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Premenstrual dysphoric disorder (PMDD) is a debilitating disorder characterized by severe mood symptoms in the luteal phase of
the menstrual cycle. PMDD symptoms are hypothesized to be linked to an altered sensitivity to normal luteal phase levels of
allopregnanolone (ALLO), a GABAA-modulating progesterone metabolite. Moreover, the endogenous 3β-epimer of ALLO,
isoallopregnanolone (ISO), has been shown to alleviate PMDD symptoms through its selective and dose-dependent antagonism of
the ALLO effect. There is preliminary evidence showing altered recruitment of brain regions during emotion processing in PMDD,
but whether this is associated to serum levels of ALLO, ISO or their relative concentration is unknown. In the present study, subjects
with PMDD and asymptomatic controls underwent functional magnetic resonance imaging (fMRI) in the mid-follicular and the late-
luteal phase of the menstrual cycle. Brain responses to emotional stimuli were investigated and related to serum levels of ovarian
steroids, the neurosteroids ALLO, ISO, and their ratio ISO/ALLO. Participants with PMDD exhibited greater activity in brain regions
which are part of emotion-processing networks during the late-luteal phase of the menstrual cycle. Furthermore, activity in key
regions of emotion processing networks - the parahippocampal gyrus and amygdala - was differentially associated to the ratio of
ISO/ALLO levels in PMDD subjects and controls. Specifically, a positive relationship between ISO/ALLO levels and brain activity was
found in PMDD subjects, while the opposite was observed in controls. In conclusion, individuals with PMDD show altered emotion-
induced brain responses in the late-luteal phase of the menstrual cycle which may be related to an abnormal response to
physiological levels of GABAA-active neurosteroids.
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INTRODUCTION
The prevalence of premenstrual dysphoric disorder (PMDD) has
been estimated at 3–5% during childbearing ages [1, 2]. The
condition significantly impacts the quality of life [3, 4] and is
characterized by mood symptoms - irritability, depressed mood,
anxiety and emotional lability - which are present only in the
premenstrual (luteal) phase of the menstrual cycle.
PMDD symptoms are relieved when ovarian hormone produc-

tion is suppressed [5], or kept at constant and low levels [6], and
can be elicited by progesterone or estradiol administration [7–9].
A growing body of evidence suggests that the potent, centrally
active γ-aminobutyric acid type A (GABAA) receptor-modulating
metabolite of progesterone, allopregnanolone (ALLO), plays an
important role in PMDD symptomatology [10, 11]. Serum levels of

ALLO closely follow those of circulating progesterone across the
menstrual cycle with an offset of 2–3 days [12–14]. In common
with other GABAA-receptor agonists (such as benzodiazepines and
barbiturates), ALLO has anesthetic, antiepileptic and anxiolytic
properties in animals, and is sedative when given at supra-
physiological doses to humans [15, 16]. Individuals with PMDD,
however, seem to have an altered pharmacodynamic response to
ALLO across the menstrual cycle compared with controls [14]. For
instance, individuals with PMDD appear to be more sensitive to
ALLO (as measured by changes in saccadic eye velocity) in the
luteal phase compared to the follicular phase, which is opposite to
the pattern seen in asymptomatic controls [15]. This would
suggest an inability in PMDD to develop tolerance to increased
levels of neurosteroids active at the GABAA-receptor in the luteal
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phase. Positive treatment effects have been shown in response to
5α-reductase inhibitors, which block the conversion of progester-
one to ALLO [17]. Moreover, the therapeutic effect of another
endogenous neurosteroid, isoallopregnanolone (ISO), has been
investigated in PMDD with promising results [18, 19]. ISO is also
metabolized from progesterone and its levels are increased during
the luteal phase of the menstrual cycle [20]. ISO directly
antagonizes ALLO’s effect on the GABAA receptor in a dose-
dependent manner but does not on its own inhibit GABA-evoked
currents [20–23]. Moreover, the action of ISO seems to be specific
to ALLO as it does not antagonize the effect of other GABAA-
receptor agonists such as benzodiazepines or barbiturates [24, 25].
In healthy individuals, ISO given intravenously noticeably antag-
onizes ALLO’s pharmacodynamic effects at serum concentrations
half of that of ALLO [23], indicating that the relative concentration
of the two steroids is significant with regards to GABAA-receptor
activation. Interestingly, epimerization between ISO and ALLO has
been suggested to be a biological mechanism by which GABAA

receptor tone is modulated, and an imbalance between ALLO and
ISO levels has been implicated in a number of psychopathologies,
including major depression [26, 27]. While it is currently unknown
whether an imbalance between ISO and ALLO concentrations
contributes to the pathophysiology of PMDD, there are indications
that altering the balance between the two steroids may be
beneficial. Indeed, apart from the efficacy of ISO as treatment for
PMDD [19], SSRIs, which are currently the first line of treatment for
the disorder, have been shown to alter ALLO and ISO levels in
plasma and cerebrospinal fluid [28, 29]. Further research is
warranted to determine the impact the relative concentration of
ISO and ALLO have on GABAA-receptor activity and brain function
in individuals with PMDD.
Functional resonance magnetic imaging (fMRI) studies of PMDD

have provided evidence for dysregulation in emotion processing
networks in subjects with PMDD [30]. Among the most robust
findings are heightened amygdala and insula responses, along with
decreased responses in the anterior cingulate cortex (ACC), which
have been observed in the luteal phase during emotion-processing
tasks in subjects with PMDD [31–34]. These regions are key parts of a
hypothesized emotion processing network [35], whereby increased
bottom-up activation of important hubs of the salience network
(amygdala, insula) is accompanied by blunted responses in
frontocingulate cortical regions (ACC, medial prefrontal cortex
(mPFC), dorsolateral prefrontal cortex (dlPFC), leading to aberrant
functional integration and connectivity within the salience network
[36]. Few studies have explored how brain function is related to
ovarian hormone levels in individuals with PMDD. One study found
that phase-related changes in amygdala response correlated
positively to progesterone in subjects with PMDD [32]. Another
study reported positive correlations between progesterone and
activation in the dorsolateral prefrontal cortex, as well as a positive
relationship between estradiol and medial prefrontal cortex recruit-
ment in the luteal phase in PMDD [37]. No study to date has
investigated the relationship between endogenous GABAA-active
neurosteroids and emotion-induced brain activity in PMDD.
The present study aimed to 1) investigate brain activity in

response to emotional stimuli in subjects with PMDD and controls
across the menstrual cycle, and 2) explore whether serum levels of
ovarian hormones and GABAA-active neurosteroids are differently
associated to emotion-induced brain activity in subjects with
PMDD and controls. Here, we included the ratio variable ISO/ALLO
in order to specifically investigate group differences in the
relationship between the relative concentration of the steroids
and brain activity. In line with previous fMRI findings in PMDD, we
expected altered recruitment of brain regions involved in emotion
processing, including the amygdala, during the symptomatic late-
luteal phase. We also hypothesized that neurosteroid levels, and
especially the ratio ISO/ALLO, would be differentially associated to
brain activity in key regions of emotion-processing networks.

MATERIALS AND METHODS
Subjects
The study sample consisted of 31 participants with PMDD and 31
asymptomatic controls recruited by advertisement in local newspapers, on
a student website for clinical trials, via social media platforms, and by
posters at out-patient clinics. Subjects were eligible for inclusion if they
were aged 18–45 years, had regular menstrual cycles (25–31 days), used
non-hormonal contraception, fulfilled PMDD diagnostic criteria according
to the Diagnostic and Statistical Manual of Mental Disorders, 5th Ed
(DSM-V) (PMDD group), were otherwise essentially healthy (PMDD and
control group), and provided oral and written informed consent. Current
use of steroid hormones, psychotropic or anti-depressant medication,
significant somatic or psychiatric conditions, drug or alcohol abuse,
pregnancy and contraindications for MRI were grounds for exclusion. Prior
to entering the study, we required wash-out periods of three months for
psychotropic drugs (such as selective serotonin re-uptake inhibitors and
benzodiazepines) or alternative medicines with potential effects on mood,
and one month for hormonal contraceptives. Potential participants were
screened for psychiatric conditions (past and current) by the investigator
using the Mini International Neuropsychiatric Interview questionnaire [38].
Psychosis, bipolar disorders, all anxiety disorders and alcohol or substance
abuse etc. detected by the Mini were considered to be significant
psychiatric conditions and thereby reasons for exclusion. Due to their high
prevalence, moderate symptoms of an eating disorder, as well as past
major depressive episodes were allowed, if they had been in remission for
more than two years. All participants completed prospective daily ratings
of PMDD symptoms for a minimum of two menstrual cycles using the Daily
Record of Severity of Problems (DRSP), a validated diagnostic tool for
PMDD [39]. The DRSP was implemented via an ad-hoc web platform and
daily text reminders were sent encouraging participants to log their
symptoms. The study was approved by the Regional Ethical Review Board
in Umeå (2016-111-31M, 2017-266-32M).

PMDD diagnosis
PMDD was diagnosed using the algorithm developed by Endicott et al. [39].
The criteria were as follows: 1) no average daily symptom score greater than
3 (“mild”) during the mid-follicular phase (days +6 to +10 after the onset of
menses), 2) during the late-luteal phase (days −5 to −1 prior to the onset of
menses), at least two days with ratings ≥4 (“moderate”) on a minimum of one
“core” mood symptom (depressed mood, anxiety, affective lability, irritability)
and on at least five symptoms overall. To specifically select a group of
participants with severe PMDD we added the criterion, 3) symptoms in the
late-luteal phase interfered with daily functioning, which was defined as
ratings of ≥4 for two days on at least one impairment item (interference with
work/school, social activities, relationships). A diagnosis of PMDD was given if
the above criteria were met for two consecutive menstrual cycles.
Participants included in the control group had to be asymptomatic across
the entire menstrual cycle, i.e. no mean ratings >3 during either the mid-
follicular phase or the late-luteal phase.

Study design
Participants were scanned once in the asymptomatic mid-follicular phase
(menstrual cycle day +5 to +11), and once in the late-luteal phase
(menstrual cycle day −8 to −1). Late-luteal phase testing was planned to
coincide with the peak in PMDD symptom severity [4]. Prior to each
scanning session, a blood sample was drawn, and serum was frozen at
−80o within 30min from collection for further analysis of ovarian
hormones and neurosteroids. Ovulation was confirmed if serum proges-
terone concentrations fell within 2 standard deviations of the standard
curve for progesterone for the corresponding luteal phase day [14]. To
avoid test order effects, the menstrual cycle phase during which
participants underwent their first scanning session was counterbalanced
within each group: 44.4% of controls and 51.7% of PMDD subjects
underwent their first scan in the mid-follicular phase.

Steroid analyses
Serum concentrations of ALLO and ISO were analyzed by LabLytica,
Uppsala, Sweden. In a first step, serum samples were extracted using
liquid-liquid extraction in a hexane/ether solvent phase. They were then
derivatized using 3-aminooxypropyl (trimethyl) ammonium bromide and
quantified using ultra-high performance liquid chromatography-mass
spectrometry (UPLC-MS/MS). The samples were compared against a
freshly prepared calibration curve in surrogate matrix (water) to determine
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their concentrations. The limit of quantification (LLOQ) for ALLO was
0.2 nM and for ISO 0.1 nM. Serum concentrations of progesterone and
estradiol were analyzed by the central hospital laboratory at Norrlands
University Hospital, Umeå, Sweden. Analyses were done using Elecsys® Gen
III immunoassays for progesterone and estradiol separately. Samples were
incubated with progesterone- or estradiol-specific biotinylated antibodies,
and thereafter, streptavidin-coated microparticles were added to each mix
together with a rutenium complex marked derivate for each steroid,
forming antibody hapten complexes. Quantification of steroids were done
with chemiluminescence and samples were compared against a device-
specific calibration curve to determine their concentrations. The detection
limit for progesterone was 0.05 ng/ml and for estradiol 5 pg/ml.

Experimental paradigm
The emotional discrimination task used in this study has been previously
described [40]. Participants were presented with Ekman faces displaying
expressions of anger or fear (emotion task) and vertical or horizontal ellipses
(sensorimotor control task). Participants were instructed to select one of two
images matching the emotion or orientation of a target image by pressing a
button with the right index finger. Emotion and sensorimotor control task
trials were presented in blocks of six, in which stimuli were presented for 4 s,
interspaced with a fixation cross (2 s for the sensorimotor control task and a
randomly selected duration of 2, 4 or 6 s for the emotion task). Emotional
content and sex of the individuals depicted were balanced across trials, as
was the orientation of shapes. The entire paradigm consisted of four blocks
of faces (24 trials) and five blocks of shapes (30 trials). Accuracy and reaction
times were registered for each trial.

Image acquisition
Magnetic resonance [] images were acquired using a 3.0 T Discovery
MR750 (General Electric, Madison, WI, USA) scanner available through the
Umeå Center for Functional Brain Imaging (UFBI). The scanner was
equipped with a 32-channel head coil. The stimulus presentation software
E-prime (Psychology Software Tools, Sharpsburg, PA, USA) was used for
paradigm handling and viewed through a tilted mirror attached to the
head coil. fMRI images were acquired with a gradient echo planar imaging
sequence [37 transaxial slices; thickness, 3.4 mm; gap; 0.5 mm, repetition
time (TR), 2000 ms; echo time (TE), 30 ms; flip angle, 80°; field of view, 25 ×
25 cm; 200 volumes; duration, 07:00min]. High-resolution T1-weighted
structural images were collected with a 3D fast spoiled gradient echo
sequence (176 transaxial slices; thickness, 1 mm; TR, 8.2 ms; TE, 3.2 ms; flip
angle, 12°; field of view, 25 × 25 cm; duration, 08:11 min). A field map was
acquired prior to the fMRI images and used for controlling for magnetic
field (B0) inhomogeneities [46 transaxial slices; thickness; 4 mm; gap; 0 mm;
repetition time (TR), 800 ms; flip angle, 10°; field of view, 25.6 × 25.6 cm;
duration, 01:05 min]. All sequences were acquired in the A/P (anterior-to-
posterior) frequency-encoding direction.

fMRI data preprocessing and analysis
Image processing was conducted using the Oxford Centre for Functional
Magnetic Resonance Imaging of the Brain (FMRIB)’s Software Library (FSL),
version 6.00 [41]. Preprocessing steps included motion correction (reference
image = middle volume), correction for B0 inhomogeneities, slice timing
correction, and spatial smoothing with a 5-mm full-width at half maximum
(FWHM) Gaussian kernel. A rigid body registration with FMRIB’s Linear Image
Registration Tool (FLIRT) [42, 43], 6 degrees of freedom (DOF), was used to co-
register functional images to individual structural T1 images. Spatial
normalization into Montreal Neurological Institute (MNI) space was
performed by applying an initial registration with FLIRT, 12 DOF affine
transformations, followed by a non-linear transformation using FMRIB’s Non-
linear Image Registration Tool (FNIRT) [44] with a warp-resolution of 8mm,
and resulting in 2 × 2 × 2 mm3 voxels.
First-level temporal modelling within a general linear model (GLM)

framework was performed with FSL Expert Analysis Tool (FEAT) to generate
single subject 3D maps of parameter estimates the contrast of interest [Faces
> Shapes]. Design matrices were convolved with the default gamma
hemodynamic response (HRF) function. Six motion parameters estimated
from the spatial realignment were added to the model as covariates of no
interest, and frames corrupted by large movements detected by FSL’s Motion
Outliers tool (default metric = refrms) were removed from the analyses.
Outliers were defined as falling outside the boxplot cut-off of 75th percentile
+ 1.5 x interquartile range. A high-pass filter (cut-off= 90 s) was applied to
attenuate the lowest frequency components (linear scanner drift).

Statistical analyses
Group differences in emotion-induced brain activity in the amygdala and at
the whole brain level. FSL’s non-parametric permutation testing Rando-
mise tool [45] was used for statistical inference. Voxel-wise analyses were
conducted both with a small volume correction (SVC) for the right and left
amygdala and at the whole-brain level. The region-of-interest [46] mask for
the left and right amygdalae was defined using the Harvard-Oxford
Subcortical Structural Atlas (thresholded at 80% probability). In order to
assess group x phase interactions for the contrast of interest [Faces >
Shapes] without violating the assumption of exchangeability relied on by
permutation tests, individual differences between follicular and luteal
scans were first computed for each subject before testing for group
differences using an unpaired two-sided t-test. Separate paired and
unpaired two-sided t-tests were then conducted to detect effects of the
menstrual cycle phase within each group, and group differences within
each menstrual cycle phase, respectively. Additional analyses assessing the
influence of psychiatric history on the findings were conducted, as this
variable tended to differ between groups (see Table 1).

Group differences in associations between emotion-induced brain activity and
serum steroid levels. To test whether the linear relationship between brain
activity and serum steroid levels differed between subjects with PMDD and
controls, a two-group with continuous covariate interaction analysis was
conducted voxel-wise using Randomise. Analyses were restricted to voxels
within a mask combining clusters showing increased recruitment during
task [Faces>Shapes] for both the PMDD and control group across the
menstrual cycle (Table S1). Steroid covariates were mean centered across
all subjects and split into two separate regressors according to group
before being included in the model, allowing for the detection of group
differences in slope between the dependent variable (brain activity) and
steroid levels. In addition, the ratio variable ISO/ALLO, was log-transformed
prior to being input into the model in order to avoid problems related to
the asymmetry of ratios [47]. Group-by-steroid level interaction effects on
brain activity were investigated for progesterone, estradiol and ALLO in
both menstrual cycle phases. Analyses of interaction effects for ISO and
ISO/ALLO were restricted to the late-luteal phase due to the high number
of values below LLOQ in the mid-follicular phase (72.4% in the PMDD
group and 59.3% in controls).

Associations between emotion-induced brain activity and symptom severity in
subjects with PMDD. In order to evaluate whether significant associations
existed between brain activity measures and symptom severity, the linear
relationship between brain activity and DRSP scores was tested voxel-wise
using Randomise within a mask combining brain regions exhibiting
significant task-related activation [Faces>Shapes] in subjects with PMDD
during the late-luteal phase (Table S2). Specifically, the total 21 symptom
DRSP score and core PMDD symptoms (depression, irritability, affective
lability and anxiety) DRSP scores were investigated. DRSP scores were
averaged over days −8 to −1 to reflect the late-luteal phase scanning
window. DRSP scores were derived from ratings recorded during the
screening period for the study.
For all permutation testing using Randomise, a total of 5000

permutations was performed to build up null distributions to test against.
Results were considered significant at p < 0.05 Family Wise Error (FWE)
corrected using the threshold-free cluster enhancement (TFCE) method
[48]. Trend-level results were defined as 0.05 < p < 0.1 for FWE-corrected
statistics. We report t-statistics and cluster results (anatomical location,
location in functional networks according to Yeo et al. [49], size, and local
maximum).

RESULTS
Participant characteristics
Demographic and endocrine characteristics of the subjects
included in the study are presented in Table 1. Due to withdrawal
of consent (N= 2), anovulation (N= 3) and screening failure
(N= 1), a total of 6 participants (2 PMDD, 4 controls) were
excluded from the analyses, which thus included 29 subjects with
PMDD and 27 controls.
Subjects with PMDD did not differ from controls in terms of age,

body mass index, menstrual cycle length or parity. Participants
with PMDD tended to have a higher burden of prior psychiatric
disease than controls (p= 0.10). All participants included in the
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analyses showed typical increases in concentrations of progester-
one and neurosteroids from the mid-follicular to the late-luteal
phase. No group differences in steroid levels were apparent across
the menstrual cycle. Group differences in ISO and ISO/ALLO levels
in the mid-follicular phase were not computed as ISO levels fell
below the LLOQ for most participants (72.4% of PMDD subjects
and 59.3% of controls).

Emotion discrimination task performance
All participants showed high accuracy both when matching faces
and shapes (>90% correct answers) across the menstrual cycle
(Fig. 1, Table S3). In the late-luteal phase, subjects with PMDD were
less accurate (p= 0.006) but faster (p= 0.046) compared with
controls when matching faces. No differences in response
accuracy or reaction time were found between groups in the
shape-matching condition.

Functional imaging results
Main effect of task. Significant task-related activations for the
entire sample (both groups and sessions) at the whole-brain level
for the Faces>Shapes contrast were found in regions previously
described as constituents of emotional face processing networks
[40, 50, 51] (Table S1).

Greater brain activity in the late-luteal phase in subjects with PMDD:
amygdala and whole-brain results. Whole-brain analyses revealed
positive group x phase interactions in the right medial frontal
gyrus (MFG) and right superior frontal gyrus (SFG) at trend-level
(pFWE < 0.10, TFCE) (Figure S1, Table S4). Brain activity was
increased in these regions in the late-luteal phase compared to
the mid-follicular phase in subjects with PMDD, while the opposite
was seen in controls. Furthermore, group comparisons in the late-
luteal phase revealed greater activations in subjects with PMDD
compared to controls in areas of the ventral attention network:
bilateral posterior cingulate cortices (PCC), left ACC, left precuneus,
and bilateral insula; in regions belonging to the default mode
network: right MFG and right SFG; as well as in the left
supplementary motor area (SMA), left postcentral gyrus, dorsal
striatum, thalamus and cerebellum (pFWE < 0.05, TFCE) (Fig. 2,
Table S5). No significant group effects were observed in the mid-
follicular phase, nor were significant effects of phase apparent in
either group. The results were not significantly influenced by
psychiatric history.
Analyses restricted to the bilateral amygdalae did not reveal any

significant group x phase interactions. Increased activity was
observed at trend-level in the right amygdala of subjects with
PMDD compared to controls during the late-luteal phase

Table 1. Baseline characteristics of participants with PMDD and controls.

PMDD (N= 29) Mean (SD) or N (%) Controls (N= 27) Mean (SD) or N (%)

Demographics

Age (years) 28.5 (6.1) 28.3 (5.7)

BMI 23.7 (3.2) 24.4 (4.1)

Menstrual cycle
length (days)

27.7 (1.9) 28.6 (1.9)

Psychiatric history 9 (31.0) 3 (11.1)

Depression 8 (27.6) 3 (11.1)

Eating disorder 1 (3.45) 0

Parous 9 (31.0) 7 (25.9)

DRSP ratings Mid-follicular Late-luteal Mid-follicular Late-luteal

Total symptom score 25.5 (3.5) 56.7 (14.3) 24.2 (3.3) 24.4 (3.0)a

Depression score 3.5 (0.6) 8.3 (2.8) 3.4 (0.7) 3.5 (0.6)a

Anxiety score 1.2 (0.3) 2.8 (1.0) 1.1 (0.2) 1.1 (0.2)a

Emotion lability score 2.3 (0.4) 9.3 (3.1) 2.2 (0.4) 3.4 (0.4)a

Irritability score 2.4 (0.4) 5.3 (2.2) 2.4 (0.6) 2.9 (0.4)a

Steroids Mid-follicular Mean (IQR)
or N (%)

Late-luteal Mean (IQR)
or N (%)

Mid-follicular Mean (IQR)
or N (%)

Late-luteal Mean (IQR)
or N (%)

Test day +8.0 (1.9) −4.4 (2.0) +7.7 (1.4) −3.9 (1.7)

Progesterone (nmol/L) 0.6 (0.5) 23.8 (17.5) 0.7 (0.5) 23.4 (20.4)

Estradiol (pmol/L) 309 (201) 424 (238) 263 (162) 432 (156)

ALLO (nmol/L) 0.337 (0.098) 2.110 (1.420) 0.419 (0.247) 2.208 (1.060)

Missing 6 (20.7) 0 3 (11.1) 2 (7.4)

ISO (nmol/L) 0.127 (0.020) 0.742 (0.484) 0.137 (0.044) 0.844 (0.652)

Missing† 21 (72.4) 0 16 (59.3) 3 (11.1)

ISO/ALLO (nmol/L) 0.367 (0.093) 0.349 (0.108) 0.271 (0.079) 0.358 (0.153)

Missing 21 (72.4) 0 16 (59.3) 3 (11.1)

Total symptom scores are the mean summed ratings for all 21 symptom items of the DRSP scale (minimum=21, maximum=126) over days +5 to +11 for the
mid-follicular phase, and days −8 to −1 for the late-luteal phase. The depression scores include the DRSP items “depressed”, “hopeless” and “guilty”
(minimum=3, maximum=18); anxiety scores correspond to the item “anxious” (minimum=1; maximum=6); emotion lability scores include the items “mood
swings” and “easily hurt” (minimum=2; maximum=12); and irritability scores include the items “irritable” and “conflicts” (minimum=2, maximum=12).
Differences between groups were assessed using Mann-Whitney U-tests for continuous variables, and Fisher’s exact tests for categorical variables.
aSignificant group difference at p < 0.05. Abbreviations: ALLO, Allopregnanolone; BMI, body mass index; DRSP, Daily Record of Severity of Problems; IQR,
Interquartile Range; ISO, Isoallopregnanolone; PMDD, Premenstrual Dysphoric Disorder; SD, Standard Deviation. †The large proportion of missing values for
serum ISO was due to the lower detection limit of the method (see Materials and Methods, Steroid analyses).
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(pFWE < 0.10, TFCE, small volume corrected) (Figure S2), but not
during the mid-follicular phase. No significant effects of menstrual
cycle phase were seen in either group.

Group differences in associations between emotion-induced brain
activity and ISO/ALLO levels. The association between task-
related brain activity and ISO/ALLO serum levels was significantly
different between subjects with PMDD and controls in the late-
luteal phase in a cluster straddling the right parahippocampal
gyrus (PHG) and right amygdala (pFWE < 0.05, TFCE) and marginally
significant in the right fusiform gyrus (FuG) (pFWE < 0.10, TFCE) (Fig.
3, Table S6). In both clusters, there was a positive relationship
between ISO/ALLO levels and brain activity in participants with
PMDD, while the relationship between these two variables was
negative in controls. No significant group difference was found in
how serum levels of progesterone, estradiol, ALLO or ISO related
to brain activity across the menstrual cycle.

Emotion-induced brain activity is associated with severity of anxiety
symptoms in PMDD. Task-related brain activity within the right
cerebellar lobules V-VI and the cerebellar vermis I-IV was
significantly positively associated with DRSP anxiety scores in
subjects with PMDD during the symptomatic late-luteal phase
(pFWE < 0.05, TFCE) (Fig. 4, Table S7). Brain activity was positively

associated with total DRSP scores and emotional lability scores in
the right cerebellar lobule V at trend-level (pFWE < 0.10, TFCE). No
significant relationships were found between task-related brain
activity and scores on depression and irritability.

DISCUSSION
The present study found increased brain activity in response to
emotional stimuli in individuals with PMDD in a number of brain
regions hypothesized to be key components of emotion-
processing brain networks, including the insula, as well as frontal
and cingulate regions [35]. Notably, these differences were
restricted to the late-luteal phase of the menstrual cycle, a period
during which PMDD subjects experience a peak in symptom
severity, and which is characterized by high levels of progesterone
and its derivative neurosteroids ALLO and ISO. Furthermore, we
found that the relative serum concentrations of ISO and ALLO
(ISO/ALLO) were differently associated to emotion-induced
activation of key regions involved in emotion processing (PHG
and amygdala) and in the FuG. Lastly, emotion-induced activation
of the cerebellum was positively associated to anxiety symptoms
in subjects with PMDD during the late-luteal phase. Our study is
the first to relate functional brain measures to GABAA-active
neurosteroid levels in PMDD.
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The brain regions found to functionally differ between groups in
the late-luteal phase partly overlap with brain areas previously
highlighted by task-based fMRI studies of PMDD patients, namely
the insula, ACC, SFG, MFG, SMA, postcentral gyrus, precuneus, and
cerebellum [30]. Among these, the insula and ACC constitute key
hubs of emotion-processing networks [35]. Our findings are also in
line with the localization of regions previously shown to functionally
vary across the menstrual cycle, such as the insula, ACC, MFG, SFG,
postcentral gyrus, and cerebellum [52], and which are thus probably
particularly influenced by fluctuations of ovarian hormones.
Regarding the direction of effects, some of our results were
congruent with the existing neuroimaging literature on PMDD, such
as greater activity in the insula, MFG, SFG, SMA and cerebellum
[30, 31, 37, 53], while findings of increased activity in the ACC,
precuneus, postcentral gyrus were not [30, 54, 55]. Additionally, the
largest cluster of increased brain activity in PMDD subjects found in
our study was located in the right PCC, a region not previously
highlighted in the PMDD literature. The PCC is involved in emotion
processing [56], but is a complex and functionally diverse region
implicated in arousal and attentional focus as well as supporting
internally directed thought and detecting changes in the environ-
ment [57]. Functional neuroimaging studies have shown altered PCC
function and connectivity in a number of psychiatric disorders,
including major depression [57]. Thus, our results partly corroborate
existing neuroimaging studies of PMDD but certain inconsistencies
in the localization and direction of effects motivate the need for
replication in larger samples.
Significant correlations between serum progesterone and

emotion-induced brain activity in the amygdala and dlPFC, as well
as positive associations between serum estradiol and mPFC activity
in individuals with PMDD have previously been reported [32, 37]. In
the present study, neither progesterone nor estradiol levels showed
significant relationships with emotion-induced brain activity. On the
other hand, we found that higher ratios of ISO/ALLO were linked to
higher activation of the right PHG/amygdala and right FuG in

subjects with PMDD, while in controls negative relationships were
observed. These findings are interesting for several reasons. Firstly,
these brain regions have been shown to vary functionally across the
menstrual cycle in subjects with PMDD [58], and have thus
previously been implicated in the pathophysiology of PMDD.
Secondly, the regions are implicated in emotion processing,
whereby the amygdala is a key node of emotion processing
networks [35], and the PHG is involved in the early appraisal and
encoding of the emotional significance of stimuli during the
automatic regulation of emotion [59]. The FuG, on the other hand,
is involved in face processing [60], but is functionally influenced by
the amygdala, as evidenced from a lesion study showing that
increases in fusiform activation in response to emotional faces is
impaired in subjects with amygdala damage [61]. Furthermore, the
study showed that impaired FuG activity varied linearly with the
degree of ipsilateral amygdala damage. The close functional
relationship between these two brain regions might explain why
the right FuG was found in conjunction with the right amygdala in
our study. Thirdly, the amygdala seems to be particularly prone to
neurosteroid influence as evidenced from a human post-mortem
study, where ALLO was shown to accumulate at higher concentra-
tions in the amygdala than in other brain areas [13], and an fMRI
study, which showed that luteal phase levels of ALLO selectively
increased amygdala activity in participants without premenstrual
symptoms [62]. Fourthly, the 1:2 ratio of ISO/ALLO at which the
lowest measures of fMRI activity were observed in controls reflects
the relative dosage at which ISO’s antagonism of ALLO can be
detected experimentally using measurements of saccadic eye
velocity in subjects without premenstrual symptoms [23], and may
thus be conjectured to have real physiological relevance. In sum, the
altered relationship between ISO/ALLO levels and brain activity in
key regions of emotion networks (amygdala, PHG) compared to
controls may reflect a dysregulated modulation of GABAergic tone
by neurosteroids in these areas in PMDD, which may help explain
the mood symptoms associated with the disorder.
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brain activity during task [Faces>Shapes contrast] in subjects with PMDD, compared with controls, during the late-luteal phase across the
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The present study found a positive association between anxiety
symptoms and brain responses to emotional faces in the
cerebellar lobules V-VI and anterior vermis in subjects with PMDD.
These areas are part of the “emotional cerebellum” and are
hypothesized to be involved in numerous aspects of emotion
processing, including the perception, recognition, and evaluation
of emotion, as well as its integration into behavior [63]. Structural,
neurochemical and functional abnormalities have been observed
in the cerebellum of patients with other psychiatric disorders,
including bipolar and unipolar depression, which share aspects of
PMDD symptomatology [63]. In PMDD, fMRI and positron emission
tomography (PET) studies have observed greater activity in the
emotional cerebellum relative to controls [64], and one study
reported that increases in cerebellar activity from the follicular to
the luteal phase was correlated to worsening of core mood
symptoms [65]. In sum, there is some evidence to suggest that
dysfunction in the emotional cerebellum plays a part in the neuro-
pathophysiology of PMDD. This long-overlooked part of the brain
warrants more attention in future research.
The present study has a number of strengths, amongst which are

1) its relatively large sample size in the context of neuroimaging
studies of PMDD, 2) confirmation of menstrual cycle phase through
cycle mapping and hormonal assessment, 3) minimization of order
effects through the counterbalancing of menstrual cycle phase for
the first scanning session, 4) usage of both ROI and whole-brain

approaches to characterize brain function, 5) control for psychiatric
history as a potential confounder, and 6) rigorous assessment of
symptoms across the menstrual cycle in all participants (both PMDD
patients and controls) using the prospective DRSP rating scale for at
least two menstrual cycles prior to inclusion in the study. Despite its
strengths, a number of limitations need to be considered. Firstly,
although previous studies have shown that premenstrual symptom
type and severity in an individual are relatively consistent and stable
across menstrual cycles [66–68], our finding of positive associations
between anxiety scores and emotion-induced brain activity in the
cerebellum of subjects with PMDD should be viewed with caution as
the symptom ratings used in the analysis were not collected during
the actual scanning phase. In hindsight, it would have been
preferable to continue symptom ratings through the scanning
cycles. This oversight is a major limitation to the study; however, as
ovulation was confirmed through a progesterone sample during
scanning cycles, the luteal scans of PMDD subjects can reasonably
be assumed to have been performed during symptomatic days.
Secondly, it should be stressed that serum levels of ovarian
hormones and neurosteroids do not necessarily reflect the precise
hormonal milieu in local brain areas as steroids do not accumulate
uniformly across the brain [13] and all necessary enzymes for de
novo synthesis of ALLO and ISO and epimerization between the two
steroids are present in neuronal and glial cells [26, 69]. Lastly, it has
been argued that hormone ratios are fraught with interpretational
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difficulties, especially in cases where the biological mechanisms by
which two hormones jointly influence an observed outcome are
unclear [47]. Nonetheless, we found it apt to compound ISO and
ALLO into a ratio variable due to the nature of the antagonistic
relationship between the two neurosteroids, the lack of activity of
ISO in the absence of ALLO, as well as the theoretical and empirical
evidence that the relative concentration between the steroids is
physiologically relevant for activity at the GABAA receptor.
Furthermore, we performed ALLO x group and ISO x group analyses
in order to understand whether our results were driven by individual
contributions by the original variables.
In conclusion, the present findings point to phase-specific

differences in emotion-induced brain activity in individuals with
PMDD. Furthermore, results suggest that brain activity in key
emotion-processing regions may be differently influenced by
physiological levels of the GABAA-active neurosteroids ISO and
ALLO during the symptomatic luteal phase in PMDD. Further
investigations at the brain and behavioral level of these potent
modulators of GABAergic activity is merited.
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