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The heritability of intelligence or general cognitive ability is estimated at 41% and 66% in children and adults respectively. Many
rare copy number variants are associated with neurodevelopmental and neuropsychiatric conditions (ND-CNV), including
schizophrenia and autism spectrum disorders, and may contribute to the observed variability in cognitive ability. Here, we reviewed
studies of intelligence quotient or cognitive function in ND-CNV carriers, from both general population and clinical cohorts, to
understand the cognitive impact of ND-CNV in both contexts and identify potential genotype-specific cognitive phenotypes. We
reviewed aggregate studies of sets ND-CNV broadly linked to neurodevelopmental and neuropsychiatric conditions, and genotype-
first studies of a subset of 12 ND-CNV robustly associated with schizophrenia and autism. Cognitive impacts were observed across
ND-CNV in both general population and clinical cohorts, with reports of phenotypic heterogeneity. Evidence for ND-CNV-specific
impacts were limited by a small number of studies and samples sizes. A comprehensive understanding of the cognitive impact of
ND-CNVs would be clinically informative and could identify potential educational needs for ND-CNV carriers. This could improve
genetic counselling for families impacted by ND-CNV, and clinical outcomes for those with complex needs.
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INTRODUCTION

Heritability estimates for general cognitive ability (or intelli-
gence) range from 41% in childhood to 66% in adults [1].
Different forms of genetic variation, common and rare, may
contribute to cognition, such as loss of function or missense
single nucleotide variants (SNV), single nucleotide polymorph-
isms (SNP), and copy number variants (CNV). To date 11,600
SNPs in 148 loci have been linked to cognitive ability, however
each have very small effects [2]. Polygenic scores, which are the
weighted sum of trait associated variants, account for only 4.3%
of variance in cognition [2]. Cognitive ability may be further
accounted for by rare structural variants of larger effect, such as
CNV [3]. CNV refer to variation in chromosomal copy typically
leading to a loss (deletion) or gain (duplication) of sections of
DNA that may include one or many genes. They can be
common or rare, defined based on their frequency in the
population and may be inherited or arise de novo in the
germline. While CNV are commonly found in the general
population and often benign, they can also be pathogenic.
There has been particular interest in investigating rare CNV in
human health and disease since these are likely more
deleterious due to increased selection pressure [4]. Recurrent
CNV are deletions or duplications that occur at specific genomic
regions frequently associated with incomplete penetrance and
variable expressivity. Although their phenotypic impact is not
fully understood, many rare recurrent CNV have been linked to
neurodevelopmental and neuropsychiatric conditions (ND-CNV)

and contribute to associated traits such as variability in
cognitive ability.

CNV BURDEN AND EFFECT SIZES OF DELETIONS AND
DUPLICATIONS ON COGNITION

Many CNV studies of cognition have focused on total CNV burden,
defined as total length or number of base pairs impacted by a CNV
[5, 6], and also numbers of affected genes in some studies [5, 7].
These studies examine unfiltered CNVs (i.e., they do not filter for
neurodevelopmental-related CNV). Deletions and duplications are
assessed either together or separately. CNV burden studies show
mixed findings. Multiple general population studies suggest no
effect of rare CNV burden, total number of CNV, or number of
affected genes on general cognitive ability [3, 8, 9]. However, rare
deletion burden has been shown to have a more deleterious
effect in some studies in relation to IQ and components of
cognition such as phonological working memory and selective
attention [10, 11].

A recent meta-analysis of nine studies in clinical and
population-based cohorts showed no association of CNV burden
with intelligence quotient (IQ) [5]. Nor did they find association of
burden and 1Q within a subsequent analysis of a large cohort of
psychosis patients and family members. Noteworthy, many of the
clinical cohort studies included in the meta-analysis did show
effects of rare CNV burden on cognition, although others have
reported variable results [5, 12, 13]. Some of the discrepancies may
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be accounted for by differences between studies in the definition
of rare CNV. Studies using a frequency cut-off of 1% for rare CNVs
have reported associations more often than those using a 5%
frequency cut-off [8-10]. Inadequate power and small sample size,
particularly in clinical cohorts is also a factor.

An alternative to CNV burden is the use of constraint scores,
e.g., “probability of being loss of-function-intolerant” (pLl). The pLlI
score classifies genes within CNV as being loss of function-
intolerant, and the sum of all pLI scores of genes in a deletion are
used to estimate the effect size of deletions on 1Q [11]. In contrast
to many CNV burden studies, these studies suggest that there is
an impact of CNVs on cognition. Studies showed effects of
deletions on 1Q [11], and demonstrated a 3:1 effect size for of
deletions and duplications on non-verbal 1Q (NVIQ) [14]. Moreover,
similar effect sizes were observed for deletions and duplications
on IQ in unselected or general populations and autism spectrum
disorders (ASD) cohorts [14]. Deleting 1 point of pLI had the same
effect on NVIQ scores in both autism and population cohorts,
indicating that CNV deletions do not differentially impact
cognition in clinically ascertained and general population cohorts
[14]. Overall, these studies suggest an impact of CNVs in
aggregate on cognition. Some studies have adopted a more
targeted approach focused on lists of CNV implicated in
neurodevelopmental and neuropsychiatric conditions to further
understand their specific contribution to cognitive ability [5, 15].

RARE NEURODEVELOPMENTAL AND NEUROPSYCHIATRIC
ASSOCIATED CNVS (ND-CNVS)

Many rare CNVs have been broadly linked to neurodevelopmental
and neuropsychiatric conditions (ND-CNV) including autism,
schizophrenia (SCZ) and intellectual disability (ID). Some studies
have investigated a list of aggregated ND-CNV, while others have
used a gene-first approach, most commonly within a subset of 12
recurrent ND-CNV found to be robustly associated with neurode-
velopmental and neuropsychiatric conditions [16, 17]. ND-CNVs
show incomplete penetrance and variable phenotypes. Under-
standing the broader cognitive impact of ND-CNVs, or whether
there are genotype-specific cognitive profiles may inform genetic
counselling and guidance for carriers and their family members
regarding the potential cognitive impact. It may also improve the
implementation of cognitive and educational supports for those
that may have more complex needs [18]. This review aimed to
summarize the current research on ND-CNV cognitive phenotypes
with a focus on (1) cognitive impact of aggregated lists of ND-CNV
in both general and clinical cohorts to provide a better
understanding of their impact in these populations, and (2)
genotype-first approaches to understand if there are specific
cognitive impacts associated with 12 recurrent ND-CNVs (Supple-
mentary Table 1) [17]. This set of 12 ND-CNV were the focus here
as they are well defined and most frequently reported in the
literature. The rarity of ND-CNV leads to challenges in conducting
sufficiently powered studies, therefore these ND-CNV are more
likely to have genetic-first studies of cognition than more recently
identified ND-CNV.

The term “carrier” is typically used to describe people with a
genetic variation who do not express an associated phenotype,
however, for the purpose of this review we use the term to refer to
anyone with an ND-CNV, regardless of clinical phenotype (i.e.,
both clinical and non-clinical cohorts, or probands and familial
carriers for some studies).

METHODS

Pub-Med and Embase databases were searched for studies that
assessed the cognitive impact of ND-CNV. Included were studies
that investigated pre-defined lists of ND-CNV in aggregate that
also included one or more of the 12 recurrent ND-CNV, and
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studies that evaluated the individual effects of 12 recurrent ND-
CNV on cognitive phenotypes [17]. For the individual effects of
ND-CNV, 22q11.2 deletion was subsequently excluded from the
review as the cognitive phenotype has previously been reviewed
and characterized [19]. The 16p11.2BP4-BP5 CNV was included as
it is associated with neurodevelopmental and neuropsychiatric
conditions [20].

Final searches were conducted between the 16th of November
2021 and 6th of December 2021 and included any publication
date up until the date searches were completed (see Supplemen-
tary Methods for search terms). Studies assessing cognition were
included if they reported cohort performance on at least one
cognitive test spanning cognitive domains of executive function,
attention, learning and memory, language, perceptual-motor
function, social cognition, or at minimum a measurement of
overall intellectual functioning such as Full-Scale 1Q (FSIQ), Verbal
IQ (VIQ) or Performance 1Q (PIQ). Studies were included if they
assessed cognition in ND-CNVs in either general population or
clinical cohorts across all age ranges with at least 5 subjects.
Multiple studies from the same consortium or patient registry
were included if the study provided an extension to previously
reported analyses, or if additional participants were included.
Exclusion criteria were studies not published in English, systematic
or narrative reviews, meta-analyses, case reports, studies that
assessed cognition in animal models, and studies that did not
report any cognitive assessment score.

We identified 1227 papers in total from database searches, and
two further papers were identified from reference lists of the
studies included, review papers, or from publication lists
associated with Generation Scotland, UK Biobank (UKB), Simons
VIP and IMAGEN datasets. After screening and filtering, 35 papers
met criteria for inclusion in the review (Fig. 1).

Cognitive impact of predefined sets of ND-CNVs in aggregate
Eleven studies investigated performance on a range of cognitive
measures in pre-defined sets of ND-CNVs in aggregate (Table 1)
[5, 10, 15, 18, 21-27]. Four studies were in general population
cohorts [10, 15, 23, 24]; and seven were in clinically ascertained
cohorts [5, 18, 21, 22, 25-27]. Each study investigated a slightly
different ND-CNV list (see Supplementary Table 2 for full list for
each study), with inclusion of at least one ND-CNV from the list of
12 ND-CNV subsequently reported in the genetic-first section
below.

The cognitive impact of specific ND-CNV sets have been
identified in population-based cohorts of varying size. Kendall
et al. (2017) investigated 53 pathogenic CNVs, 12 SCZ-associated
and 41 other ND-CNVs, in 152,728 individuals from the UKB and
their effects on seven cognitive tests (reaction time, simple and
complex processing speed, fluid intelligence, numeric working
memory, and visual attention, and cognitive performance) [24].
Sample sizes and statistical power varied by cognitive sub-test.
ND-CNV carriers had poorer performance compared with non-
carriers overall and ND-CNV carriers had the poorest performance
with largest effects observed on fluid intelligence. Performance in
the ND-CNV carriers was intermediate between non-carriers and a
subgroup of individuals with SCZ identified in the cohort. A further
study in 500,000 UKB participants identified significant associa-
tions with at least one measure of cognition or general
functioning in 24 of 33 ND-CNV analyzed individually [15]. CNV
penetrance was associated with effects on cognition; 16p11.2
duplication and distal deletion carriers showed greatest impacts.
Mirror effects on cognition for reciprocal deletions and duplica-
tions were not observed. Average effect sizes were modest but
assume equal weighting of performance on all tasks, although the
numbers completing each were variable. A study in the Icelandic
population (n = 101,655) identified 176 carriers of one of 24 ND-
CNV [23]. They showed significantly poorer performance on
cognitive tasks (PIQ, VIQ, letter and category fluency, Trail Making
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Fig. 1

Cognitive impact of predefined list of 12
ND-CNV using genetic-first approach (n=24)

Flowchart of literature search and filtering of papers to be included in the final review. Papers were identified through database

searches and then screened for eligibility for inclusion based on specific criteria.

performance, set-shifting ability, spatial working memory, rapid
visual processing and logical memory task) although the effects
on cognitive performance in a SCZ subgroup was greater. When
the analyses were controlled for 1Q, only global functioning was
significantly different between the groups. No differences in
cognitive performance were observed in carriers of other large
CNV not associated with neurodevelopmental or neuropsychiatric
conditions in comparison with controls. A final study of ND-CNVs
(n = 29) found significant effects of deletions, but not duplications,
on IQ, non-word repetition and social cognition [10]. These
findings suggest a greater impact of deletions on cognition;
however, multiple testing correction was not conducted, and
sample sizes for individual tasks were small.

Cognitive impacts of ND-CNV have also been reported in
clinically ascertained cohorts. Chawner et al. (2019) reported that
carriers of one of 13 ND-CNVs (n = 238) had significant differences
in cognitive measures and traits linked to neurodevelopmental
conditions compared with non-carrier siblings (n = 106) [18]. The
observed effects were robust to correction for multiple testing and
controlling for 1Q. Specifically, large effects were observed in FSIQ,
PIQ, VIQ, and sustained attention. Effects on spatial working
memory, spatial planning and set-shifting ability were moderate
and were small for processing speed. Significant effects were
mostly observed when deletion and duplication carriers were
separately compared. High levels of traits linked to

Translational Psychiatry (2023)13:116

neurodevelopmental conditions were observed in all ND-CNV
carriers, while the observed effects on cognitive traits were weaker
and more variable. No dosage effects of ND-CNV were observed
and there were no specific profiles associated with deletions and
duplications. The qualitative and quantitative nature of CNV
effects were explored by ranking mean z-scores for each trait
supporting differences between genotypes. Genotype predicted
5%-20% of variance in phenotypic traits, and significantly
predicted the observed effects on FSIQ, PIQ and VIQ scores,
processing speed and spatial planning, but not sustained
attention, spatial working memory and set-shifting.

Cunningham et al. (2021) found that poor motor co-ordination
was highly prevalent in children with ND-CNVs and closely linked
to lower intellectual function and increased likelihood of mental
health conditions [26]. They reported an association between
motor co-ordination and low FSIQ, PIQ and VIQ, and increased
ADHD and ASD symptoms in children with ND-CNVs (n=169)
compared with their closest-in-age unaffected siblings (n=72).
Motor co-ordination ability was found to fully mediate anxiety
symptoms and to partially mediate FSIQ, PIQ and VIQ scores and
ADHD and ASD symptoms.

Two studies assessed cognitive impacts in autism cohorts.
Jensen et al. (2020) investigated the effects of 78 pathogenic CNV
and de novo likely-gene disruptive (LGD) variants in 2290 autistic
individuals from the Simons Simplex Collection (SSC), with and
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without intellectual disability [22]. Carriers of CNV or LGD variants
in both groups had lower IQ compared with non-carriers in the
same groups. The likelihood of carrying a deleterious variant was
reduced in individuals with an 1Q over 100. They reported an
average decrease of 12.8 IQ points in carriers of de novo variants
in a set of 173 autism-associated genes compared with non-
carriers indicating a role for these genes in both autism and 1Q.
Barone et al. (2021) compared 1Q or general quotient (GQ) in three
groups of autistic children; carriers of autism associated CNV (ASD-
CNV) (n=7) or a non-causative CNV (n=18), and non-carriers
(n = 84) [25]. There were no significant differences in rates ID or
developmental delay between the three groups, although those
with ASD-CNV had 1Q or GQ less than 70. The results were likely
impacted by the small samples size in ASD-CNV group.

Finally, two studies assessed SCZ-associated CNVs in SCZ
cohorts. Hubbard et al. (2021) found that carriers of 12 SCZ-CNV
had lower general cognitive ability than non-carriers in both a
discovery (n =15 CNV carrier and 860 non-carrier) and replication
sample (n=28 carrier and 511 non-carrier), although SCZ-CNV
samples sizes were low in both datasets [21]. Rare CNVs impacting
genes intolerant to loss of function were associated with greater
effects on cognition than genes impacted by CNV duplications.
Poorer performance in immediate and delayed recall tasks of
memory has also been reported within carriers of one of a pre-
defined list of 27 SCZ-CNV from a dataset of individuals with
schizophrenia and relatives (n = 29), suggesting specific cognitive
impacts of these SCZ-CNV [5].

Overall, the aggregate studies reviewed showed moderate
impacts across a broad range of cognitive domains were observed
in ND-CNV carriers compared to non-carriers in the general
population [15], and to a lesser degree than in those with an NDC
[10, 23]. Carriers of some ND-CNV with an NDC show poorer
cognition than non-carriers with an NDC, but this is not the case
for all ND-CNV [21, 28]. The identification of overlapping or distinct
cognitive traits among ND-CNV may help to understand how the
underlying mechanisms disrupted in ND-CNV carriers contribute
to differences in neurodevelopment and phenotypic traits such as
cognition.

Cognitive outcomes in groups defined by ND-CNV

Two studies separately compared cognition in different ND-CNVs
to non-ND-CNV carriers from the general population or the SSC.
Bishop et al. (2017) analyzed five de novo ND-CNVs identified in
five or more individuals including 16q11.2 deletions and duplica-
tions, 15q11.2-13 duplications, 1921.1 duplications and 7q11.23
duplications and compared to the SSC [27]. NVIQ and VIQ scores
were above the SSC mean in 1921.1 duplication carriers, and lower
in 15911.2-13 duplication and 16p11.2 duplication and deletion
carriers, suggesting these ND-CNVs impact cognition to a greater
extent. However, extrapolation of specific phenotypic signatures
was difficult as sample sizes were small and there was high
variability within ND-CNV carrier groups.

Individual analysis of the cognitive phenotype of 11 ND-CNVs in
comparison to non-carrier controls in a general population cohort
showed that 16p11.2 deletions, 17p12 deletions and duplications,
and 16p12.1 deletions were significantly associated with VIQ with
large effect sizes, while 16p11.2 deletions and 16p13.11 duplica-
tions were significantly associated with PIQ [23]. Overall carriers of
16p11.2 deletions displayed greatest impact across cognitive
tasks. 16p11.2 deletions and duplications were associated with
spatial working memory performance, and 16p11.2 deletions were
also associated with letter fluency, stroop task and preservative
errors on the Wisconsin card sorting task (WCST). 16p11.2
deletions and 22q11.2 duplications were associated with category
fluency performance. 15q11.2BP1-2 deletions were associated
with difficulties in reading and mathematics, while effects on
other cognitive measures were only modest in nature, particularly
when 1Q was controlled for. All cognitive measures were impacted
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in 22q11.2 duplication carriers, although not all were statistically
significant. These two studies suggest cognitive differences in
specific ND-CNV. In the next section we focus on genotype-first
studies to elucidate any distinct cognitive impacts of specific ND-
CNV.

Cognitive impact of a predefined list of 12 ND-CNV using a
genetic-first approach

We identified 24 papers using a genotype-first approach to
characterize cognition one of 12 recurrent ND-CNVs (Table 2). No
studies assessing 3g29 deletions or 16p13.11 duplications were
found using our search criteria. Within the 12 pre-defined ND-
CNVs, impacts on at least one measure of mean FSIQ, PIQ or VIQ
score, or fluid intelligence were found in both unaffected and
clinically ascertained cohorts [29-33]. Genetic-first studies of ND-
CNV are discussed separately.

1921.1 duplication and deletion

Two studies assessed cognition in 1g21.1 duplication and
deletion carriers in clinically ascertained participants and
familial carriers from the Simons Variation in Individuals Project
(VIP) and Intellectual Disability and Mental Health: Assessing the
Genomic Impact on Neurodevelopment (IMAGINE-ID) cohorts,
and one from the UKB general population [29, 33, 34]. Study
outcomes were not consistent. One study of clinically ascer-
tained children found lower FSIQ, PIQ, and VIQ compared to
familial non-carriers in association with 1g21.1 duplications or
deletions [34]. Separately a small sample of clinically ascer-
tained adults identified reduced FSIQ, PIQ and VIQ in deletion
carriers [34]. In contrast, Bernier et al. (2016) found significantly
lower VIQ and NVIQ in duplication carriers compared to familial
non-carriers [29]. They found no difference between duplication
and deletion carriers. Phonological processing was in the
extremely low range in both carrier types [29]. The discrepan-
cies may be related to different sample sizes. Both studies
included the Simons VIP cohort, giving rise to potential for
overlapping participants. Analysis of the UKB identified poorer
performance, processing speed, executive functioning, and
declarative memory for 1g21.1 deletion carriers, and in reaction
time and reasoning and problem-solving tasks for duplication
carriers compared to controls [33]. This suggests different in
cognitive impacts between 1g21.1 deletions and duplications,
and that they both impact cognition in the absence of
neurodevelopmental conditions.

2p16.3 (NRXN1) deletion

One study assessed a small sample of five people with NRXN1
deletions and ID diagnosis and reported four participants with
below average cognitive ability and one in the low average range.
It is worth noting that different cognitive measures such as NVIQ,
FSIQ or DQ are reported for each participant [35].

7911.23 duplication

Variability in cognitive, language and academic abilities was
observed in children and adult carriers of 7q11.23 microduplica-
tions [31]. This was a case-only descriptive study of children with
classic 7911.23 microduplication, ascertained clinically and two
smaller groups of toddlers and adults identified by cascade
testing. Key findings in the toddler group were low average
cognition associated with relatively poorer expressive compared
with receptive language. The school age children had lower
general conceptual ability (GCA), verbal, spatial, and nonverbal
reasoning compared with the normative mean, and receptive
language and expressive vocabulary scores in the average range.
Adult carriers had average FSIQ and PIQ and low average VIQ that
was significantly discrepant from PIQ in over half of carriers. They
had relative reductions in expressive language compared with
receptive language scores.
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15q11.2 BP1-BP2 deletion

Three studies in 15q11.2 BP1-BP2 deletion carriers showed
impacts on mathematical skills and aspects of language
[23, 36, 37]. Lower reading and mathematical ability were
identified in carriers in a population cohort compared with non-
carriers [23, 36]. In a study using a web-based tool, poorer
neurocognitive performances on tasks of arithmetic reasoning and
a reverse memory span task of working memory were identified in
15g11.2 BP1-BP2 deletion carrier parents compared with age,
gender and education matched population controls [37].

In the UKB, two studies of 15q11.2 BP1-BP2 deletion carriers
showed significantly poorer performance on either four or five out
of seven measures including fluid intelligence, Trail Making B,
reaction time, digit-symbol substitution tasks, and digit span,
when compared to controls [38, 39]. Duplication carriers did not
differ significantly to non-carriers on any cognitive measure in one
study [38], and had poorer performance in a pairs matching task
only in the second study [39]. Copy number dosage at 15q11.2
BP1-BP2 was observed to have significant effects on reaction time,
fluid intelligence and Trail Making B [38]. Overall, findings show
that 15q11.2 BP1-BP2 deletions, but not duplications, impact
multiple aspects of cognition.

15q11.2-q13.1 duplication (Dup15q Syndrome)

15911.2-q13.1 duplications are frequently associated with isodi-
centric or interstitial duplication subtypes. Genetic subtype and
epilepsy were associated with impairments in verbal and non-
verbal developmental quotient (VDQ/NVDQ) in a group of children
with different subtypes [40]. Isodicentric duplications were
associated with lower VDQ and NVDQ compared to interstitial
duplications although VDQ differences were likely related to co-
occurring epilepsy in the isodicentric subtype. A prior study of a
small subset of this cohort found no differences between
isodicentric (n = 10) and interstitial (n = 3) genetic subtypes, likely
due to the small sample size [41]. Separately, FSIQ was reported to
be the low to average range in a small sample of interstitial
duplication carriers (n =9) [42].

15q13.3 deletion

One case-only study of 18 adolescent 15g13.3 microdeletion
carriers reported mean FSIQ, VIQ and NVIQ to be significantly
lower than the normative mean, with no difference between VIQ
and NVIQ [32]. There was high variability in FSIQ scores, and 5/18
individuals also had a second CNV of uncertain clinical
significance.

16p11.2 deletion and duplication

Reduced cognitive ability in carriers of 16p11.2 deletions has been
reported by five studies [30, 43-46]. Three of these included
participants ascertained by the Simons VIP consortium, resulting
in a high probability of overlapping samples [30, 44, 46]. An initial
case-only study (n=11) showed high variability in VIQ and NVIQ
[43].

Reduced FSIQ was reported in probands and parent and sibling
carriers of 16p11.2 deletions compared to non-carrier familial
controls [46]. There was no significant difference between
probands and relative carriers or between de novo or inherited
deletion carriers. Carriers had significantly lower mean VIQ
compared to NVIQ, and 20% met the DSM-IV-TR criteria for ID.
Hanson et al. (2015) observed similar effects on FSIQ, VIQ and
NVIQ in addition to poorer spoken language scores, word reading
and numerical operations academic tasks [30]. Mean NVIQ
significantly below the normative mean in children and adults
with 16p11.2 deletions, and language impairments, e.g., reduced
word reading, and spelling scores were also reported in a case
only study [44]. 60% of children had expressive and receptive
language impairments.
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One study compared 16p11.2 deletion carriers (n=17) with
ASD (n=121) and neurotypical (NT) comparison groups (n = 45)
[45]. The cognitive phenotype in 16p11.2 deletion carriers was
between ASD and NT groups. Mean VIQ was 10-points higher in
carriers compared to the ASD group. Both 16p11.2 deletion carrier
and ASD groups had significantly lower FSIQ compared to
NT group.

Six studies assessed cognitive phenotypes in both 16p11.2
deletions and duplication carriers. Results of comparisons
between deletion and duplication carriers were mixed. Four
studies used SVIP cohort with potential for overlap in samples,
however, any studies with different analysis approaches are
included [47-50].

D’Angelo et al. (2016) found reduced mean FSIQ, NVIQ and VIQ
in duplication carriers compared with controls, and reduced mean
FSIQ in deletion carriers compared to controls, even when
accounting for ASD and seizures [48]. There was greater variance
in FSIQ and larger effects on FSIQ in duplication carriers compared
with non-carrier familial controls. There were 1Q differences
between carriers of de novo versus inherited deletions, but not
duplication carriers. However, the IQ of transmitting parents
accounted for 36% of the variance in inherited duplication carriers.
Expanding on this, Hippolyte et al. (2016) found lower scores on
measures of language (non-word repetition, oromotor sequences,
sentence repetition, lexical and written language skills) and
executive function (verbal inhibition) in deletion carriers [49].
Duplication carriers performed better than familial controls on
tasks of verbal long-term memory, such as encoding and delayed
recall tasks, and on verbal long-term memory. Deletion carriers
had poorer performance than duplication carriers on tasks of non-
word repetition, oromotor sequences, verbal short- and long-term
memory, and inhibition supporting the observation of distinct
cognitive differences between 16p11.2 CNV sub-types.

Reports from other studies comparing 1Q between deletion and
duplication subtypes have been mixed. Two reported lower
cognitive scores in duplication carriers [28, 50], one reported lower
scores in deletion carriers [51], and one reported no significant
difference between groups [47]. These discrepancies may be
related to sample size or study exclusion criteria. For example, one
study focused on deletion and duplication carriers from the SVIP
cohort that also completed neuroimaging which excluded
individuals with reduced language and cognitive abilities.

Although FSIQ did not differ between deletion and duplication
carriers in one study, both groups had lower FSIQ compared to
case-matched non-carrier controls, similar to previous findings
[47]. Further, a study that reported lower VIQ in deletion carriers
compared to duplication carriers found a higher number of
additional rare CNVs was associated with lower VIQ and NVIQ in
deletion carriers, and NVIQ in duplication carriers [51], suggesting
additional genetic influences on cognitive abilities.

In contrast, another study reported lower NVIQ in duplication
carriers compared to deletion carriers and showed that poorer
cognition significantly predicted lower functional communication
in both groups when including verbal and minimally verbal
individuals [50]. Even here, excluded participants were often
minimally verbal, had significantly lower IQ and were more likely
to be diagnosed with ASD compared to those who were included,
therefore, conclusions regarding effects of ASD and NVIQ on
language are limited.

Finally, Chawner et al. (2021) compared 16p11.2 deletion and
duplication carriers, 22q11.2 deletion and duplication carriers, and
an ASD group from the IMAGINE-ID cohort [28]. Similar to Kim
etal. (2021), 16p11.2 duplication and 22q11.2 deletion carriers had
lower FSIQ, VIQ and PIQ relative to 16p11.2 deletion and 22q11.2
duplication carriers. Cognitive performance in duplication carriers
was more variable than deletion carriers. 16p11.2 deletion carriers
with ASD had similar cognitive impairment to the ASD group,
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whereas duplication carriers with ASD had a poorer PIQ compared
to the ASD group.

Overall, 16p11.2 deletions impact cognition, however it will be
important to elucidate reasons for the discrepancies between
studies comparing 16p11.2 deletions and duplications, and
whether they relate to participant ascertainment or inclusion
criteria for each study, or other factors such as additional CNVs.

Domain-specific cognitive phenotypes in carriers of specific
ND-CNVs

While only a limited number of ND-CNV have been investigated
using adequately powered studies, general impacts across multi-
ple cognitive domains were reported, some ND-CNV appeared to
show greater effect sizes than others for different cognitive tasks
which may suggest that some cognitive domains are more
affected in certain ND-CNVs [15, 18].

Reduced grammatical and numerical reasoning were reported
in 15911.2BP1-BP2 deletion carriers in the general population and
parent carriers [23, 37], with similar patterns observed in those
with a diagnosis of dyslexia and dyscalculia [36]. These cognitive
impacts are supported by neuroimaging studies, with reduced
grey matter volume in left fusiform gyrus observed in 15q11.2BP1-
BP2 deletion carriers [36], dyslexia [52] and dyscalculia [53].
Reduced differences in functional activity between phonological &
orthographic familiar words and unfamiliar word forms within the
fusiform gyrus in 15q11.2BP1-BP2 deletion carriers also suggests a
lack of differentiation between word and non-word forms [36],
similar to that observed in dyslexia [54].

16p11.2 CNVs are considered highly penetrant, and carriers
exhibit the greatest degree of global cognitive impact in general
population studies [15, 23]. 16p11.2 deletions have also been
associated with language impacts [30, 44, 49], with large effects
observed on VIQ in the general population [23], and lower non-
verbal ability with poorer expressive, receptive, lexical and written
language and verbal memory observed in clinically ascertained
individuals [30, 49]. Brain structural differences in 16p11.2 deletion
carriers compared with non-carriers have also been shown in
language and phonological processing regions such as the
transverse superior and middle temporal gyri [55].

One study showed relative strengths in verbal long-term
memory in 16p11.2 duplication carriers, however this is the only
study that reported increased cognitive performance associated
with an ND-CNV [49]. Replication in a separate cohort is necessary,
as reduced cognitive ability has been reported in other studies
[18, 28].

The literature to date is limited, and the lack of in-depth speech
and language assessment across ND-CNVs makes it difficult to
draw inference about specific language impacts. While the
suggested broad impacts of language abilities across ND-CNV is
supported by reports of speech and language delay or language
difficulties in some ND-CNV [56-59], a comprehensive language
characterization across ND-CNVs is needed to fully understand
their impact.

Cognitive impact of deletions and duplications at the same
loci

Some ND-CNVs are associated with duplications and deletions at
the same locus, with gene dosage effects reported for traits such
as height, body mass index (BMI), and macrocephaly/microce-
phaly in 1g21.1 CNV carriers [29, 60], and BMI and macrocephaly/
microcephaly in 16p11.2 CNV carriers [55, 60]. While carriers of
both 16p11.2 deletions and duplications showed cognitive
impacts [18], only one study suggested potential gene-dosage
effects, with greater verbal long-term memory in 16p11.2
duplications compared to deletion carriers and NVIQ matched
controls [49]. However, this requires replication in a larger sample.
As for 1921.1 CNV carriers, cognitive reports are inconsistent in
clinical cohorts of children and adults [18, 29, 34], with greater
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impacts associated with 1g21.1 deletion compared to duplication
in the general population [15, 33]. Similarly, deletions at 15q11.2
BP1-BP2 locus affected multiple aspects of cognition, while
duplications did not [36, 38]. Overall, gene dosage effects on
cognitive phenotypes were not observed, although findings
mostly support the greater impact of deletions compared to
duplications which is likely explained by haploinsufficiency or loss
of function having greater impact than gain of function.

Influence of additional factors on variability in cognitive
phenotypes

Chawner at al. (2019) showed that genotype accounted for
between 5 and 20% of phenotypic variance, depending on the
trait. Wide heterogeneity in cognitive ability within ND-CNVs
reported in numerous studies implies the influence of other
factors. For example, age effects have been reported, with
increasing age associated with greater impairments in FSIQ and
spatial working memory and reduced attention and set-shifting
impairments in ND-CNV carriers [18]. Longitudinal studies are
needed to accurately assess age effects on neurocognitive
phenotypes in ND-CNV carriers throughout development. While
sex effects have also been observed, with poorer performance on
tasks of sustained attention and superior perceptual organization
skills in males compared to females, sex accounted for a small
amount of cognitive variation [18]. Many studies, especially
genotype-first studies, may not be adequately powered to assess
sex differences, leading to insufficient evidence of robust findings.

Physical traits such as motor difficulties are reported in many
ND-CNV [18, 30], and may impact cognitive task performance [29].
While poorer coordination has been linked to reduced IQ in ND-
CNV carriers [26], it could lead to reduced performance on certain
tasks unrelated to an individual’s cognitive ability. Not all studies
reviewed here assessed motor skills. However, motor skills should
be considered when assessing performance on certain
cognitive tasks.

When considering genetics, the size and location of a deletion
or duplication within a CNV may contribute to the variability in
cognitive phenotype observed between individual carriers of the
same ND-CNV. For example, within the 15911.2-q13.1 duplication
(Dup15q), children with isodicentric duplications had lower VDQ
and NVDQ compared to interstitial duplications, suggesting
differential impacts [40]. Noteworthy, the isodicentric duplication
often results in a triplication rather than a duplication leading to
four copies and typically includes the 15q11.2 region, whereas the
interstitial typically results in three copies of the 15q11.2-q13.1
region. While the information was not available for all studies,
phenotypic heterogeneity is also potentially introduced through
parent of origin and CNV coordinates as some may include the
15q11.2 BP1-BP2 region while others may include the 15q13.3
BP3-BP5 region. As for NRXN1 deletions (2p16.3), exonic deletions
are thought to be more clinically relevant than intronic deletions,
with suggestions that exon 6-24 deletions are more penetrant
with increased likelihood of developing ID and SCZ [61, 62]. While
cognition has not been specifically compared across different
deletions within the NRXNT gene, different cognitive impacts may
also be present.

Apart from NRXNT deletions, the loci of the ND-CNV we
reviewed affect multiple genes, many of which are highly
expressed in the brain and associated with key functions,
including synaptic formation and signalling [63]. A recent study
linked genes within the 16p11.2 CNV locus and phenotypic traits,
with the SPN gene shown to be associated with 1Q and BMI, and
the YPEL3 gene with SCZ [64]. More in-depth analysis of genes and
molecular mechanisms associated with ND-CNV phenotypes is
required. While individual gene products may be affected by CNVs
at specific locations, the potential downstream convergence on
common mechanisms may also explain cross-genotype similarities
in cognitive phenotypes.
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Evidence for cognitive impacts of inheritance patterns remains
unclear based on the reviewed articles [11, 46, 48], as many of the
studies did not analyze the effect of inheritance status on
cognitive outcomes. Further research is needed to examine
suggestions that CNVs arising de novo are more deleterious, as
it is thought they may negatively affect reproductive success and
therefore have a reduced likelihood of being inherited [23]. For
example, if two individuals have an identical CNV which is de novo
in one person and inherited in the other, the CNV should have
similar penetrance, although, the clinical and/or cognitive out-
comes are likely influenced by other genetic or environmental
factors. Another factor that hampers our understanding is that
inheritance patterns are typically only available in clinical rather
than population cohorts.

Quantifying the effect of ND-CNV in isolation is difficult, and
cognitive phenotypes are additionally influenced by an indivi-
dual's genetic and environmental background. Family-based
studies including parents and siblings may help to elucidate ND-
CNV impacts relative to genetic background. Also, additional
deleterious variants in the genetic background likely interact with
ND-CNVs [65, 66]. A recent analysis 16p11.2 deletion carriers
showed a correlation between FSIQ and number of additional rare
variants [65], with a significant excess of additional variants also
observed in 16p11.2 deletion proband carriers relative to carrier
parents. To date, the cognitive impact of “other hits” has not been
widely studied in the presence of ND-CNVs, although this is a
growing area of research [66]. Further understanding of all
possible genetic factors and their interactions is required to
provide accurate prognostic information to ND-CNV carriers and
families.

While we do not have sufficient evidence of impacts of
environmental factors specifically in ND-CNV carriers, it is
important to consider whether or how they cognitive or
behavioural phenotypes, or later functional outcomes. Factors
such as early life in utero exposures, birth traumas, or exposure to
drugs during pregnancy may be important to consider although
are often not systematically available in genetic cohorts. Future
studies of ND-CNV carriers would benefit from the inclusion of
psychosocial factors to evaluate their impact. In addition, more
prevalent use of family-based study designs that are informative
regarding inheritance may provide more insight into the
heterogeneity of on cognitive and mental health outcomes.

Functional outcomes and cognitive impact in ND-CNV

IQ is a predictor of many life outcomes, such as educational
attainment, occupation, physical and mental health, and mortality
[67-69]. Functional outcome impacts have been reported in ND-
CNVs carriers in general or unselected population studies [15, 55].
Although fluid intelligence score altered the effect size of ND-
CNVs on income, the low correlation between performance on
certain cognitive tasks and functional outcomes suggests that
cognition is not the only factor to consider. Other factors could
influence functional outcomes, such as increased susceptibility for
co-occurring medical conditions, which may impact educational
opportunities or cognitive function [70]. In 15911.2-q13.1 CNV
carriers, cognitive ability was associated with poorer adaptive
behaviour [40], suggesting impacts on daily living skills. Whether
cognitive interventions help to improve adaptive behaviours and
functional outcomes in ND-CNV carriers is yet to be evaluated.

Limitations

Although the 12 ND-CNVs selected for review of genotype-first
studies are based on a well-defined list [17], no genetic-first
studies were identified for 3929 deletions or 16p13.11 duplica-
tions. However, research in rare ND-CNV is evolving, such that, a
study of cognition in 3g29 deletions was published following the
literature searches conducted for this review. Klaiman et al. (2023)
showed that participants with 3929 deletions had a lower than
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average FSIQ overall, with over half showing a relative strength in
verbal ability [71]. It is also worth noting that the of 12 ND-CNV is
not exhaustive as suggested by the reviewed studies of aggregate
ND-CNV (see supplementary Table 2 for full list of ND-CNV
included in each study). As the ND-CNV field progresses review of
genetic-first studies of other ND-CNV will be imperative to
understand their cognitive impact.

The low prevalence of ND-CNVs often leads to small sample
sizes and inadequate power to assess the impact of individual ND-
CNVs on cognition. The probable sample overlap in studies
including data from SVIP also affects interpretation of findings and
cross-study comparisons. Sufficiently powered studies are neces-
sary to understand ND-CNV-specific cognitive impacts and relative
strengths, and replication of findings will be imperative to ensure
robustness of findings.

Ascertainment bias, study criteria and statistical analysis
should all be considered when interpreting discrepancies
between studies. For example, general population samples,
such as UKB, may have lower rates of neurodevelopmental or
neuropsychiatric condition diagnoses or numbers of ND-CNV
carriers due to enrolment criteria [15]. Conversely, clinically
ascertained samples likely overestimate ND-CNV effects, as
individuals are ascertained based on clinical phenotype and
may have several other genetic and environmental factors
contributing to cognitive phenotypes. Another consideration is
the optimal comparison group to use. Non-carrier siblings have
the advantage of partially controlling for shared background
genetics, while general population controls do not [18].
Although closest in age sibling is often used, these studies
are somewhat limited by the inability to strictly age and gender
match. Choice of statistical model, variables and covariates may
also affect comparison of findings between studies [72]. Some
studies reviewed covaried for IQ in their analysis, however, this
may overcorrect results as cognitive tasks are measuring
processes which contribute to 1Q [73].

Finally, different genotype arrays and CNV calling techniques
have been used in the reviewed studies of aggregate ND-CNV. For
the majority of genotype-first studies reviewed, the provision of a
clinical genetic report is mentioned as inclusion criteria, but no
details of genotype array or CNV calling are described. Differences
in arrays and CNV calling algorithms used across the studies may
contribute to the heterogeneity findings. Advances in whole
genome sequencing and improved CNV calling methods are likely
to lead in the future to more consistency across studies [74].
Additionally, WGS will provide more detailed information about
the range of genetic variants contributing to outcomes in ND-CNV
carriers.

Future directions

Collaboration, registries, biobanks, and initiatives including the
Genes to Mental Health Network (https://genes2mentalhealth.com/)
are key for sufficient samples sizes to comprehensively characterize
ND-CNV. Studies are currently underway for ND-CNV lacking in
sufficient genotype-first cognitive phenotyping [75, 76]. Longitudinal
studies will be important to understand the impacts of ND-CNV
throughout the lifespan.

ND-CNVs are associated with heterogeneity in clinical features
and cognitive ability, making it difficult to select appropriate
measures to assess multiple cognitive domains across a wide
range of abilities. The alignment research protocols and cognitive
task batteries across studies would allow for collaboration and
better comparison of similarities and differences between ND-
CNV.

As ND-CNVs present with variable penetrance and phenotypic
heterogeneity, a better understanding of the impacts of both
common and rare genetic variance, gene-gene or gene-
environment interactions, and environmental factors are required
to elucidate their combined effects [65, 66].
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CONCLUSION

ND-CNV research is invaluable for understanding how underlying
biological mechanisms are associated with neurocognitive and
clinical outcomes. Greater knowledge of ND-CNV cognitive
phenotypes may help the provision of appropriate clinical and
educational supports to improve cognitive and functional out-
comes for ND-CNV carriers who may have complex needs.
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