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Reduced inferior fronto-insular-thalamic activation during failed
inhibition in young adults with combined ASD and ADHD
compared to typically developing and pure disorder groups
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Katya Rubia1,5

© The Author(s) 2023

Autism spectrum disorder (ASD) often co-occurs with attention-deficit/hyperactivity disorder (ADHD) and people with these
conditions have frontostriatal functional atypicality during motor inhibition. We compared the neural and neurocognitive correlates
of motor inhibition and performance monitoring in young adult males with “pure” and combined presentations with age-and sex-
matched typically developing controls, to explore shared or disorder-specific atypicality. Males aged 20–27 years with typical
development (TD; n= 22), ASD (n= 21), combined diagnoses ASD+ ADHD (n= 23), and ADHD (n= 25) were compared using a
modified tracking fMRI stop-signal task that measures motor inhibition and performance monitoring while controlling for selective
attention. In addition, they performed a behavioural go/no-go task outside the scanner. While groups did not differ behaviourally
during successful stop trials, the ASD+ ADHD group relative to other groups had underactivation in typical performance
monitoring regions of bilateral anterior insula/inferior frontal gyrus, right posterior thalamus, and right middle temporal gyrus/
hippocampus during failed inhibition, which was associated with increased stop-signal reaction time. In the behavioural go/no-go
task, both ADHD groups, with and without ASD, had significantly lower motor inhibition performance compared to TD controls. In
conclusion, only young adult males with ASD+ ADHD had neurofunctional atypicality in brain regions associated with performance
monitoring, while inhibition difficulties on go/no-go task performance was shared with ADHD. The suggests that young people with
ASD+ ADHD are most severely impaired during motor inhibition tasks compared to ASD and ADHD but do not reflect a
combination of the difficulties associated with the pure disorders.
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INTRODUCTION
Approximately 28% of people with autism spectrum disorder (ASD)
meet criteria for attention/deficit-hyperactivity disorder (ADHD) [1].
Population registers showed higher rates of co-occurring ADHD in
young adults with ASD than any other age groups [2, 3], which
could indicate diagnostic persistence over time. Symptom profiles,
age of onset and distribution of ADHD diagnostic subtypes in the
two groups are largely similar [4, 5]. However, the two conditions
appear to differ neurocognitively; reduced cognitive control
functions such as motor inhibition are more consistently observed
in ADHD [6, 7], while lower cognitive control in ASD often are
associated with the co-occurring ADHD symptoms [8–12], giving
rise to the hypothesis of additive neurocognitive difficulties in the
combined ASD+ ADHD group relative to the “pure” groups [12, 13].
Such difficulties of cognitive control in ADHD and ASD, and

their neural correlates, are frequently examined using the stop-
signal task, which requires withdrawal of already triggered motor
responses, and the go/no-go task, which requires selective

withholding of prepotent responses [14]. Meta-analyses of
cognitive control studies in ADHD, which predominantly include
these two motor inhibition tasks, have shown underactivation in
cognitive control and salience brain regions such as inferior frontal
gyrus (IFG)/insula and striatum [14–17], with underactivation in
right striatum and IFG, which are key regions of motor inhibition,
found meta-analytically to be ADHD-specific relative to ASD [14].
Children and adults with ADHD also demonstrate neurofunc-

tional underactivation relative to typically developing (TD)
controls during error or performance monitoring, which is
assessed through failed inhibition trials. Underactivation clusters
were observed in dorsomedial/ anterior cingulate, left and right
inferior and superior frontal regions [18–23], temporo-parietal
ventral and dorsal attention network regions including precuneus
and posterior cingulate [24], as well as in caudate and putamen
[19, 20, 25].
In ASD, under- and overactivation have been found during

cognitive control in frontal brain regions, with medial prefrontal
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underactivation being the most consistent meta-analytic finding
[14, 26–28], as well as in posterior brain regions including left
lingual gyrus, cerebellum and right inferior occipital cortex
[14, 26]. Among studies investigating the motor inhibition tasks
only, overactivation in left orbito- and dorsolateral prefrontal and
underactivation in right dorsolateral prefrontal cortices, alongside
clusters of over- and underactivation in posterior brain regions
was ASD-specific when compared to ADHD. In addition, both ASD
and ADHD shared underactivation in right anterior insula (AI) [14].
Finally, during error or performance monitoring, ASD children
demonstrated increased medial frontal and left middle superior
temporal activation compared to TD controls [29, 30].
Nevertheless, infrequently controlled co-occurrence of the

conditions could have confounded the individual studies and
meta-analyses findings in these disorders, which have motivated
recent comparisons between “pure” ASD and ADHD groups. Two
studies showed that during inhibition, ASD relative to ADHD
children and TD controls showed increased right middle frontal
gyrus (MFG) activation [31], and adolescent ADHD relative to ASD
boys and TD controls showed specific underactivation in left
orbitofrontal cortex and basal ganglia, whereas ASD-specific
overactivation was found bilaterally in IFG [32], which highlight
the most striking divergence in the atypical brain features in the
two disorders, i.e. frontostriatal underactivation in ADHD and
prefrontal overactivation patterns in ASD. During inhibition
failures, medial/left MFG activation in ASD children increased
with ADHD symptoms [33], suggesting a synergistic rather than
simply additive atypicality, which resonated with a previous report
of a relatively complex and severe pattern of atypical brain-
behaviour association involving medial/lateral prefrontal regions
in ASD+ ADHD boys compared to the pure groups [34], during an
impulsive-choice delay-discounting task.
A functional magnetic resonance imaging (fMRI) study of motor

inhibition and performance monitoring in young adults with ASD
and ADHD would be a useful addition to the literature, and
elucidate the neural substrates of the high co-occurrence of the
disorders in this age group [2, 3]. We therefore compared young
adult males with ASD, ADHD, and both ASD+ ADHD using a
modified tracking fMRI stop-signal task that measures both motor
inhibition and error/performance monitoring and a behavioural
go/no-go task. In line with prior evidence, we hypothesised an
underactivation in cognitive control and performance monitoring
brain regions and impaired go/no-go task performance in ADHD
relative to ASD and typically developing controls. Overactivation
in cognitive control areas was expected in the ASD group,
especially compared to ADHD, as previously shown by meta-
analyses and direct comparison studies [14, 31, 32]. Finally, based
on previous findings in ASD+ ADHD boys [34] and the
hypothesised additive impairment in the combined group relative
to the pure disorder groups [12, 13], we expected the ASD+
ADHD group to have a combined and possibly more severe
pattern of neural atypicality and cognitive difficulties than
observed in ASD or ADHD alone.

METHODS
Participants
Participants were young adult males (n= 107) aged 20–27 years with ASD,
ADHD and ASD+ ADHD and typical development. All participants had full-
scale IQ (FSIQ) ≥ 70 on the Wechsler Abbreviated Scale of Intelligence-2
[35]. Groups did not differ in handedness [36] and most (82%) were right-
handed. Exclusion criteria were epilepsy, personality disorder, substance
use disorder, lifetime history of bipolar disorder or schizophrenia or past
head injury leading to loss of consciousness.
People with ASD and/or ADHD were recruited through adult neurode-

velopmental clinics, support organisations, social media and an epidemio-
logical cohort of ASD young adults (the Special Needs and Autism Project
or SNAP [37]). Psychostimulants, withdrawn 48 h before the study, or
selective serotonin reuptake inhibitors (SSRIs) were not exclusion criteria in

the clinical groups. Participants completed a study comprising several fMRI
tasks and a neurocognitive task battery [38]. Due to excessive motion
(n= 3), poor response to the stop task (n= 12), or an incidental MRI
finding (n= 1), only 91 participants were included in the final analyses.
The ASD (n= 21) group consisted of 18 participants with clinical

diagnoses (seven autism; seven Asperger’s syndrome, four atypical autism)
and three with consensus research diagnoses of ASD from a team of
consultant psychiatrists and psychologists from SNAP (one autism; one
atypical autism, one pervasive developmental disorder [PDD] unspecified),
based on the International Classification of Diseases (ICD-10) [39]. No
participants were prescribed psychotropic medications.
The ASD+ADHD (n= 23) group consisted of 19 clinically diagnosed

participants (four autism, eleven Asperger’s syndrome, four atypical autism),
and four with consensus research diagnoses of ASD (two atypical autism, two
pervasive developmental disorder [PDD] unspecified) from consultant
psychiatrists and psychologists in SNAP based on the ICD-10. Sixteen
participants met the criteria for combined, and seven for inattentive
presentation according to the DSM-5 [40] ADHD diagnostic criteria (nineteen
received the diagnosis from consultant psychiatrists in specialist clinics, while
four received research diagnoses from the SNAP team supported by parental
interview from childhood). Five participants were taking psychostimulants
(four methylphenidate [MPH], one dexamfetamine), one took SSRI (escitalo-
pram) and one both medications (MPH, sertraline).
All participants with ADHD alone (n= 25) met the DSM-5 ADHD

diagnostic criteria following assessments with consultant psychiatrists in
specialist clinics. Fifteen participants met the criteria for combined, nine for
inattentive and one for hyperactive presentation. Four participants were
taking psychostimulants (three methylphenidate [MPH], one lisdexamfe-
tamine), two SSRIs (sertraline, escitalopram) and one both medications
(MPH, sertraline).
Typically developing (TD) controls (n= 22) were recruited locally, had no

psychiatric diagnoses, were medication-free and scored below cut-off for
ADHD and ASD traits on the Conners’ Adult ADHD Rating Scale (CAARS)
[41] and the Social Responsiveness Scale-2 (SRS-2) [42] respectively. All
participants gave written informed consent to volunteer; and were given
travel reimbursement and £50 for participating. This study was in
accordance with the Declaration of Helsinki and was approved by a local
National Health Service Research Ethics Committee (13/LO/0373).

Motor inhibition tasks
Modified fMRI stop-signal task. The modified visual tracking stop-signal
task requires withdrawal of an already triggered motor response with the
appearance of an unpredictable Stop signal, while simultaneously
controlling for selective attention related to the oddball effect of the
low-frequency Stop signals [43, 44]. This task consisted of 300 trials
presented in a pseudorandomized sequence, completed in one block. In
66.7% of trials, participants responded to a left- or right-pointing arrow as
fast as possible (Go, n= 200; 1000ms duration), with an ISI jittered
between 700 and 1000ms. In 20% trials, interspersed in the stimulus
sequence, a Go signal was followed by an upward arrow Stop signal
(n= 60; 300ms). The first Stop signal appeared 250ms after a Go signal,
and its onset delay was adjusted ±50ms subsequently by a tracking
algorithm (ranging from 50 to 900ms), depending on the subjects’
probability of inhibition (PI), i.e. increasing if PI is <50% and decreasing if it
is over 50%, making the inhibitory process equally challenging for
everyone and ensuring the probability of successful inhibition reaches
~50% for each participant. Finally, to control for selective attention during
the detection of rare Stop signal, in 13.3% trials Go arrows were presented
diagonally upward to the left/right (Oddball Go, n= 40; 1000ms duration
and ISI jittered between 700 and 1000ms), which were used as a contrast
for responses to the Stop trials. The primary inhibitory task measure is the
stop-signal response time (SSRT), computed using the integration method
which subtracted the mean stop-signal delay from the nth fastest RT to Go
(including responses to the Oddball Go and side-switched responses)
ranked from the shortest to longest. The nth rank is determined by the
multiplication of the probability of responding given the Stop signal with
the total number of Go trials [45]. Only participants responding to >70%
Go signal were included in the analyses to ensure a prepotent response
tendency [18]. Secondary measures of executive performance include
mean response time (MRT) to Go signals, intrasubject response time
variability (RTV) to Go signals, and post-error response time slowing
(PERTS), known as a typical behavioural adjustment after committing errors
[24, 46, 47], which was calculated by subtracting MRT to Go after Successful
Stop from MRT to Go after Failed Stop.
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Behavioural go/no-go task
The adult version of the MARS go/no-go task [48, 49] was completed
outside scanner. It requires a button response to frequent Go trials
(n= 220 trials), and response withholding to rare No-Go signals (n= 80
trials; 26.7%). Each trial begins with a 300ms presentation of the Go (an
airplane) or No-Go signal (an exploding bomb), followed by a fixed
interstimulus interval of 700ms. The task is split into two blocks with equal
number of trials and trial types, to be completed once with each hand. The
first block requires left finger responses toward left-facing Go signals, while
the second block requires right finger responses toward right-facing Go
signals. The key measure of motor inhibition for this task is the probability
of inhibition, with secondary executive control response measures being
the MRT and intrasubject RTV to Go signals, and the percentage of
premature responses, which were defined as responses occurring between
200ms pre-stimulus and 100ms post-stimulus onsets, considered too late
for the previous stimulus and too early for the present [49].

Neuroimaging data acquisition and analysis
Imaging data were acquired on a General Electric MR750 3 T MR scanner
(Chicago, IL) with an 8-channel head coil for signal reception at King’s
College London, UK. A T1-weighted structural sagittal ADNI Go/2 ACC IR-
SPGR structural scan was taken with inversion time/repetition time/echo
time (TI/TR/TE)= 400ms/7.312ms/3.016ms, flip angle= 11°, 196 slices,
FOV= 27 cm × 27 cm, 256 × 256 matrix and slice thickness of 1.2 mm,
while T2*-weighted echo planar images (EPI, 303 volumes) were taken
sequentially, top to bottom, with TR/TE= 1800/27ms, flip angle= 75°,
FOV= 21 cm × 21 cm, 64 × 64 matrix, in-plane resolution= 3mm, 40 slices,
slice thickness/gap= 3mm/0.3 mm. The EPI scans were whole-brain
parallel to the inter-commissural plane.
Preprocessing a participant’s functional data was conducted using

Statistical Parametric Mapping (SPM12) and included slice-time correction,
realignment of EPI series to middle volume to correct head motion, co-
registration with the individual’s structural T1 scan, segmentation,
normalisation to the Montreal Neurological Institute (MNI) EPI template
and smoothing with an 8mm Gaussian kernel. Volumes with frame-to-
frame motion >1mm or mean global signal >1.5% standard deviation
were linearly interpolated using values from neighbouring frames using
ArtRepair toolbox of SPM12 [31] and participants’ data with >20%
interpolated volumes were excluded from final analyses. Analyses were
conducted separately at subject- and group-level to ease computational
load. At the subject-level, event onsets, convolved with the canonical
hemodynamic response function, were used to predict BOLD response,
while covarying for six translational and rotational motion parameters to
control for residual volume-to-volume head motion. A high-pass filter
(128 s) was applied to reduce low frequency noise while a first-order
autoregressive model corrected time series correlation.
Three contrasts of interest were used to investigate the neural correlates

of (1) successful motor inhibition, i.e. Successful Stop—Oddball, (2)
performance monitoring, i.e. Failed Stop—Oddball, both controlling for
selective attentional processes, (3) selective attention, i.e. Correct Oddball
— Go, with the Go trials modelled as implicit baseline. A conservative
contrast (4) Failed Stop—Successful Stop was post-hoc investigated to
model performance monitoring while controlling for motor inhibition
[18, 22]. At the group level, within-group activations were analysed with
uncorrected voxel at p < 0.001, and family-wise error (FWE)-corrected on
the basis of cluster extent at p < 0.05. Whole-brain between-group analyses
were conducted using univariate ANOVA with group as independent factor
on SPM12. Average beta coefficients were extracted using the MarsBaR
toolbox [50] from significant clusters, and from clusters from a threshold
p value between 0.05 and 0.10, with family-wise error correction, if the
clusters were within the regions that have been found to show atypical
activation or underactivation among the clinical groups [32]. The extracted
average beta coefficient underwent further post-hoc pairwise group
comparisons, sensitivity analyses, and regression analyses as below.

Statistical analysis plan
Behavioural and questionnaire data preparation and statistical analyses
were conducted using the IBM SPSS Software 26 (Armonk, NY).
Phenotypic measures were compared across groups using univariate
ANOVAs for interval data and Chi-square statistics for nominal data. To
investigate patterns of difficulties on the task performance measures, a
series of univariate ANOVAs were used in our main analyses to compare
group differences in the individual measures without covarying for IQ or
medication status, since these variables are deemed intrinsically part of

the group characteristics [51]. Post-hoc, we carried out pairwise group
comparisons for all data were corrected with Tukey-Kramer method and,
furthermore, sensitivity analyses while covarying for IQ, ADHD medica-
tion or any psychotropic medication, not to obtain better estimates
rather to explore the robustness of group effects. Furthermore,
characteristics of participant included into and excluded from the final
analyses were explored using a series of univariate ANOVAs and t-tests
(Supplement S2).
To elucidate further the nature of the group-differentiating brain

activation clusters, we investigated the specificity of their association with
task performance or disorder traits post-hoc in a series of multiple
regression analyses (see models below). Each model used average Beta
from each cluster as a dependent variable. In Model 1, brain activation was
regressed on SSRT and PERTS as independent variables, while controlling
for their diagnostic grouping by covarying for dummy variables ASD,
ADHD and ASD+ ADHD diagnosis with TD control as implicit baseline (for
ease of interpretation of the regression coefficients, PERTS and SSRT were
converted from milliseconds into seconds). In Model 2a, brain activation
was regressed on ASD (SRS total score), ADHD traits (CAARS ADHD index),
and the interaction term between these traits while again covarying the
diagnosis groups. The interaction term was included given that error/
performance monitoring tends to elicit neural underactivation in ADHD
[19–22], and overactivation in ASD [29, 30]. Since the shared construct
between diagnoses and traits may introduce collinearity among predictors,
we repeated the latter analysis with the disorder trait predictors only as
comparison (Model 2b). Each model was run with average Beta from four
clusters as dependent variable. Thus, we used a corrected p value
threshold of 0.0125 (i.e. alpha of 0.05 divided by four) for each model to
determine significance.
Regression models:

ð1Þ y ¼ B0 þ B1 �GroupASD;ADHD;ASDþADHD þ B2 �SSRTþ B3 �PERTS

ð2aÞ y ¼ B0 þ B1 �GroupASD;ADHD;ASDþADHD þ B2 �TraitASD
þB3 �TraitADHDþ B4 �TraitASD �TraitADHD

ð2bÞ y ¼ B0 þ B1 �TraitASDþ B2 �TraitADHDþ B3 �TraitASD �TraitADHD

RESULTS
Participant characteristics
Groups differed in FSIQ (F[3, 87]= 5.2, p= 0.002), which were
higher in ADHD and TD relative to ASD (both ps ≤ 0.012), but not
in age or handedness. Groups also differed in self-rated ADHD
index (F[3, 86]= 30.6, p < 0.001) and SDQ hyperactivity domain
(F[3, 86]= 62.9, p < 0.001), which was higher in ADHD and
ASD+ ADHD, than ASD and TD (ps < 0.001). Informant ratings
were in line with self-rated ADHD symptoms in the clinical groups
(Table 1). Finally, groups differed in autistic traits (F[3, 86]= 19.7,
p < 0.001) with all clinical groups being higher than TD (ps <
0.001), although informant ratings showed that ASD+ ADHD had
higher autistic traits than the ADHD group (p < 0.001). Compared
to those included in the analyses, excluded participants had lower
IQ, and higher informant ratings of ADHD index and autistic traits,
although did not differ in their self-ratings of ADHD and autistic
traits (Supplement S2).

Motor inhibition task performance
Modified stop fMRI task. Mean of probability of inhibition for the
modified stop-task across participants was 50.2% (Range:
41.7–60%), suggesting that the tracking algorithm was successful.
There were no differences in the percentage of correctly
responded “Go” across groups (F[3, 87]= 0.12, p= 0.95, Table 2).
ANOVAs showed no significant group effects on SSRT, of which
means, however, were in the expected direction across groups, i.e.
higher in ASD+ ADHD (M= 179.3, SD= 97.1; Hedge’s g= 0.48,
p= 0.25), ADHD (M= 173.0, SD= 63.8; g= 0.48, p= 0.33), and
ASD (M= 135.4, SD= 105.4 g= 0.11, p= 0.97) relative to TD
controls (M= 121.2, SD= 141.0). No significant group effects
were observe on the secondary measures MRT to Go trials,
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intrasubject RTV and PERTS (Fs[3, 87] ≤ 1.11, p ≥ 0.35, Table 2). The
findings remained after covarying for IQ, ADHD medication or any
psychotropic medications (i.e. including both SSRIs and stimu-
lants). Excluded compared to included participants had lower
correct Go response (particularly in the ASD group), higher SSRT,
and lower PERTS overall (Supplement S2).

Behavioural go/no-go task
A group effect was found on probability of inhibition (F[3, 87]= 6.93,
p < 0.001), which was significantly reduced in ASD+ ADHD
(M= 67.1, SD= 19.1; Hedge’s g= 0.97, p= 0.001) and in ADHD
(M= 66.7, SD= 14.5; g= 1.32, p < 0.001), but not in ASD (M= 75.8,
SD= 19.0; g= 0.53, p= 0.19) relative to TD controls (MTD= 85.8,
SD= 11.8), corrected for multiple testing using Tukey-Kramer
method. These group differences remained after covarying for IQ,
ADHD medication, or any psychotropic medication. No significant
group effects were observed on the secondary performance indices
(Fs[3, 87] < 1.63, p > 0.19; Table 2). Excluded compared to included
participants, particularly among those in the ASD+ADHD group,
had higher MRT and intrasubject RTV (Supplement S2).

Brain activation during the modified stop-signal task
Motion. Groups did not differ in total volume-to-volume head
movement (F[3,87]= 1.92, p= 0.13) or number of corrected
volumes (F[3,87]= 1.69, p= 0.18).

Successful stop—Oddball trials. No group differences were
observed for the contrast successful Stop—Oddball trials.
Within-subject group activation is shown in Supplement S3.

Failed stop—Oddball trials. Whole-brain within-group analyses
showed that during failed Stop—Oddball trials (Fig. 1), TD controls
activated right superior parietal lobe (SPL)/inferior parietal lobe
(IPL)/supramarginal gyrus/angular gyrus (BA7/40/39) extending
into right superior temporal gyrus (STG)/middle temporal gyrus
(MTG) (BA22/21), right AI/IFG (BA13/47/44/46) and right MFG/
dorsolateral prefrontal cortex (dlPFC)/superior frontal gyrus (SFG)
(BA9/6), medial prefrontal cortex (mPFC)/dorsal anterior cingulate
cortex (dACC) (BA24/32), left AI/IFG (BA13/47), and left IPL/
supramarginal gyrus/angular gyrus/posterior STG/MTG (BA40/39/
21/22). The ASD group showed no significant activation while the
ASD+ ADHD group activated right IPL (BA40). Last, the ADHD
group activated right AI/IFG (BA13/47/45/46), left AI/IFG/MFG
(BA13/47), mPFC/dACC (BA24/32), SFG (BA8/9/10), bilateral IPL/
supramarginal gyrus/angular gyrus/ STG/MTG (BA40/39/21/22),
ventral cingulate cortex (BA24) and right cuneus/cerebellum
(BA17).
Whole-brain between-group analyses (Fig. 2) revealed signifi-

cant group effects in left AI/superior temporal pole (STP)/MTG/IFG
orbital part (p= 0.014, F= 10.6, MNI peak coordinates [x=−44,
y= 14, z=−12], cluster size[kE]= 346 voxels), right posterior
thalamus/parahippocampal gyrus (PHG) (p= 0.013, F= 10.6, [18,
−42, 6], kE= 349) and in right MTG/hippocampus (p= 0.005,
F= 9.39, [48, −16, −12], kE= 434). A potentially weaker Group
effect, although fell short of significance, was found in right AI/
STP/IFG (p= 0.052, F= 9.43, [44, 12, −10], kE= 237). However,
since the region was situated the lateral frontostriatal area
typically underactivated in ADHD, we still explored pairwise group
differences of the extracted averaged beta coefficient of this
cluster across groups. The post-hoc analyses indicated that
ASD+ ADHD had lower activation than the other groups in all
four clusters (ps < 0.001 corrected with Tukey-Kramer method),
which remained after co-varying for IQ, ADHD medication, or any
psychotropic medication.

Other imaging contrasts
No group effects were found for the contrasts Oddball – Go, and
Failed Stop – Successful Stop trials. Within-subject clusters for theTa
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contrast Oddball – Go trials are reported in Supplement S3. No
within-subject clusters were found for the contrast Failed Stop –
Successful Stop trials.

Analyses of brain-behavioural association
Association between brain activation and task performance indices.
Multiple regressions showed selective association between brain
activation with reduced SSRT in left AI/STP/MTG/orbital IFG
(BSSRT=−2.14, p= 0.010, 95% CI [−3.76, −0.52]), right posterior
thalamus/PHG (BSSRT=−1.70, p= 0.006, 95% CI [−2.90, −0.51)
and in right AI/STP/IFG (BSSRT=−2.36, p= 0.011, 95% CI [−4.17,
−0.55]). The association in right MTG/hippocampus did not meet

the corrected p-threshold of significance (BSSRT=−1.38, p= 0.045,
95% CI [−2.73, −0.03]). No significant association was found
between brain activation and PERTS (BPERTS ≤ 0.58, ps ≥ 0.17),
controlling for diagnostic grouping.

Association between brain activation and dimensional ASD
and ADHD traits
No significant associations were found between brain activation and
ASD or ADHD traits, and their interactions, while covarying for
diagnostic grouping in all four regions (B trait ADHD ≤ 0.030, ps ≥ 0.48;
B trait ASD ≤−0.020, ps ≥ 0.20; B trait ADHD × trait ASD ≤ 0.043, ps ≥ 0.59).
No significant associations were found between brain activation and

Table 2. Behavioural task performance.

TD ASD ASD+ ADHD ADHD Statistics

(n= 22) (n= 21) (n= 23) (n= 25) F(3,87) p

Modified stop-signal task

Correct Go (SD), % 87.3 (7.55) 87.0 (6.43) 86.2 (7.41) 86.4 (6.02) 0.12 0.95

SSRT (SD), ms 121.2 (141.0) 135.4 (105.4) 179.3 (97.1) 173.0 (63.8) 1.68 0.18

PERTS (SD), ms 1.0 (53.3) 11.4 (57.8) 18.4 (37.1) 15.5 (55.5) 0.49 0.69

MRT to Go (SD), ms 636.2 (134.8) 586.6 (108.5) 574.7 (102.9) 602.3 (127.8) 1.11 0.35

Intrasubject RTV (SD), ms 162.7 (46.3) 155.6 (54.9) 146.4 (44.8) 151.0 (43.5) 0.49 0.69

Behavioural go/no-go task

Prob. of inhibition (SD), % 85.8 (11.8) 75.8 (19.0) 67.1 (19.1) 66.7 (14.5) 6.93 <0.001***(a)

Prem. responses (SD), % 0.6 (1.0) 1.2 (1.9) 3.5 (8.8) 2.3 (3.0) 1.63 0.19

MRT to Go (SD), ms 301.3 (41.1) 293.8 (34.4) 289.5 (31.4) 299.6 (25.3) 0.61 0.61

Intrasubject RTV (SD), ms 58.3 (17.0) 65.2 (21.6) 69.1 (28.8) 71.2 (19.2) 1.52 0.22

MRTmean response time, PERTS post-error response time slowing, prem responses premature responses, prob of inhibition probability of inhibition, RTV response
time variability, SD standard deviation, SSRT stop-signal response time.
***p < 0.001, (a) post-hoc analyses: TD > ASD+ ADHD***, ADHD***, applying Tukey-Kramer multiple comparison correction method.

Fig. 1 Whole-brain within-subject activation during Failed Stop contrasted with Oddball trials. Significant cluster of activation in groups of
participants with typically development, ASD, ASD+ ADHD and ADHD, formed with a peak voxel threshold of p < 0.001, uncorrected, and a
cluster extent threshold of p < 0.05, applying family-wise error multiple comparison corrections.
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those traits and their interactions in the model in which diagnostic
grouping were not covaried, particularly in right posterior thalamus/
PHG, right AI/STP/IFG and right MTG/hippocampus (B trait ADHD ≤
0.072, ps ≥ 0.133; B

trait ASD
≤ 0.016, ps ≥ 0.58; B trait ADHD × trait

ASD ≤−0.070, ps ≥ 0.21). A potential weak association between
activation in left AI/STP/MTG/orbital IFG and ADHD traits (B trait

ADHD= 0.099, p= 0.034) did not meet the corrected threshold of
p= 0.0125. No significant association was found between left AI/
STP/MTG/orbital IFG with ASD traits or interactions of traits
(B trait ASD= 0.040, p= 0.34; B trait ADHD × trait ASD=−0.14, p= 0.066).

DISCUSSION
The main group comparison findings showed that young adult
males with ASD+ ADHD demonstrated underactivation in brain
regions associated with performance monitoring, including
primarily left AI/temporal cortex/orbital IFG and right AI/STP, right
MTG/hippocampus and right posterior thalamus/parahippocam-
pus relative to ASD, ADHD, and TD controls on the fMRI stop-
signal task. Against our hypothesis, no finding of atypical brain
activation clusters was found across groups during successful stop
trials that indexes cognitive control. In the behavioural go/no-go
task, reduced response inhibition was observed in the ADHD and
the ASD+ ADHD groups.
Performance monitoring, or error monitoring in typically devel-

oping adults, particularly implicates bilateral inferior frontal areas
(i.e. AI/STP/IFG) [52–54], medial frontal, as well as midbrain and
limbic regions including posterior thalamus, hippocampus, and
parahippocampus [20, 55, 56]. The underactivation ventrolateral
and medial prefrontal region [20, 22, 57], posterior thalamus, right
hippocampus and parahippocampus [19, 25, 58] during perfor-
mance monitoring have been shown in children and adults with
ADHD. Based on these literature, the ASD+ ADHD-specific under-
activation found in this study may be described as ADHD-like.
However, such interpretation in this study is constrained by the
absence of similar underactivation in the ADHD alone group.
Performance monitoring during a stop-signal task consists of

both conflict monitoring or withholding in the earlier Go process

in case a Stop signal appears; and a later error processing to
modify behaviour during failed stopping [54]. Behaviourally, no
post-error slowing differences between groups or correlation
between post-error slowing with brain activation were observed.
We found instead a specific association between increased SSRT,
i.e. poor motor inhibition, and decreased activation across clusters
in left AI/STP/MTG/orbital IFG, right posterior thalamus/PHG and
right AI/STP/IFG. This indicates that the performance monitoring
clusters are associated with the earlier conflict monitoring related
to motor inhibition problem instead of the later error processing
[20, 59], which possibly reflect late-arriving motor inhibition that
fails to intercede a triggered motor action [59, 60].
Interestingly, the brain activation was neither specifically asso-

ciated with traits of ASD or ADHD, beyond the variation accounted
already by diagnostic grouping or otherwise. A weak association
between activation in one performance monitoring cluster in left AI/
STP/MTG/orbital IFG with reduced ADHD traits was in the expected
direction but did not meet the corrected threshold of significance.
Taken together, the atypicality of brain activation tested in this
manner appears more strongly associated with cognitive task
performance, and less directly associated with the symptom severity
of the diagnoses per se, which is in keeping with findings of the
separability of cognitive difficulties from core diagnostic symptoms
as shown in ADHD research [61].
In addition to the brain activation finding, difficulties of

response withholding were also observed during the go/no-go
task in the ASD+ ADHD and in ADHD groups, with large effect
sizes, relative to TD controls. While not significant statistically, both
ADHD groups also demonstrated a pattern of increased mean
SSRT relative to TD controls. Together these findings suggest that
motor inhibition difficulties are primarily associated with ADHD
diagnosis, which is in line with evidence from several behavioural
studies showing increased difficulties of cognitive control or
motor inhibition problems in ASD+ ADHD relative to ASD alone
[9, 10, 62, 63], and of specific associations between executive
control and ADHD symptoms among individuals with ASD [11, 64].
The non-significant group differences in SSRT and the shared

response withholding difficulties primarily in ADHD and ASD+

Fig. 2 Whole-brain between-subject clusters of activation during Failed Stop relative to Oddball trials. Activation clusters were found
during Failed Stop relative to Oddball trials in left anterior insula (AI)/superior temporal pole (STP)/middle temporal gyrus (MTG)/interior
frontal gyrus (IFG); right posterior thalamus/parahippocampal gyrus (PHG); right MTG/hippocampus; and right AI/STP/IFG. Brain activation in
the left AI/STP/MTG/IFG is presented in the bar chart across groups as an example, accompanied by error bars representing 95% confidence
intervals in red and jittered scatterplots of individual activation in yellow. Activation clusters were formed using a peak voxel threshold of
p < 0.001, uncorrected, and a cluster extent threshold of p < 0.05 family wise error-corrected for multiple comparisons.
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ADHD during the go/no-go task, suggest a similarity between the
two groups. However, the added presence of right IFG/AI and
midbrain/limbic underactivation during error monitoring in ASD+
ADHD suggested more severe neurofunctional atypicality in the
combined group overall. A similar conclusion has been drawn
previously in ASD+ ADHD children and adolescents during an
fMRI delay-discounting task [34]. Notably, both studies revealed
patterns of specific neural atypicality in the ASD+ ADHD relative
to their age-matched ASD and ADHD controls, which suggests
that individuals with ASD+ ADHD do not simply have additive
characteristics of the pure groups [12, 13].
The altogether absence of the hypothesised functional under-

activation clusters in ADHD, while unexpected, is in line with a
number of fMRI inhibition studies in ADHD adults [21, 22, 65–67].
Given the predictability of the fMRI task version over behavioural
versions, the lack of observed underactivation could reflect
heterogeneous activation patterns associated with the idiosyn-
cratic strategies developed by the participants during the task that
was not captured by the fMRI analysis [24, 68]. Alternatively, since
there is far more evidence for inhibitory brain function under-
activation in ADHD individuals with younger age [14, 69, 70], its
absence in our young adult ADHD group could reflect neurofunc-
tional maturation of the motor inhibition network. This speculative
interpretation would require confirmation with direct comparison
with younger participant groups or a longitudinal study design.
Lastly, it is plausible that there is an altogether underestimation of
group effects in brain activation related to the exclusion of
individuals with higher severity of ASD or ADHD traits as judged
from the informant ratings.
This study was constrained by some methodological limitations,

including its relatively small sample size despite, to our knowl-
edge, being the largest comparative fMRI study of motor
inhibition in ASD and ADHD to date and the only one to compare
the ASD+ ADHD with the pure groups in young adulthood
[31, 32]. The underactivation clusters found in the ASD+ ADHD
relative to other groups remains a neural correlate rather than a
predictor for the condition. fMRI findings in relatively small sample
sizes often showed low degree of reliability [71, 72]. Therefore,
future studies with replication datasets in larger sample of the
population is necessary, preferably incorporating prediction
analysis for better reliability [73].
The increased sample homogeneity afforded by including

young adult males only, selected due to the high prevalence of
ASD and ADHD among males [74, 75], was at the cost of the
generalisability of findings for the ASD and ADHD populations.
Full-scale IQ distribution was unequal across groups, but was in
the direction expected from the literature, i.e. lower among both
groups with ASD diagnosis, presumably because a substantial
proportion of individuals with ASD have lower IQ as found in
population-representative cohorts [76, 77]. Our main group
difference findings were presented without covarying for IQ
[31, 51]. Subsequent analyses covarying for IQ was not completed
to obtain adjusted group estimates of the main finding, but rather
as a post-hoc sensitivity analysis to explore the robustness of
group differences. Some strengths include the use of both fMRI
and neurocognitive tasks, to provide a fuller picture of the
cognitive profile across diagnostic groups, and the inclusion of
well-characterised clinical groups from both clinical and
population-representative samples, especially some individuals
in the ASD and ASD+ ADHD groups who have been followed
longitudinally. Furthermore, there was a substantial proportion of
medication-free individuals in the clinical groups.
To conclude, this study shows that young adult males with

ASD+ ADHD, but not those with ADHD alone, had under-
activation in inferior fronto-insular-thalamic regions, reflecting
earlier processes of inhibitory withholding during performance
monitoring. On behavioural task, both ADHD groups with and
without ASD were impaired in selective motor action withholding.

Together the findings suggest that among young adults, those
with ASD+ ADHD have the most severe cognitive and neurofunc-
tional atypicality, which do not appear to be a combination of the
pure disorder forms.
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