
ARTICLE OPEN

Subtypes in addiction and their neurobehavioral profiles across
three functional domains
Gunner Drossel1,2, Leyla R. Brucar 2, Eric Rawls2, Timothy J. Hendrickson3,4 and Anna Zilverstand 2,5✉

© The Author(s) 2023

Rates of return to use in addiction treatment remain high. We argue that the development of improved treatment options will
require advanced understanding of individual heterogeneity in Substance Use Disorders (SUDs). We hypothesized that considerable
individual differences exist in the three functional domains underlying addiction—approach-related behavior, executive function,
and negative emotionality. We included N= 593 participants from the enhanced Nathan Kline Institute-Rockland Sample
community sample (ages 18–59, 67% female) that included N= 420 Controls and N= 173 with past SUDs [54% female; N= 75
Alcohol Use Disorder (AUD) only, N= 30 Cannabis Use Disorder (CUD) only, and N= 68 Multiple SUDs]. To test our a priori hypothesis
that distinct neuro-behavioral subtypes exist within individuals with past SUDs, we conducted a latent profile analysis with all
available phenotypic data as input (74 subscales from 18 measures), and then characterized resting-state brain function for each
discovered subtype. Three subtypes with distinct neurobehavioral profiles were recovered (p < 0.05, Cohen’s D: 0.4–2.8): a “Reward
type” with higher approach-related behavior (N= 69); a “Cognitive type” with lower executive function (N= 70); and a “Relief type”
with high negative emotionality (N= 34). For those in the Reward type, substance use mapped onto resting-state connectivity in
the Value/Reward, Ventral-Frontoparietal and Salience networks; for the Cognitive type in the Auditory, Parietal Association,
Frontoparietal and Salience networks; and for the Relief type in the Parietal Association, Higher Visual and Salience networks
(pFDR < 0.05). Subtypes were equally distributed amongst individuals with different primary SUDs (χ2= 4.71, p= 0.32) and gender
(χ2= 3.44, p= 0.18). Results support functionally derived subtypes, demonstrating considerable individual heterogeneity in the
multi-dimensional impairments in addiction. This confirms the need for mechanism-based subtyping to inform the development of
personalized addiction medicine approaches.
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INTRODUCTION
In the United States, substance use disorders (SUDs) are a major
source of morbidity and mortality. The lifetime prevalence of SUDs
has been estimated to be as high as 30% [1]. Currently,
approximately 40.3 million people in the U.S. have a SUD
diagnosis [2]. Independent of their primary substance of choice,
over two-thirds of individuals return to use within weeks to
months of initiating treatment, and up to 85% of individuals
return to substance use within one year of treatment completion
[2–4]. Research suggests that this is due to suboptimal treatment
options, low confidence in their effectiveness, and restricted
access to treatment facilities [5, 6]. We argue that alleviating this
urgent situation; specifically, improving the effectiveness of
existing treatments, will require a better understanding of the
mechanisms underlying the vulnerability for SUDs to develop and
to persist. Furthermore, we recognize that the underlying
neurobehavioral mechanisms are likely to be heterogeneous
across individuals with SUDs, and understanding this hetero-
geneity will be critical for conceptualizing advances in treatment.
Prominent addiction theories have stressed the importance of

three neurobehavioral mechanisms of persistence in addiction: (1)

altered incentive salience (also reward- or approach-related
behavior), (2) lower executive function, and (3) increased negative
emotionality [7, 8]. Recent evidence from individuals with alcohol
use disorder (AUD) has empirically demonstrated the validity of
this three-mechanism model of addiction [9, 10]. It has further
been argued that these three mechanisms are dependent on each
other, going back to studies showing that substances of abuse
impair all of the neurobiological systems underlying them [11–14].
However, contrary to this assumption, decades-old research from
psychology provided evidence for the functional independence of
the approach-related behavior, executive function and negative
emotionality domains [15, 16]. Accordingly, we propose to
investigate if function on these three domains is at least partially
independent, such that different combinations of impairments on
these domains may underlie addiction persistence.
Efforts to investigate heterogeneity and identify subtypes

within populations with SUDs have largely focused on clinical/
diagnostic data that assessed addiction severity (and sometimes
psychiatric comorbidity), rather than the underlying mechanisms
[17–23]. Through literature searches (PubMed, Google Scholar), we
have identified over 120 published studies that have subtyped
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individuals with SUDs using symptom scales (e.g., AUDIT, ASI,
AUDADIS-IV, SSADDA, DSM-IV, ICD-101). These initial efforts to
define subgroups or “subtypes” in individuals with SUDs
consistently found that substance users can be separated into a
milder “late onset” type, consisting of individuals characterized by
low psychiatric comorbidity versus a more severe “early onset”
type with high psychiatric comorbidity, more poly-substance use,
and worse treatment prognosis [24–33]. In contrast, previous
research characterizing individual differences in the multi-
dimensional mechanisms (rather than symptom presentation) of
addiction is extremely limited. Only two studies have investigated
heterogeneity in impulsivity and found “impulsive” versus “non-
impulsive” types [34, 35], while two other studies differentiated
individuals based on drinking motives and found a “reward”
(pleasure seeking) versus “relief” (drinking to cope) motivational
type [36, 37]. Thus, even within the space of mechanism-based
subtyping, existing literature is limited to a narrowly-focused
space of the mechanisms underlying addiction, rather than
applying a broad, multi-dimensional approach.
The goal of the current study was to use a multi-dimensional

“mechanism-based” subtyping approach, using data informing the
three functional domains implicated in addiction persistence: (1)
approach-related behavior, (2) executive function, and (3)
negative emotionality [7, 8]. We leveraged the enhanced Nathan
Kline Institute-Rockland Sample (NKI-RS), a dataset which includes
a comprehensive phenotypic assessment that broadly character-
ized individual function on these three domains, provided a
clinical characterization of the sample, and included neuroimaging
data. This large, heterogeneous community sample included
participants with varying past SUD diagnoses. We hypothesized
considerable individual heterogeneity in the impairments on the
three functional domains of interest. We further hypothesized that
individual heterogeneity underlying addiction would have a large
trait-component. We hence expected to find the existence of at
least three separable neuro-behaviorally distinct subtypes in past
substance users: a “reward type” with higher reward-seeking, a
“cognitive type” with impaired executive function, and a “relief
type” defined by the use of substance to cope with high negative
affect. Finally, we expected that each discovered subtype would
be characterized by corresponding, unique neurobiological
impairments of resting-state brain function.

PARTICIPANTS AND METHODS
Participants
We analyzed data from the NKI-RS study that was collected at the NKI in
New York, from 2012 to 2016 [38]. All study procedures and informed
consent forms, including consent to share de-identified data, were
approved by the Nathan Kline Institute Institutional Review Board (IRB)
in accordance with the Declaration of Helsinki. After removing measures
with >10% missing data, N= 612 participants ages 18–59 had complete
phenotypic data. Of these participants, N= 420 were Controls (participants
with neither a past nor a current SUD diagnosis), N= 19 had current SUDs,
and N= 173 were participants with past SUDs (54% females). Due to their
low number, individuals with current SUDs were excluded, leaving N= 593
participants (67% female) in the sample. Within individuals with past SUDs,
N= 75 were diagnosed with past AUD only, N= 30 were diagnosed with
past Cannabis Use Disorder (CUD) only and N= 68 were diagnosed with
Multiple SUD diagnoses, see Supplementary Table 1. Detailed demo-
graphic information is provided in Table 1a. All clinical diagnoses (SUD and

comorbid diagnoses) were assessed with the Structured Clinical Interview
for DSM-IV [39]. Tobacco Use Disorder was not assessed, due to the low
predictive validity of this diagnosis [40].

Phenotypic measures
The NKI-RS data set phenotyped participants using self-report measures
and tasks that assessed behavior, affect, clinical symptoms and cognition.
We included all available 74 subscales (derived from 18 different measures)
that had <10% missing data (listed in Supplementary Table 2). We did
therefore not perform any a priori selection of measures based on
theoretical considerations, but rather intended to model the entire
phenotypic space.

Factor analysis of phenotypic data
To reduce the measured phenotypic space to a set of latent constructs, an
exploratory factor analysis (EFA) was conducted that included all study
participants (N= 593) to model the full range of phenotypic variance. This
analysis was very well powered (N > 500; participant/variable ratio=8.0),
based on sample size recommendations for EFA [41]. We used Monte Carlo
permutation analysis (parallel analysis) [42] to determine the number of
factors statistically significant at p < 0.05 [43]. Factors were extracted using
maximum likelihood as calculated by the expectation-maximization
algorithm. Additionally, an oblimin rotation was used to allow for
correlated factors. The use of oblimin rotation is critical to data reduction
over a large phenotypic variable space, as many factors are expected to be
separable but closely related. EFA was conducted in R using the “psych”
package [44]. Details on why this method was chosen over other data
reduction schemes are included in the Supplementary Methods. One
participant (N= 1) was deemed an outlier (>3 SD from mean) on their
factor loading for “general psychiatric symptoms” and was removed from
further analysis.

Extraction of functional domains
To visualize how latent constructs (factors generated by the EFA) were
related to each other, we used a spring-embedded plot. Each factor was
visualized as a node. Edges connecting nodes act as “springs” between
pairs of nodes. Nodes (factors) that were more strongly correlated were
plotted closer together in two-dimensional space, to provide an intuitive
visual representation of the factor correlations [45]. The algorithm was run
on the full correlation matrix from the EFA, using MATLAB’s “graph” object.
Only minimal correlation weights were used, such that each factor was
connected to at least one other factor.

Subtyping analysis in past SUDs
To recover distinct subgroups within individuals with past SUD diagnosis
(N= 173), subtypes were determined using latent profile analysis (LPA) on
the EFA latent factors scores. LPA, a form of Gaussian-mixture modeling,
builds a model of the data to find subtypes within the modeled multi-
dimensional data variable space [46], which here is the variable space
defined by the EFA. LPA was performed in R (4.0.5) using the “mclust”
package (version 5.7.4) [47, 48]. The model was initialized by model-based
hierarchical clustering, and an expectation-maximization algorithm was
used to fit the model by assigning posterior probabilities to variable
distributions [49, 50]. Bayesian Information Criteria (BIC) were computed
for each parameterized model given the log-likelihood, the dimension of
data, and the number of mixture components in the model. The model
with the lowest BIC and non-negative BIC difference was selected [51]. The
bootstrap likelihood ratio test (BLRT) was also used to evaluate model fit to
models with k−1 profiles [52]. The power for this analysis (N= 173; 12
input variables that are continuous; N= 34 in the smallest observed class;
observed effect size for profile differentiation: d= 1.7–2.8) was excellent
(close to 1) according to simulations [51, 53].

Phenotypic characterization of recovered subtypes
To characterize the recovered subtypes with regards to their phenotypic
profiles, we tested for statistically significant differences between the
recovered types on the extracted EFA factors using independent samples t
test with Holm–Bonferroni correction. We also correlated individual EFA
factor scores with current non-medicinal substance use (number of days in
the past 6 months) and binge-drinking (number of days in the past
6 months; men: 5 or more drinks per day, women: 4 or more drinks
per day) with Holm-Bonferroni correction.

1Abbreviations: AUDIT Alcohol Use Disorders Identification Test, ASI
Addiction Severity Index, AUDADIS-IV Alcohol Use Disorder and
Associated Disabilities Interview Schedule-IV, SSADDA Semi-
Structured Assessment for Drug Dependence and Alcoholism, DSM-IV
Diagnostic and Statistical Manual of Mental Disorders-IV, ICD-10
International Statistical Classification of Diseases and Related Health
Problems (10th revision).
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Table 1. (a) Demographics and diagnoses by past SUD; (b) clinical characteristics by past SUD.

Past SUD (any)
(N= 173)

Past AUD
(N= 75)

Past CUD
(N= 30)

Past multi-UD
(MUD) (N= 68)

Controls
(N= 420)

(a)

Gender: M/F 78/94*** 24/51 15/15** 39/29*** 115/305

Age (years) 40.1 (13) 40.4 (12.7) 34.4 (13.1) 42.3 (12.7)* 38.0 (13.3)

Race (White/African American/
Other)

108/46/19** 51/17/7 16/10/4* 41/18/9 * 316/68/36

Education—years completed 14.7 (2.1)*** 14.6 (2) 13.8 (2)*** 14.6 (2.2)** 15.4 (2.1)

Current smoker (# participants) 33*** 11* 8*** 14*** 28

Tobacco (including smokeless)
use—times using/day

3.3 (12.6)*** 3.8 (18.1)** 2.9 (5.0)** 3.0 (6.1)*** 0.9 (3.3)

Past 6 months days drunk
(# days)

4.1 (8.7)* 4.4 (7.0)* 2.1 (3.1) 4.7 (11.6)* 2.5 (7.4)

Past 6 months nonmedicinal
substance use (# days)

8.8 (27.0)*** 2.5 (6.7) 20.8 (45.9)*** 10.5 (28.2)*** 2.7 (15.4)

# Past internalizing disorders (%) 0.36 (0.61)* 0.39 (0.61) 0.5 (0.73)* 0.23 (0.54) 0.25 (0.53)

Anxiety (N) 0 0 0 0 1

Phobia (N) 3 0 2 1 4

Panic disorder (N) 5 2 1 2 10

Obsessive compulsive disorder
(N)

1 1 0 0 4

Depression or dysthymic
disorder (N)

45 21 9 15 72

Eating disorder or body
dysmorphia (N)

4 3 1 0 4

Posttraumatic stress disorder (N) 3 2 1 0 9

# Past externalizing disorders (%) 0.05 (0.21) 0.01 (0.12) 0.07 (0.25) 0.07 (0.26)** 0.02 (0.14)

Attention-deficit/hyperactivity
disorder (N)

9 1 2 6 6

Bipolar disorder (N) 2 0 0 2 0

Other psychosis (e.g.,
schizophrenia) (N)

0 0 0 0 0

# Current internalizing
disorders (%)

0.23 (0.56) 0.25 (0.64) 0.023 (0.50) 0.21 (0.51) 0.15 (0.47)

Anxiety (N) 15 5 4 6 15

Phobia (N) 6 3 1 2 14

Panic disorder (N) 3 1 2 0 3

Obsessive compulsive disorder
(N)

3 1 0 2 4

Depression or dysthymic
disorder (N)

12 7 1 5 20

Eating disorder or body
dysmorphia (N)

3 2 0 1 4

Posttraumatic stress disorder (N) 6 3 0 3 6

# Current externalizing
disorders (%)

0.04 (0.20)* 0.01 (0.12) 0.07 (0.25)* 0.06 (0.24) 0.03 (0.17)

Attention-deficit/hyperactivity
disorder (N)

7 1 2 4 11

Bipolar disorder (N) 1 0 1 0 0

Other psychosis (e.g.,
schizophrenia) (N)

0 0 0 0 2

(b)

ASR: Anxious/Depressed (past
6 months)

55.2 (7.7)** 55.5 (7.7)* 55.8 (9.0) 54.7 (7.1) 53.5 (6.8)

ASR: Withdrawn (past 6 months) 54.4 (6.5) 54.2 (6.9) 56.0 (7.3)* 53.8 (5.7) 53.4 (6.3)

ASR: Somatic Complaints (past
6 months)

55.2 (6.0)** 54.3 (5.3) 55.1 (5.9) 56.3 (6.7)*** 53.5 (6.0)
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Resting-state functional connectivity per subtype
To characterize resting-state brain function underlying return to substance
use and to investigate if the neural correlates of return to use would differ
between subtypes, we conducted a resting-state functional connectivity
analysis of the neural correlates of continued substance use for each
subtype separately. We included the subset of participants with complete
NIDA Quick Screen and Adult Self Report (ASR) data and more than 5min
of resting-state data after denoising (Past SUD N= 104, 59% Female;
Controls N= 302, 74% Female). We used the matchControls function from
the R “e1071” library [54] to determine a separate age- and gender-
matched control group for each subtype. We also assessed urine screens
on MRI day (Supplementary Table 3).
Imaging data was acquired on a Siemens Trio 3.0 T scanner (Siemens

Healthcare GmbH, Erlangen, Germany) equipped with a 32-channel head
coil [38]. For each participant, a T1-weighted (T1w) magnetization
prepared gradient echo sequence was acquired for a structural image
(repetition time=1900 ms, echo time=2.52ms, flip angle=9°, 176 slices,
1 mm3 isotropic voxels). To analyze resting-state functional connectivity,
we used the “REST645” scan that was acquired using a multiband echo-
planar imaging sequence with the following parameters: multiband
factor=4, volumes=900, repetition time=645ms, echo time=30ms, flip
angle=60°, 3 mm3 isotropic voxels.
For data quality control, MRI Quality Control tool (MRIQC) was

implemented prior to fMRI data pre-processing [55]. Scans were entered
through a minimal preprocessing pipeline to obtain images and masks for
Image Quality Metrics (IQMs): signal-to-noise ratio, framewise-
displacement (FD), and segmented tissue summary statistics. The data
from outliers on these metrics (>3 SD) were assessed visually. All scans
were of high quality.
fMRI preprocessing was performed using fMRIPrep v. 20.2.1 [56]. The T1w

image, which was preprocessed as described in the SupplementaryMethods,
was used for spatial normalization and alignment. For each BOLD-run per
subject, the following preprocessing was performed. First, the initial first four
volumes were non-steady state scans and were removed. Then, a reference

volume and its skull-stripped version were generated and corrected for
susceptibility distortions using fMRIPrep’s fieldmap-less approach. The BOLD
reference was then co-registered to the T1w reference using bbregister
(FreeSurfer v6.0.1) which implements boundary-based registration [57]. Co-
registration of the BOLD reference to the T1 reference was configured with
nine degrees of freedom to account for distortions remaining in the BOLD
reference. Head-motion parameters with respect to the BOLD reference
(transformation matrices and size rotation and translation parameters) for
later denoising were estimated using MCFLIRT (FSL 5.0.9 [58]) before any
spatiotemporal filtering. Head motion correction was performed in the
original, native space. The BOLD time series were resampled onto the
FreeSurfer surface: “fsaverage” and then into standard space (MNI152N-
Lin2009cAsym). Grayordinates files containing 91k samples were generated.
Next, denoising of the data was performed in Matlab (R2019a) using

custom scripts to regress out the following noise regressors: five
aCompCor principal components from both the segmented WM and CSF
[59], 24 motion parameters (3 rotation, 3 translation, their derivatives and
quadratic terms [60]; cosine filters (128 s cut off)—low-frequency signal
drift—regressors, and spike regressors for each frame that exceeded a
threshold of 0.5 mm FD [61, 62].
For functional connectivity analyses, we used Glasser et. al.’s 2016

multimodal parcellation (360 cortical areas [63]), in addition to the 19
anatomically defined subcortical areas from the HCP [64]. We constructed
functional connectivity matrices by extracting the mean BOLD time series
for these 379 areas and subsequently computing the z-transformed
Pearson correlation coefficients between the time-courses of all areas. The
resulting matrices were binarized with a proportional threshold of 15%,
which is the median of an ideal cost range (approx. 0.01–0.30). This
provides for optimized sparsity in the thresholded graph [65] and
improved stability of measures as compared to absolute thresholds [66].
We used a graph theory approach to calculate nodal global efficiency,

local efficiency, betweenness centrality, and participation coefficient
using the Brain Connectivity Toolbox [67]. We used three measures of
functional integration and segregation—nodal global efficiency, local

Table 1. continued

(b)

ASR: Thought Problems (past
6 months)

53.0 (5.1)* 53.1 (5.1) 54.1 (5.9)* 52.5 (4.8) 52.0 (5.0)

ASR: Attention Problems (past
6 months)

55.6 (7.0)* 56.2 (7.3)* 55.4 (6.4) 55.0 (7.1) 54.1 (6.7)

ASR: Aggressive Behavior (past
6 months)

53.9 (5.4)** 53.8 (4.8)* 53.0 (5.1) 54.5 (6.0)** 52.6 (5.3)

ASR: Rule-Breaking Behavior
(past 6 months)

55.8 (6.4)*** 55.7 (6.6)*** 56.3 (6.4)** 55.7 (6.4)** 53.1 (5.7)

ASR: Intrusive (past 6 months) 53.0 (4.3) 53.1 (4.4) 51.8 (3.4) 53.3 (4.6) 52.4 (4.9)

Beck Depression Inventory Total
(past 2 weeks)

7.8 (7.6)*** 8.1 (7.6)** 8.2 (9.2) 7.3 (6.9) 5.5 (6.7)

Trauma Symptom Checklist (past
2 months)

24.6 (15.4)*** 24.5 (15.3)*** 23.6 (15.5)* 25.0 (15.8)*** 18.5 (13.3)

CAARS: Inattention/Memory
Problems

48.3 (9.8) 48.5 (9.8) 47.7 (10.1) 48.3 (9.7) 47.2 (8.9)

CAARS: Hyperactivity/
Restlessness

48.6 (8.7)*** 48.4 (9.5)** 47.1 (8.9) 49.4 (7.6)*** 45.8 (7.6)

CAARS: Impulsivity/Emotional
Liability

48.2 (7.7)*** 48.3 (7.4)*** 47.7 (9.0)* 48.2 (7.4)*** 45.0 (7.0)

CAARS: Problems with Self-
Concept

49.0 (9.9)*** 49.6 (10.2)** 48.4 (11.5) 48.6 (8.8)* 46.1 (8.8)

CAARS: ADHD Index 48.3 (9.6)*** 48.3 (9.6)** 47.4 (11.0) 48.8 (9.2)*** 45.0 (8.1)

SUD substance use disorder, AUD alcohol use disorder, CUD cannabis use disorder, MUD multi use disorders, ASR Adult Self Report, CAARS Conners’ Adult ADHD
Rating Scales.
For Table (a), MUD included N= 60 alcohol, 6 amphetamine, 54 cannabis, 27 cocaine, 5 hallucinogenic, 1 inhalant, 3 opioid, 1 phencyclidine, 2 sedative/
hypnotic, 1 polysubstance undefined.
Mean (SD); bold font with asterisk denotes that Use Disorder group differs from Controls; *p < 0.05, **p < 0.01, ***p < 0.001.
For Table (b), scores from clinical assessments.
Independent samples t test was used to compare each Use Disorder group to Controls.
Columns 2–4: bold font with asterisk denotes significant difference to Controls; p < 0.05*, p < 0.01**, p < 0.001***.
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efficiency, and betweenness centrality. The efficiency metrics, which are
known to be powerful and biologically plausible measures of brain
network function, quantify the shortest path length between a select
node and all other nodes in the brain (global) or neighboring nodes
(local), whereas the betweenness measure quantifies the number of
paths that pass through a given node and thus assesses that node’s
criticality in the network [67, 68]. Additionally, to assess centrality, we
used the graph theory measure participation coefficient, which
quantifies whether a node is facilitating modular segregation [67, 69].
Module assignments for computing participation coefficient were
chosen a priori based on the same multimodal parcellation as used to
define areas, [63] assigning each of Glasser et al.’s 22 regions and the 19
anatomically defined subcortical areas as a module. See Supplementary
Methods for more details.
For each graph theory metric, a generalized linear model (GLM)

regression analysis was run and corrected for multiple comparisons using
an FDR-threshold of p < 0.05. Separate analyses were performed to
investigate the subtype-specific neurobiological correlates of current
non-medicinal substance use (predictor: number of days in the past
6 months) and current binge-drinking (predictor: number of days in the
past 6 months; men: 5 or more drinks per day, women: 4 or more drinks
per day). Results were visualized using Connectome Workbench (version
1.5.0) (https://www.humanconnectome.org/software/connectome-
workbench [70]). To aid the discussion and interpretation of results, the
360 cortical areas were additionally assigned to large-scale resting-state
networks by first matching each area to its Brodmann Area and then
determining the corresponding Intrinsic Connectivity Network based on
Laird et al. (Supplementary Fig. 1) [71].

RESULTS
Phenotypic space
The Bartlett’s test of Sphericity (X

2= 21299.81, p < 0.001) and
Kaiser–Meyer–Olkin (KMO) test (KMO= 0.86) indicated appropri-
ateness of the phenotypic data for EFA. Across all participants, we
extracted 12 latent factors (p < 0.05), thus reducing the 74-variable
phenotypic space into a 12-dimensional latent phenotypic space,
within which we then performed the subsequent subtyping
analysis. The 12 extracted latent factors collectively accounted for
44.8% of the common variance (see Supplementary Fig. 2 for the
scree plot from the parallel analysis and Supplementary Table 4 for
the EFA results). EFA model fit indices indicated good factor
separation (RMSEA= 0.046, Tucker-Lewis Index= 0.81) and each
factor had the minimum requirement of three salient loadings
each [72, 73]. The 12 factors, their labels and factor loadings are
displayed in Supplementary Table 5.

From the 12 extracted latent factors, three factors saliently
(>|0.30|) loaded on both trait and state variables (internalizing,
effortful control, extraversion/sociability), one factor saliently loaded
only on variables derived from performed tasks (executive
function), one factor saliently loaded only on state variables
(general psychiatric symptoms) and the remaining seven factors
saliently loaded only on trait variables (Supplementary Table 5).
The spring-embedded plot derived from the underlying factor
correlations demonstrated that the twelve latent factors self-
organized into three hypothesized phenotypic functional domains
(Fig. 1, see Supplementary Table 6 for the factor correlations).
These domains were: (1) an approach-related behavior domain
that included social risk-taking, unethical behavior, sensation
seeking, and risk perception; (2) an executive function domain that
consisted of the factors executive function and openness/sensitivity;
and (3) a negative emotionality domain that encompassed
internalizing, general psychiatric symptoms, urgency, negative affect
(trait), and (lack of) effortful control, see Fig. 1.

Recovered subtypes
The LPA performed within this 12-dimensional phenotypic space
and within participants with past SUD found that three subtypes
existed among those with past SUD. BLRT was significant up to a
5-cluster solution (pFDR < 0.05), however, the 3-cluster solution was
chosen as the best model based on how the 3-cluster solution
exceeded the second-best model of a 4-cluster solution (delta-
BIC= 7.32). Demographic characteristics, clinical and substance
use data for the recovered subtypes are described in Supplemen-
tary Tables 7a, b. The subtypes differed from each other in their
phenotypic profiles (p < 0.05, Supplementary Table 8), with very
large effect sizes for differences in the factors that best
differentiated between subtypes (Cohen’s D= 1.7–2.8; Supple-
mentary Table 9). We found (1) a “Reward type” with higher
sensation-seeking, social risk-taking, and unethical behavior; (2) a
“Cognitive type” with lower openness/sensitivity and lower
performance on executive function tasks; (3) and a “Relief type”
with high internalizing and general psychiatric symptoms and
higher negative affect (trait) (see Fig. 2 for the phenotypic profiles
of these subtypes). Additional results confirmed that we found the
same subtype-specific profiles when comparing each subtype to
control participants (see Supplementary Table 10). Importantly,
while these results confirmed that impairments on all three
hypothesized domains are linked to addiction, each discovered
SUD subtype was characterized by impairments on only one of the
three domains.
Demographic and clinical data converged with these results

such that the Reward type had significantly higher non-medicinal
substance use (past 6 months) and greater frequency of urine
screens positive for tetrahydrocannabinol (THC) on MRI day, the
Cognitive type had lower levels of education, and the Relief type
had a significantly higher rate of diagnosed internalizing disorders
(Supplementary Table 7a). While none of the correlations between
EFA scores and current (modest) substance use were significant
after Holm-Bonferroni correction, before correction the Reward
type showed a correlation of current non-medicinal substance use
with unethical behavior (r= 0.24, p= 0.05), and the Cognitive type
with effortful control (r= 0.32, p < 0.05). Finally, there was no
difference in the distribution of past primary SUD diagnosis (equal
distribution, χ2= 4.71, p= 0.32) or gender distribution (χ2= 3.44
p= 0.18) between the three recovered subtypes.

Resting-state functional connectivity per subtype
Each subtype demonstrated unique functional connectivity
patterns that were linked to current return to substance use
(see Table 2). For individuals in the Reward type, non-medicinal
substance use was associated with functional connectivity in the
Value/Reward (ACC/mPFC), Ventral Frontoparietal (inferior frontal),
and the Salience (insula, frontal opercular, ACC/mPFC) networks.

Fig. 1 Spring-embedded network of 12 latent factors from EFA. In
a spring-embedded network, nodes that are more strongly
correlated are plotted closer together in two-dimensional space.
Each node represents an EFA factor. Three functional domains
emerged across all participants based on the underlying factor
correlations: (1) an Approach-Related functional domain (green), (2)
an Executive Function functional domain (blue), and (3) a Negative
Emotionality functional domain (red).
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For individuals in the Cognitive type, non-medicinal substance use
was linked to functional connectivity in the Auditory (auditory
association cortex), Parietal Association (paracentral lobular/mid-
cingulate), Frontoparietal (superior parietal), and Salience (ACC/
mPFC) networks. For individuals in the Relief type, non-medicinal
substance use was associated with functional connectivity with
non-medicinal substance use in the Parietal Association (para-
central lobular/mid-cingulate), higher visual (motion complex,
neighboring visual cortex) and Salience (paracentral lobular/mid-
cingulate, insular, frontal opercular) networks. Detailed results
including the specific implicated areas, regions, affected graph
theory measures, directions of effects, and FDR-corrected p values
for each significant parcel are summarized in Table 2. To visualize
results, areas were projected onto template brains by subtype,
collapsing across graph theory metrics in Supplementary Fig. 3.
These results converged partially with the analysis on resting-state
functional connectivity alterations related to alcohol binge
drinking (see Supplementary Table 11 for detailed results). In
the Relief type, three networks (Higher Visual, Salience, Auditory)
were linked to both binge drinking and non-medicinal substance
use. Both Relief and Reward type uniquely demonstrated an
involvement of the Motor Planning networks linked to binge
drinking, but not non-medicinal substance use. There were no
significant results for the Cognitive type related to binge drinking.

DISCUSSION
The goal of this study was to characterize individual heterogeneity
across three functional domains in individuals with past SUDs. Our
results revealed three distinct addiction subtypes, with each
subtype demonstrating impairments in only one of the three
relevant functional domains. For individuals in the Reward type,
who showed higher approach-related behavior (e.g., high

sensation seeking and the highest current non-medicinal sub-
stance use), substance use was related to functional connectivity
in networks underlying value and reward representation. For
individuals in the Cognitive type, who demonstrated challenges in
executive function (e.g., lower executive function performance and
lower levels of education), substance use was related to functional
connectivity in networks underlying cognition, such as the
Frontoparietal network. For individuals in the Relief type, who
demonstrated higher negative emotionality (e.g., more internaliz-
ing and psychiatric symptoms, and more frequent diagnosis of
internalizing disorders), substance use was related to functional
connectivity in visual association networks. Overall, these results
support the existence of substantial individual differences in the
three mechanisms that have been linked to addiction. Impor-
tantly, while previous work had revealed abundant evidence on
heterogeneity in approach/reward behavior, executive function
and negative emotionality in addiction by investigating each
functional domain separately [74–82], this is the first study to
show that there are subgroups with differential functional profiles
across these three domains.
The first step of our analysis provided empirical evidence for the

existence of a general phenotypic space with three separable
functional domains: 1) approach-related behavior, 2) executive
function, and 3) negative emotionality. These results therefore
support previous research proposing these as three independent
(separable) behavioral domains [15, 16, 83], which ultimately led
to the conceptualization of these as Research Domain Criteria
(RDoC) domains [84, 85]. Importantly, our results further provide
empirical evidence for the equal relevance of all three functional
domains in addiction. This is important, since consensus discus-
sions on the relevance of the RDoC domains for explaining
addiction have mainly focused on constructs from the approach-
related “positive valence” domain (e.g., “reward valuation,”

Fig. 2 Phenotypic profiles of the 3 subtypes. Subtypes were determined using latent profile analysis on the EFA latent factors scores within
individuals with past SUD diagnosis (N= 173). Three subtypes were recovered, which included a Reward Type with higher sensation seeking,
social risk-taking, and unethical behavior (green); a Cognitive Type with lower openness/sensitivity and a lower executive function (blue), and
a Relief Type with higher internalizing, general psychiatric symptoms, and negative affect (trait) (red). Independent samples t-test were done
to compare the subtypes statistically (p < 0.05*, p < 0.01**). Error bars are standard error.
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Table 2. fMRI functional connectivity graph theory results by subtype.

Resting state network (Laird
et al., 2011)

Region (Glasser
et al., 2016)

Area (Glasser
et al., 2016)

Graph theory measure Greater or
less than

pFDR

Reward type

Value/Reward 19. ACC/mPFC R 10v Local efficiency ↓ 0.0426

Value/Reward 19. ACC/mPFC L 10v Local efficiency ↓ 0.0302

Value/Reward 19. ACC/mPFC L 10r Local efficiency ↓ 1.36E−04

Value/Reward 19. ACC/mPFC L 10r Participation coeff. ↓ 7.90E−04

Value/Reward 19. ACC/mPFC L a10p Betweennness ↑ 0.019

Ventral-Frontoparietal 21. Inferior frontal L IFSp Nodal global efficiency ↓ 0.0111

Ventral-Frontoparietal 21. Inferior frontal L IFSp Local efficiency ↓ 8.77E−04

Ventral-Frontoparietal 21. Inferior frontal L IFSp Participation coeff. ↓ 1.00E−06

Ventral-Frontoparietal 21. Inferior frontal L 45 Participation coeff. ↓ 1.30E−03

Ventral-Frontoparietal 17. Inferior parietal R IP1 Betweenness ↑ 0.0269

Salience 12. Insular/frontal
opercular

R AVI Local efficiency ↓ 0.0327

Salience 12. Insular/frontal
opercular

L FOP5 Nodal global efficiency ↓ 0.0124

Salience 19. ACC/mPFC L p32 Participation coeff. ↓ 0.0281

Visual Primary 18. PCC L ProS Local efficiency ↓ 0.0014

Visual Primary 18. PCC L ProS Participation coeff. ↓ 8.57E−04

Default mode 18. PCC L d23ab Local efficiency ↓ 0.012

Auditory 14. Lateral temporal L TE1a Local efficiency ↓ 0.0346

Dorsal-Frontoparietal 22. Dorsolateral
prefrontal

L SFL Local efficiency ↓ 0.0338

Midbrain Subcortical Brainstem Participation coeff. ↓ 0.0338

Cognitive type

Auditory 11. Association auditory L STGa Betweenness ↑ 0.006

Auditory 11. Association auditory R STSva Local efficiency ↓ 0.0327

Auditory 11. Association auditory L STSva Participation coeff. ↓ 0.0346

Parietal Association 7. Paracentral lobular/
mid cingulate

L 5mv Betweenness ↑ 0.0342

Parietal Association 7. Paracentral lobular/
mid cingulate

R 5L Betweenness ↑ 0.006

Frontoparietal 16. Superior parietal R 7Am Betweenness ↑ 0.0291

Frontoparietal 16. Superior parietal R 7Pm Betweenness ↑ 0.0199

Salience 19. ACC/mPFC L p24pr Betweenness ↑ 0.0211

Salience 19. ACC/mPFC L p24 Betweenness ↑ 0.0199

Limbic/Memory 14. Lateral temporal L TE1m Betweenness ↑ 0.0199

Higher visual 15. TPOJ R TPOJ3 Participation coeff. ↓ 0.0346

Relief type

Parietal Association 7. Paracentral lobular/
mid cingulate

L 5L Nodal global efficiency ↓ 8.00E−04

Parietal Association 7. Paracentral lobular/
mid cingulate

R 5L Nodal global efficiency ↓ 6.18E−06

Parietal Association 7. Paracentral lobular/
mid cingulate

R 5L Local efficiency ↓ 8.00E−04

Parietal Association 7. Paracentral lobular/
mid cingulate

R 5L Participation coeff. ↓ 2.43E−05

Parietal Association 7. Paracentral lobular/
mid cingulate

R 5mv Participation coeff. ↓ 0.0035

Higher Visual 5. Motion complex L V4t Betweenness ↑ 3.96E−04

Higher Visual 5. Motion complex L LO3 Betweenness ↑ 2.12E−05

Higher Visual 5. Motion complex L MT Betweenness ↑ 3.60E−05

Higher Visual 4. Ventral stream visual L VVC Betweenness ↑ 0.0436

Salience 7. Paracentral lobular/
mid cingulate

R 24dd Betweenness ↑ 3.59E−02
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“reward learning”, “expectancy”, “action selection”, and “habit”)
[86]. Our results, however, support the equal importance of the
RDoC cognitive and negative valence systems in SUDs, in
accordance with a wealth of research demonstrating the
importance of lower executive function and increased negative
emotionality as addiction persistence mechanisms [7, 8, 87].
Our results further expand on previous work on functional

domains in AUD in several ways. First, we provide additional
empirical evidence for the relevance of three data-derived
functional domains shown to be relevant in AUD by Kwako and
colleagues: (1) incentive salience, (2) executive function, and (3)
negative emotionality [10, 88]. Kwako and colleagues used a
similar approach as ours for deriving the functional domains (EFA),
in a data set that included 43.5% individuals with AUD. Overall,
they found functional domains that were more narrowly defined
than ours, largely due to differences in the included measures.
Kwako and colleagues selected measures based on their
theoretical relevance to addiction models (personal correspon-
dence with Dr. Kwako), whereas we used an agnostic approach
and included all available phenotypic data. Therefore, their
“incentive salience” domain was indexed by the self-reported
drive to consume substances, whereas our approach-/reward
behavior domain was defined by the broader constructs of reward
seeking (e.g., sensation seeking and social risk-taking). And while
their executive function domain included measures of impulsivity,
conscientiousness, and perseverance, ours was indexed by the
broader measures of openness/sensitivity and executive function,
which loaded on tasks that assessed cognitive flexibility/shifting,
attention shifting, planning and working memory [89–91]. Both
their and our negative emotionality domains were very similar and
included measures of negative affect, internalizing psychiatric
symptoms and aggression. Further, in our analysis “effortful
control” (e.g., lack of conscientiousness, and perseverance) was
highly correlated to measures of negative emotionality, but not to
the other measures of executive function, a finding which we have
previously reported in a completely independent data set [92].
Overall, while our phenotypic space described a broader
phenotypic space, our results align with Kwako’s empirically
derived results, and hence provide additional empirical evidence
for common addiction models (e.g., [8]) that propose the
relevance of these three domains in addiction. Importantly,
however, our results provide additional novel empirical evidence
on the relevance of this framework beyond AUD, by demonstrat-
ing the existence of the same subtypes, with impairments in these
three functional domains, independent of the primary substance
of choice.
We found individual differences for both trait and state factors

in our analysis. Each subtype was characterized by factors that
assessed general, temperament or personality characteristics.
Individuals in the Relief and Cognitive types were additionally
characterized by the internalizing, general psychiatric and executive
function factors, which loaded on behavioral tasks and self-report
of current psychiatric symptom. Previous research has repeatedly
shown a convergence between state and trait characteristics
[93, 94]. Trait-like stable characteristics such as for example
“anxious temperament” are highly correlated with and predictive

of changes in psychiatric symptoms (e.g., anxiety, depression) over
time [93, 94]. Executive function is influenced by a highly heritable
(99%) common factor [95]. Both previous research and our current
findings therefore support our hypothesis that there are
significant stable, “trait-like” individual differences in addiction
that are linked to differences in state variables and would hence
be relevant in different phases such as onset, persistence, and
recovery from addiction. We propose that our “trait-like” subtypes
have clinical relevance, because these trait-like individual differ-
ences interact with more dynamic processes, such as for example
gradual effects caused by chronic drug-use. For example, an
individual with trait-level challenges in executive function would
be more vulnerable to the additional loss of cognitive control
induced by chronic drug use over time than an individual who
does not have such trait-level challenges.
Our findings on subtype-specific brain function during resting-

state mirrored our behavioral results. We found that each subtype
demonstrated unique patterns of large-scale resting-state network
connectivity underlying current substance use. Neural correlates
of substance use were identified in the Value/Reward, Ventral
Frontoparietal, and Salience networks for those in the Reward
type. These three networks represent incentive motivational value
[96], are involved in approach behavior [97–99], and allocation of
attentional control [100, 101], in line with the greater approach-
behavior observed in this subtype. Aberrant engagement of these
networks has also repeatedly been shown to be correlated with
craving and substance use frequency in SUDs [102, 103]. These
findings may also reflect current non-medicinal substance use and
greater frequency of positive THC urine screen on MRI day. For
those in the Cognitive type, higher non-medicinal substance use
mapped on to connectivity in the Auditory, Parietal Association,
Frontoparietal, and Salience networks. The auditory network has
been reported to be associated with cognitive impairment [104].
Furthermore, the Parietal Association, Frontoparietal and Salience
networks have shown connectivity responses related to executive
control dysfunction in addiction [103, 105, 106], converging with
the finding of challenges in executive function observed in this
subtype. For those in the Relief type, non-medicinal substance use
and binge drinking mapped on to connectivity in Parietal
Association, higher visual and Salience networks. These three
networks are implicated in effortful control [12, 103, 107–109],
have been shown to be hyper-engaged in those with higher levels
of increased anxiety [109], and have greater connectivity due to
“hyperscanning” of the environment [110, 111]. In summary, our
analysis of resting-state brain function correlated with current
non-medicinal substance use recovered distinct neurobiological
features that fit the phenotypic profiles of each subtype.
It has been suggested—and we agree—that a better under-

standing of the substantial neural and behavioral heterogeneity
within SUDs by means of subtyping could spur the development
of personalized treatments and preventions, improve treatment
effectiveness, and inform resource allocation [112–116]. Our
results underscore the importance of this effort, by providing
empirical evidence for substantial individual differences in the
neurobehavioral impairments on three functional domains linked
to addiction that can be targeted separately in a Personalized

Table 2. continued

Resting state network (Laird
et al., 2011)

Region (Glasser
et al., 2016)

Area (Glasser
et al., 2016)

Graph theory measure Greater or
less than

pFDR

Salience 12. Insular/frontal
opercular

L PoI1 Betweenness ↑ 1.26E−02

Limbic/Memory 14. Lateral temporal R TE2p Betweenness ↑ 1.49E−02

Auditory 11. Association auditory R STGa Betweenness ↑ 1.49E−02

See Supplementary Fig. 3 for visualization of networks on template brain.
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Medicine approach. Initial evidence on the improved efficacy of
subtype-specific treatments comes from a series of studies in
individuals with AUD. These studies demonstrated that a
pharmacological treatment that blocks the brain’s “pleasure
response” was efficacious only in a subgroup of patients that
indicated that their main drinking motive was pleasure seeking,
but was less effective in reducing drinking in individuals who
drank to cope with negative affect [36, 112, 117]. Other efficacious
subtype-specific targeted treatments for the Relief Type may be
therapies that target emotion regulation [e.g., pharmacotherapies
used in anxiety/depression [118]; cognitive reappraisal [109];
specialized cognitive-behavioral therapy for SUDs with comorbid
mental health disorders [119]. In contrast, the Cognitive Type may
be best treated with cognitive trainings [e.g., working memory
training [120, 121], pharmacological cognitive enhancers [120] or
neuromodulation therapies targeted at enhancing cognitive
control [122, 123]. Finally, the Reward type may have the best
outcomes with motivational approaches that refocus their reward-
seeking to non-substance related and non-immediate rewards
[124, 125]. In summary, there is increasing evidence that targeted
treatments for SUDs indeed outperform non-targeted treatment
options [36, 117, 119].
The current study is only an initial step into the investigation of

subtypes in addiction. Future work refining the proposed subtypes
and developing clinical tools to “diagnose” them is needed. A
limitation of the current study is that participants with currently
diagnosed SUD(s) were not included. Another limitation is that the
data set did not include detailed clinical data, or follow-up clinical
data. It was therefore not possible to directly link the observed
individual differences to clinical outcomes within this study, though
there is an abundance of previous research in clinical samples that
have demonstrated the importance of individual differences in
approach-/reward related behavior, executive function, and negative
emotionality for clinical outcomes [4, 126–129].

CONCLUSION
As hypothesized, the current results provide empirical evidence
for substantial individual differences in the mechanisms under-
lying addiction, and the existence of “trait-like” subtypes that each
had impairments on only one of three identified addiction-
relevant functional domains. These subtypes were found to be
“addiction-general,” as they were independent of the different
primary substances of choice. These results call for updated
addiction models that factor in how these trait-like individual
differences interact with the mechanisms driving the escalation
and persistence of substance use. Finally, if further substantiated,
these results could guide the development of individualized
behavioral, pharmacological, and brain-focused preventative and
treatment approaches that take these individual differences into
account.
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