capable of
modulating neural circuits and influencing depressive behavior
[15]. Pro-inflammatory cytokines including CRP and IL-6 are
associated with global gray matter and white matter loss [129]. A
meta-analysis including participants across the lifespan asso-
ciated peripheral inflammatory markers with altered activation
of the prefrontal cortex, insula, striatum, amygdala, hippocam-
pus, and various subcortical regions [130]. These regions overlap
with the DMN, ASN, limbic, and corticostriatal networks. Studies
of individuals with depression and suicide attempts report
increased microglial activation in the anterior cingulate cortex
(ACC), a key hub of both the ASN and CCN, in individuals with
depression and suicide attempts [131, 132]. Experimental
induction of acute inflammation similarly alters glutamate
metabolism in the ACC and basal ganglia [124].
Treatment implications of pro-inflammatory processes are

unclear. Work in midlife suggests that low-grade inflammation
may decrease antidepressant efficacy [133–136]. However, success-
ful antidepressant treatment can decrease pro-inflammatory
cytokine levels [137, 138] Conversely, antidepressant augmentation
with anti-inflammatory agents may reduce depressive symptom
severity and improve treatment outcomes [139, 140]. If existing
trials are supported, such interventions may most benefit indivi-
duals with higher inflammatory cytokine levels, such has been seen
with infliximab, a TNF-alpha antagonist [141, 142]. Inflammation
could identify a distinct phenotype [37, 143] who would benefit
from anti-inflammatory treatments.

Vascular disease. Cerebrovascular system changes are common
with normal aging [144]. Cerebral small vessel disease (CSVD)
describes leakage of the blood-brain barrier and dysfunction of
cerebral autoregulation, neurovascular coupling, and capillary
blood flow [145]. This causes cerebral perfusion deficits and
hypoxia, triggering inflammation and neuronal death. Vascular risk
factors including hypertension, atherosclerosis, and diabetes
contribute to CSVD and result in the thickening of the penetrating
small arteries, fibrosis of the vessel wall, and depletion of vascular
smooth muscle cells.
The “vascular depression hypothesis” [146, 147] posits that

CSVD may predispose, precipitate, or perpetuate LLD. This
process likely begins in adulthood, as midlife cerebrovascular
burden predicts increased depression severity over time [148].
The neuroradiological manifestation of “vascular depression”
includes white matter hyperintensities (WMHs) on T2-weighted
MRI, subcortical lacunes, and microbleeds [147, 149]. Mechan-
istically, WMHs may contribute to a disconnection syndrome
where damage to communicating cortical-subcortical pathways
involved in mood regulation and cognitive processes increases
LLD vulnerability [78, 150, 151]. Further supporting a mechan-
istic role, meta-analyses have shown that late-onset depression
show significantly greater WMH burden in late-onset LLD than in
early-onset LLD [152, 153]. The extent of ischemic injury extends
beyond visible WMHs, as vascular risk factors compromise
microstructural integrity in normal-appearing white matter
[154, 155]. Location of WMHs and microstructural changes may
be critical, as LLD is associated with damage to the cingulum
bundle, uncinate fasciculus, and superior longitudinal fasciculus
[156–159].
These processes influence longer-term negative outcomes.

Even without depression, vascular changes are associated with
cognitive deficits (including executive dysfunction and retrieval-
based memory deficits) and altered emotion processing [160].
Cross-sectionally, depressive symptoms with greater WMH
volumes worsen cognitive outcomes in the early stages of CSVD
[161]. Greater WMH volume in LLD contributes to greater

longitudinal decline in executive functions and increased risk for
dementia [162]. Individuals with persistent depressive symptoms
similarly exhibit greater increases in WMH volume over time
[163]. Greater vascular burden may be associated with poorer
response to pharmacological and nonpharmacological treat-
ments [158, 164–166], although this relationship for medication
response is somewhat weak [49, 78]. The higher vascular burden
is further associated with greater disability [167], gait and other
motor deficits [168], and frailty [169]. Depression can also
worsen cardiovascular and cerebrovascular disease outcomes
[170, 171], suggesting a bidirectional relationship.

Neurodegeneration. Aging is the strongest risk factor for demen-
tia [172], a collective term for cognitive impairment negatively
affecting independent functional activities. Alzheimer’s disease
(AD), the most common dementia, is characterized by abnormal
accumulation of beta-amyloid plaques and tau tangles in the
brain. Early AD typically affects memory centers, including the
entorhinal cortex and hippocampus. With disease progression,
neuropathology spreads to frontal and parietal regions and affects
language, executive abilities, and social behaviors.
Depression and dementia exhibit a bidirectional relationship.

Depression in mid-to-late life increases risk for AD and all-cause
dementia [14, 173, 174]. Depression can also be a precursor to or
symptom of dementia, with prevalence rates ranging from 17 to
56% across all stages of AD [175]. Depression co-occurring with
dementia worsens cognitive performance beyond what would be
expected based on neuropathology alone [176]. Dementia risk
may be highest in individuals exhibiting persistent or worsening
depressive symptoms over time [177].
Such observations led to work searching for common genetic

factors. While the apolipoprotein E (APOE) ε4 allele significantly
increases risk for AD, it does not clearly influence the development
of LLD [178, 179]. A genome-wide association study found that
depression had a causal role in AD through Mendelian randomiza-
tion, but there was no evidence for a causal role of AD on
depression [180]. That study identified 53 brain transcripts and
proteins regulated by the depression GWAS signals that also were
associated with rates of cognitive decline over time [180].
The “amyloid hypothesis of LLD” [181] is supported by

observations of increased beta-amyloid deposition in older adults
with a depression history [182] and in LLD patients exhibiting a
cognitive profile suggestive of amnestic Mild Cognitive Impair-
ment [183]. Individuals with LLD exhibiting greater beta-amyloid
deposition show greater volume loss in the temporal lobe, lower
functional connectivity in fronto-subcortical regions, and greater
functional alterations in the DMN [184, 185]. These findings are
not universal, and the Alzheimer’s Disease Neuroimaging Initiative
depression group reported less beta-amyloid deposition in LLD
compared to a control group [186]. While beta-amyloid deposition
was associated with worse memory performance in that study, the
association between amyloid and cognitive performance did not
differ between diagnostic groups. More recent work has focused
on tau pathology as others report that individuals with elevated
tau, but not amyloid, are twice as likely to be depressed [187].
Poorer cognitive performance, comorbid dementia, and AD

pathology are associated with poorer prognosis for response to
antidepressant medications. Both poorer cognitive performance,
particularly executive dysfunction or slowed processing speed,
and dementia are associated with poorer responses to antide-
pressant medications [12, 165, 188, 189]. Similarly, higher levels of
beta-amyloid deposition, particularly in the temporal lobe, are
associated with poor response or treatment resistance to
antidepressant medications, even in cognitively intact elders
[190, 191]. Alternative treatment approaches are not entirely clear,
although some individuals with cognitive impairment may benefit
from nonpharmacological interventions such as computerized
cognitive training [192].
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Depression is not unique to a single neuropathological process
[176]. Beyond AD, it occurs in context of alpha-synuclein, a
constituent of Lewy bodies and the pathological hallmark of
synucleinopathies, including Parkinson’s disease (PD), dementia
with Lewy bodies, and multiple system atrophy. Depression is a
common non-motor symptom of PD [193] and depressed
individuals exhibit a 2.2-fold increase in risk of subsequent
parkinsonism [194]. There is a positive association between
alpha-synuclein messenger RNA expression levels and depression
severity [195], while levels of CSF alpha-synuclein may mediate
associations between LLD, markers of synaptic dysfunction, and
memory ability [196].

DEPRESSION AND ACCELERATED AGING
Both vascular [170, 171] and neurodegenerative processes
[14, 173, 174] occur more frequently or more severely in LLD.
These may represent bidirectional relationships, where depressive
episodes may both contribute to and result from accelerated
aging. Biological aging is an inevitable process at molecular,
cellular, and organ levels reducing a system’s reparative or
regenerative potential [197]. “Accelerated aging” is when biologi-
cal aging occurs more rapidly than expected, resulting in
biological characteristics that are more severe than would be
expected based on chronological age [198]. In the brain, this may
include ventricular enlargement, cerebrovascular injury, or gray
matter atrophy. For this review, we distinguish accelerated aging
from “pathological brain aging”, characterized by neurodegenera-
tive processes involving amyloid, tau, or other abnormal protein
deposition.
Accelerated aging is observed in multiple neuropsychiatric

disorders and quantified using a range of markers including
telomere length, oxidative stress markers, epigenetic markers,
physiological functioning, and neuroimaging [199–201]. In adult
MDD, accelerated aging is observed on molecular and cellular
markers, including reduced telomere length, epigenetic aging, and
metabolomic aging [201, 202]. Accelerated aging in MDD is further
observed on both structural and functional neuroimaging, where
depressed individuals appear on average 1–2 years older than
nondepressed cohorts [203, 204]. In the largest of these studies, the

difference between calculated brain age and chronological age was
independently replicated [205] and not associated with age of
depression onset, recurrence, or remission [204].
An accelerated aging hypothesis of LLD implies a bidirectional

process [206]. Depressed older adults exhibit an advanced
biological age on a multibiomarker index of metabolic and
inflammatory measures [207, 208] and on structural MRI, where
they appear approximately 4 years older than nondepressed
individuals [198]. This accelerated brain aging is further associated
with disability and cognitive performance [198], with depression
severity moderating the relationship between brain age and some
cognitive measures. As the difference between calculated brain age
and chronological age differs between midlife adult depressed
samples and LLD [198, 203, 204, 209], depression may be associated
with an altered trajectory of biological aging [210].
Accelerated aging also influences physical function and

contributes to physical frailty. Frailty is characterized by deficits
in strength and mobility, decreased physical activity, and reduced
energy capacity that results from dysregulation in metabolic,
musculoskeletal, and stress-response systems [211, 212]. Frailty is
common, bidirectionally associated with LLD, and associated with
increased mortality and poor antidepressant treatment responses
[213–215]. Frailty may be an outcome of depression, as depression
is associated with worsening trajectories in functional status,
including reduced walking speed and hand strength [216].
The model of a bidirectional relationship between depression

and accelerated and pathological aging (Fig. 3) may start with age-
related changes increasing vulnerability to depression. Individuals
experiencing accelerated biological aging, operationalized as
advanced medical morbidity, cerebrovascular pathology, pro-
inflammatory processes, or pathological aging, such as increasing
amyloid or tau burden, are at higher risk for LLD. Such etiological
factors can disrupt the structure, function, and homeostasis of key
intrinsic functional networks implicated in depression [78, 164].
These etiological factors may all occur to varying extents in the
same individual, each challenging functional network home-
ostasis. As the underlying systems become more dysregulated or
as pathologies progress, and networks experience greater
homeostatic imbalance and impairment in function, the clinical
presentation of the depressive syndrome emerges (Fig. 1) [15]. It is

Fig. 3 Accelerated aging hypothesis of late-life depression. Aging processes such as inflammation, vascular disease, or pathological
neurodegeneration impair neurotrophic function and contribute to both gray matter atrophy and impairment of white matter microstructure.
These changes in turn alter function of key intrinsic networks, leading to the clinical manifestations of late-life depression. In turn, repeated
depressive episodes result in altered or sustained physiological responses increasing allostatic load. These effects may then further accelerate
biological aging processes, shifting an individual further away from normative aging.
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possible that the predominant underlying pathology and what
brain networks are most affected influence the clinical presenta-
tion and phenotype [37, 217].
Depressive episodes may also accelerate biological aging

(Fig. 2). One potential mechanism involves the altered neural
and physiological responses to stress observed in depression.
Such altered responses are observed across a range of systems,
including altered function of brain regions involved in emotion
processing, autonomic reactivity, HPA axis function, and dysre-
gulation of the immune system or circadian processes [78,
99, 218–224]. Normally, these processes are meant to facilitate
allostasis, the body’s ability to respond to environmental
challenges and maintain normal functioning. However, with
repeated stressors and depressive episodes, these responses
contribute to increased allostatic load, the wear-and-tear result-
ing from stress and the dysregulation of processes meant to
maintain homeostasis [15, 225]. Such canonical stress-response
systems interact and over time contribute to accelerated aging,
leading to regional brain atrophy, development of cerebrovas-
cular pathology, and reduction of neurotrophic function
[226–228]. This hypothesis is supported by longitudinal studies
associating persistent or recurrent depression with greater
increases in WMH volume and greater hippocampal volume
decline [163, 229]. Other mechanisms explaining this relationship
are possible, including shared genetic vulnerabilities [180].
Such bidirectional relationships have long-term implications.

Accelerated or pathological aging also contribute to impaired
cognitive performance [198, 230], increased risk for dementia [14],
and risk of physical disability, sensory function loss, and frailty
[230]. Accelerated brain aging may be associated with higher risk
for depression relapse after achieving remission [15]. Even if the
initial antidepressant treatment were successful, progressive aging
may further challenge functional networks and result in a return of
depressive symptoms [15].

UPDATES ON ESTABLISHED SOMATIC TREATMENTS
Currently, treatment decisions for patients with LLD are guided
more by clinical history and patient preference than potential
biological causal factors. Robust blinded clinical trials data for LLD
are scant and clinical guidelines tend to derive from expert opinion
or are extrapolated from data in younger populations [231].

Antidepressant medications
Antidepressants are more effective than placebo in the treatment
of LLD, although the response rate is lower for older than younger
adults [232–234]. However, while antidepressants alter DMN and
CCN connectivity [235], age of initial onset does not influence
antidepressant medication response rates, although early-onset
patients may respond more slowly [236, 237]. Antidepressants
remain beneficial, with a number needed to treat (NNT) for an
antidepressant response being 6.7 (95% CI, 4.8–10) [234, 238]. As
in younger adults, augmentation strategies in LLD are more
efficacious than strategies involving a switch to a different
antidepressant [239]. Methylphenidate augmentation of an SSRI
is superior to monotherapy with either agent alone [240].
Augmentation with lithium, bupropion, or aripiprazole in patients
who did not respond to monotherapy can be well-tolerated and
improve depressive symptoms [239, 241, 242]. Despite clear
benefits of augmentation, the likelihood of achieving remission
decreases with increasing number of failed antidepressant trials
within the current episode [243].
Few studies examine outcomes of the N-methyl-D-aspartate

(NMDA) receptor channel inhibitors ketamine and esketamine in
LLD. Both a small, randomized trial of subcutaneously adminis-
tered ketamine and larger open-label study of intravenous
ketamine improved depression severity in older adults with
treatment-resistant depression [244, 245]. Intravenous ketamine

resulted in a remission rate of 12.8% for older individuals, which is
comparable to remission rates seen in patients progressing to
later stages of the STAR*D study [245, 246]. A randomized trial of
esketamine in treatment-resistant LLD resulted in a comparable
remission rate of 17.3%, with a NNT of 10, although that study did
not detect a statistically significant difference in their primary
endpoint [247]. Secondary analyses suggested that participants
with an earlier life onset of depression or who were less than 75
years of age exhibited greater improvement [247]. Both ketamine
and esketamine were well-tolerated, with common side effects
including dizziness, dissociative symptoms, fatigue, and transiently
elevated blood pressure [245, 247].

Electroconvulsive therapy (ECT)
ECT continues to be used for severe and treatment-resistant LLD.
In LLD, ECT exhibits remission rates between 70 and 90%,
although rates in community samples may be lower [248].
Individuals with late-onset depression tend to respond better to
ECT than individuals with early-life depression onset [249], which
may be related to illness chronicity or recurrence in the early-
onset group. However, strong remission rates should be balanced
by high relapse rates after the initial ECT course, with 40–50% of
patients relapsing within 6 months [250]. Cognitive side effects in
older adults tend to be limited and transient [251].
Recent work has refined ECT to improve tolerability while

preserving efficacy. This includes administering ECT using right
unilateral electrode placement with ultrabrief pulse width stimuli,
an approach with fewer cognitive side effects [252]. When
combined with venlafaxine in LLD, this results in remission rates
of 61% and response rates of 70% [253]. Unilateral brief pulse ECT
combined with venlafaxine only modestly affects cognitive
performance, specifically letter fluency and cognitive flexibility
[254]. This study also included a 24-week continuation phase,
where participants were randomized to either medication only
(venlafaxine plus lithium) or venlafaxine plus continuation ECT,
administered weekly for the first month with additional sessions
as needed. Continuation ECT resulted in lower levels of depression
severity at study endpoint than medication only [255] and better
quality of life [256].

Transcranial magnetic stimulation (TMS)
Repetitive TMS (rTMS) uses a pulsed magnetic field to induce a
local electrical field on the brain’s surface, stimulating cortical
pathways. rTMS treatment of depression typically targets the
DLPFC, with the best-studied techniques including unilateral
high-frequency left-sided (HFL), unilateral low-frequency right-
sided (LFR), or sequential bilateral treatment of LFR followed by
HFL [257]. Parallel work supports that targeting the DLPFC
modulates functional connectivity within and between the DMN
and CCN, with clinical benefit deriving from modulation of
subgenual cingulate cortex connectivity [258]. While many
randomized trials support rTMS efficacy, few have been
conducted in LLD [259, 260]. However, rTMS is well-tolerated
in older adults [261], and LLD trials generally support the efficacy
of HFL rTMS, with bilateral treatment being more efficacious in
treatment-resistant patients [257].
Recent work has modified rTMS to improve outcomes and

reduce burden. A sham-controlled trial in LLD that examined
bilateral deep rTMS reported efficacy and good tolerability when
administered over four weeks [262]. This deep TMS approach
addressed concerns that age-associated atrophy may contribute
to poor treatment responses by increasing the distance between
the scalp and cortex [263], however it requires longer adminis-
tration sessions. More recent work in LLD compared rTMS to theta-
burst stimulation (TBS), a bilateral approach that reduces session
administration from 47min for rTMS to 4min for TBS. This
randomized trial established non-inferiority of TBS, with compar-
able reductions in depression severity between groups [264].
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RESILIENCE FACTORS: OPPORTUNITIES FOR INTERVENTION
Although these treatments are effective, benefit depends on
continued treatment. If pharmacotherapy or neuromodulation
stops, the risk of recurrence can be high [18, 250, 253]. This risk
may be reduced through interventions that target vulnerability
factors to depression and strengthen resiliency (Table 2).
Resilience is broadly defined as the capacity to maintain or regain

psychological well-being despite challenges, or the adaptive
maintenance of homeostasis despite adversity [265–267]. Resilience
is a multidimensional, dynamic process influenced by both internal
factors and external resources. Resilience factors may decrease the
risk of a depressive episode, reduce severity or duration of that
episode, or increase likelihood of recovery [267, 268]. If depression
contributes to accelerated biological aging, then bolstering such
resilience factors and reducing the frequency or duration of
depressive episodes could hypothetically shift the biological aging
process towards a more normal trajectory. We discuss resilience
factors and their corresponding vulnerability factors (Table 2) in
context of treatments.

Psychological factors: role for brief psychotherapy
While factors such as temperament and personality may be
challenging to target with brief therapy, progress can improve
negative beliefs and coping strategies. Individuals’ beliefs about
themselves and their environment influence how they cope with
stressors or challenges. Depression risk is associated with lower
self-esteem, anxiety sensitivity, and an external locus of control
(i.e., a feeling that one cannot influence outcomes in one’s life)
[269]. The converse of these beliefs contribute to resilience, as
does a sense of purpose and grit, defined as perseverance in
achieving goals despite setbacks [267, 270–272]. Greater self-
efficacy enhances individuals’ ability to flexibly apply coping
strategies, including active coping strategies that directly address
the stressor, or accommodative strategies involving adaptation to
the stressor. Such a flexible approach improves mental health
outcomes and reduces depression [273, 274].

Evidence for psychotherapy. Psychological factors addressing
vulnerability or promoting resilience may be particularly amenable
to psychotherapy. Evidence-based treatments in LLD include
cognitive-behavioral, problem-solving, interpersonal, and life-
review therapies [275, 276]. Such therapies influence functional
network connectivity, such as cognitive-behavioral therapy increas-
ing connectivity between the amygdala and CCN [277]. Meta-

analyses in LLD support that psychotherapy is quite effective, with a
NNT of 3 [278]. More recently developed, “Engage” therapy targets
neurobiologically-informed processes in LLD using streamlined
behavioral techniques that can be effectively applied in the
community [279, 280].

Social factors: opportunities for engagement
Aging adults tend to maintain close social partners but have fewer
peripheral social contacts [281]. In contrast, larger objective social
network size and greater perceived social support protects against
LLD and predicts a better response to depression interventions
[282–284]. Such benefits may occur through mechanisms includ-
ing emotional support, tangible assistance (instrumental support),
or opportunities for pleasurable activities [285]. Recent work has
focused on loneliness, or perceived social isolation that is distinct
from having fewer objective social contacts. Loneliness is
bidirectionally associated with a host of negative outcomes,
including depression, poor physical health, cognitive and func-
tional decline, and mortality [286–288]. Loneliness may be a
neuropsychiatric manifestation of preclinical AD, as it is associated
with an elevated dementia risk and higher levels of amyloid and
tau pathology [289–291].

Evidence for targeting social connectedness. Few intervention
studies directly target social factors in depression [292]. Group
therapy benefits LLD [293] but does not typically focus on social
connectedness. Recent novel work has examined remote, layperson-
delivered interventions intended to improve social connectedness
and reduce loneliness in younger and older adults. Although not
directly targeting individuals with a depression diagnosis, they
reduced depressive and anxiety symptoms [294–297]. Modifying
existing psychotherapies to target social disconnection may also
reduce suicide risk [294].

Cognitive factors: role for cognitive training
As previously discussed, LLD is associated with cognitive changes in
executive functioning, processing speed, and episodic memory
[8–11]. However, not all individuals with LLD have cognitive
difficulties. There appear to be separate cognitive phenotypes
within LLD: “High Normal”, “Reduced Normal” (with a relative
weakness in episodic recall), and “Low Executive Functions” [298].
The “High Normal” phenotype maintained cognitive performance
despite similar levels of depression severity as the other pheno-
types. They also had higher levels of education and less vascular risk

Table 2. Resilience factors influencing depressive episode risk in later life.

Domain Factors Resilience correlates Depression vulnerability correlates

Trait-like factors Temperament Positive emotionality Greater harm avoidance

Personality Extroversion, conscientiousness Neuroticism

Psychological factors Beliefs Self-esteem, self-efficacy, mastery, sense of
purpose

Internalized self-blame or stigma

Coping Active or accommodative coping Avoidance or passive coping

Social factors Social support Social engagement Social withdrawal, loneliness

Altruism Formal volunteering Social role absences

Cognitive factors Cognitive reserve Maintained cognitive performance Poorer executive function and processing
speed

Physical factors Physical activity Exercise, regularly active Sedentary lifestyle

Sensory function Sustained or corrected vision and hearing Impaired sensory function

Healthy diet Good nutrition Poor nutrition, substance abuse

Healthy sleep Regular sleep patterns Disrupted, irregular sleep

Correlates of factors that may contribute to resilience from depression, or vulnerability to depression. Some factors are modifiable (psychological factors, social
factors, and lifestyle factors) while others are not (trait-like factors). Some depression correlates may both increase the risk of depression and also be an
outcome of depression. Table inspired by and adapted from Laird et al. [267] and Andreescu et al. [15].
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factors, suggesting that cognitive reserve and vascular health may
contribute to cognitive resilience in LLD [299]. Identifying cognitive
difficulties unique to the depressed individual allows for the
prescription of personalized cognitive training interventions.

Evidence for benefits of cognitive training. For computerized
cognitive training to work, it must have an adequate duration and
be appropriately intense or difficult [300]. Evidence for the potential
benefit of neurobiologically-informed computerized cognitive
training in LLD comes from the approaches by Morimoto and
others that are optimized to treat LLD with executive dysfunction
[301]. They demonstrate that by targeting the underlying deficient
neural circuitry and associated cognitive deficits in LLD, cognitive
functions and depressive symptoms improve, benefits transfer to
non-trained domains such as memory, and there are positive
changes to underlying neural structural-functional connections
[192, 300, 302]. Targeted cognitive training appears to modulate
network functional connectivity in the DMN and CCN [303, 304].
Interventions targetingmemory deficits (such as the Mayo Clinic’s

Healthy Action to Benefit Independence and Thinking (HABIT)
program) [305] benefit Mild Cognitive Impairment both with in-
person and virtual platforms. While this intervention has not been
conducted in LLD, the approach could translate to other popula-
tions with primary memory issues. Similarly, processing speed
training shows benefit for up to 10-years in nondepressed older
adults [306] and may be particularly favorable for LLD characterized
by predominant cognitive and motor slowing. Augmenting
cognitive training with neuromodulation approaches or other
nonpharmacological treatments may provide additional benefit
but need study in LLD [307].

Physical disability: need for sustainable movement-based
interventions
Motor deficits are common with aging, including slowing,
coordination deficits, and balance difficulties [308, 309] and they
contribute to falls, disability, and mortality [310–314]. Depressed
older adults are at increased risk for these motor problems
[310, 314, 315]. This may be due to common contributors or
comorbidities, such as vascular disease or other brain pathology
[316, 317]. However, by increasing sedentary behavior and
isolation, depression may also hasten muscle atrophy, decondi-
tioning, and frailty [37, 213–215].

Evidence for movement-based interventions. Structured physical
exercise benefits depression symptoms across the adult lifespan
[318], includingmoderately benefitting older adults [319, 320]. It has
positive benefits on hippocampal volume [321], may modulate
connectivity between key DMN and CCN regions [322, 323], and
also augments the response to antidepressant medications [324].
Physical activity improves global cognitive function in unimpaired
elders and benefits cognitive domains sensitive to aging, including
attention, executive function, and memory [325, 326]. Similarly,
physical exercise, particularly aerobic activity, may reduce the risk of
dementia and benefit older adults with existing cognitive impair-
ment or dementia [327, 328]. Interestingly, recent work suggests
that mind-body therapies that combine movement-based
approaches with mindfulness, such as yoga or tai chi, may be
superior to conventional exercise for mood and cognitive outcomes
[267, 329]. However, questions remain about optimal practices
needed to obtain such benefit, including frequency, intensity,
duration, and type of exercises [303]. Strategies to facilitate initiation
and maintenance of exercise in community-based elders are sorely
needed, particularly for individuals with chronic pain or disabilities
that limit physical function.

Sensory impairment: can improving sensory function help?
Sensory impairment, including vision and hearing loss, is also
common in later life. Uncorrected hearing loss and vision loss

are associated with greater depressive symptom severity and
increased risk of developing LLD [217, 330–335], particularly for
dual sensory loss affecting both vision and hearing [336]. Several
hypotheses could explain these relationships, including how
sensory loss limits social activities, leading to isolation and
worsening psychological health [332, 337]. This may not account
for the entire relationship, as sensory loss is further associated
with physical decline [338], cognitive decline, and risk of
dementia [335, 339].

Evidence for interventions improving sensory function. Optimizing
sensory function benefits depressive symptoms and reduces
depression risk. For impaired vision, improving residual vision and
self-management programs can reduce depressive symptoms
[340, 341]. Integration of psychotherapy techniques, such as
behavioral activation can prevent depression in high-risk patients
with macular degeneration [342]. A similar benefit is seen in
preliminary clinical trials demonstrating that hearing aids may
benefit depressive symptoms, quality of life, and cognitive
performance in older adults [343–345].

CONCLUSIONS
We repeatedly describe bidirectional relationships between LLD
and lifespan factors such as aging, inflammation, vascular disease,
and more. These reciprocal relationships in essence describe
positive feedback loops. In the absence of counterbalancing
forces, such feedback loops can spiral out of control. Reframed in
the allostatic framework, maintaining stability requires adaptive
regulation and resiliency.
This dynamic nature of allostatic processes contributes to LLD

heterogeneity. Vulnerability to developing depressive episodes
results from accumulated factors, many of which have an initial
onset earlier in life. Other vulnerability factors are unique to later life
and may contribute to a new diagnosis of depression or a relapse of
symptoms in previously remitted individuals. We propose that these
vulnerability factors (Fig. 1) have negative effects on functional brain
networks that predispose networks towards a state of fragility and
instability.
Etiological heterogeneity creates challenges for understanding

both LLD’s neurobiology and variability in treatment responses. It
also creates opportunities to use this heterogeneity to probe
specific mechanisms and guide focused, personalized treatment
approaches. Such examples include examining dopaminergic
system influences on LLD in patients with psychomotor slowing,
testing anti-inflammatory medications in patients with elevated
inflammation, or using targeted cognitive training to treat patients
with LLD and executive dysfunction. While no single treatment
will improve symptoms in all patients with LLD, combining
established treatments such as pharmacotherapy, psychotherapy,
and neuromodulation alongside personalized interventions that
bolster resilience or address comorbid disability may improve
outcomes for otherwise treatment-resistant patients.
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