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Alterations in the gut microbiome have been linked to a variety of mental illnesses including anxiety and depression. This study
utilized advanced bioinformatics tools that integrated both the compositional and community nature of gut microbiota to
investigate how gut microbiota influence clinical symptoms in a sample of participants with depression. Gut microbiota of 179
participants with major depressive disorder (MDD) in the Texas Resilience Against Depression (T-RAD) study were analyzed by 16S
rRNA gene sequencing of stool samples. Severity of anxiety, depression, and anhedonia symptoms were assessed with General
Anxiety Disorder – 7 item scale, Patient Health 9-item Questionnaire, and Dimensional Anhedonia Rating Scale, respectively. Using
weighted correlation network analysis, a data-driven approach, three co-occurrence networks of bacterial taxa were identified. One
of these co-occurrence networks was significantly associated with clinical features including depression and anxiety. The hub taxa
associated with this co-occurrence module –one Ruminococcaceae family taxon, one Clostridiales vadinBB60 group family taxon, and
one Christencenellaceae family taxon– were connected to several additional butyrate-producing bacteria suggesting that deficits in
butyrate production may contribute to clinical symptoms. Therefore, by considering the community nature of the gut microbiome
in a real world clinical sample, this study identified a gut microbial co-occurrence network that was significantly associated with
clinical anxiety in a cohort of depressed individuals.
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INTRODUCTION
Harnessing the potential of the microbiome for precision medicine
approaches in psychiatry is at the forefront of clinical neu-
roscience. Much of the attention in this area has focused on the
trillions of resident microbes in the gastrointestinal tract—referred
to as the gut microbiome. The gut microbiome has been
implicated in the etiology and pathogenesis of a number of
diseases and disorders including: inflammatory bowel disease,
irritable bowel syndrome, celiac disease, asthma, obesity, cancer,
neurodegenerative diseases, autoimmune diseases, as well as
mental health disorders, including, anxiety, schizophrenia, and
depression [1–10]. Accumulating evidence has demonstrated
compositional differences in gut microbiota between healthy
individuals and those with mood and anxiety disorders. Across
studies, several bacterial genera have been reported to be
enriched in healthy individuals or enriched in major depressive
disorder (MDD) [11–17], bipolar disorder (BP) [18–21], and general
anxiety disorder (GAD) [22, 23]. Moreover, studies have identified
associations between specific gut microbial taxa and clinical
symptoms including anxiety [14, 22] and sleep quality [13], as well
as the severity of disease [11, 12, 14, 15, 18, 19, 22]. This study
examined the association between gut microbiota community
composition and clinical symptoms, including anhedonia, depres-
sion, and anxiety, in individuals with a current or past diagnosis of

depression enrolled in the Texas Resilience Against Depression
(T-RAD) study [24].
To garner the potential of examining the microbiome in

psychiatry, it is important to recognize that the gut microbiome is
a diverse ecosystem in which microbial cross-feeding and competi-
tion for nutrient resources influence the stability, composition, and
function of the gut microbial community. Most studies to date have
considered associations between single bacterial taxa and clinical
phenotype, which does not consider the dynamic and community
nature of the gut microbiome. This overlooked feature may be a
critical factor to understand how bacteria-host communication
influences host physiology. To fill this gap, we took a novel approach
using advanced bioinformatics tools that integrated both the
compositional and community nature of gut microbiota. Specifically,
weighted correlation network analysis (WCNA), a data-driven tool
commonly used in genomic analyses, was employed to identify co-
occurring networks of gut microbiota. WCNA examines the
biological networks’ structure by defining clusters of highly
correlated taxa, identifying highly connected hub taxa, and
comparing the network topology generated by different adjacency
matrices [25]. More importantly, WCNA is differentiated from other
network methods by constructing co-occurrence networks using the
topological overlap measure, which quantifies the extent to which
taxa share common neighbors.
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This report provides a data-driven analysis of 16S rRNA
microbiome sequencing data to identify networks of co-occurring
human gut microbial communities in a sample of patients with
current or lifetime diagnosis of depression. Once identified, these
networks were used to answer the following questions: (1) Are
these co-occurring networks related to clinical symptoms (depres-
sion, anhedonia, anxiety)? (2) What are the hub taxa for the co-
occurring networks and are these hub taxa clinically relevant? This
work demonstrates a novel bioinformatic approach to generate a
microbial signature using 16S rRNA sequencing data that can be
applied in clinical psychiatric research.

METHODS
Participants
Participants in this study were recruited as part of the Dallas 2 K (D2K)
study, a component of Texas Resilience Against Depression Study (T-RAD)
[24]. D2K follows participants who are 10 years of age and older and who
have a current or past diagnosis of depression or bipolar disorder.
Participants sign an institutional review board-approved informed consent
form (University of Texas Southwestern Medical School Institutional Review
Board) prior to initiation of any study-related procedure and sign an
authorization for the use and disclosure of health information for research
purposes (Health Insurance Portability and Accountability Act - HIPAA
authorization). These studies are registered with clinicaltrials.gov
(NCT02919280; NCT03458936). At study enrollment, participants receive
comprehensive demographic and psychiatric assessment through a
combination of self-report surveys and clinician-rated measures. Additional
study details have been previously reported [24]. This analysis focused on
adult participants (n= 179) with current or past diagnoses of major
depressive disorder (MDD) who had clinical assessments and a stool
sample at the same visit.

Clinical assessments
The Patient Health Questionnaire (PHQ-9), a 9-item self-report questionnaire,
used to assess depression severity (range 0 to 27 with higher scores between
20 and 27 reflecting severe depression) [26]. The General Anxiety Disorder—
7 item scale (GAD-7) is a 7-item self-report questionnaire that measures
anxiety symptoms [27]. The Dimensional Anhedonia Rating Scale (DARS), a
17-item self-report questionnaire, assesses anhedonia across four domains,
namely, hobbies/past-times, food/drinks, social activities, and sensory
experiences [28]. Total DARS score ranges from 0 to 68 with higher scores
reflecting greater motivation, effort, and pleasure (i.e., less anhedonia).

Fecal sample collection and storage
Study participants were given a stool sample kit at each in-person visit to
collect the stool sample. Explicit instructions were given to the participants
on how to collect the samples. Once collected (within seven days of an in-
person visit), the biological specimens were either chilled or frozen (if the
sample could be returned within 48 hours of collection) by the participant.
Once returned to the Center for Depression Research and Clinical Care, the
samples were frozen at −80 °C until sequencing. All stool samples were
collected within 1 week of the participant’s clinical assessments.

16S rRNA sequencing. Bacterial DNA was extracted from stool samples
using methods previously described with some modifications [29]. 16S
rRNA gene sequences were amplified according to published protocols
with modifications outlined by Whelan and colleagues [30, 31], using PCR
primers specific for the variable 3 (v3) and variable 4 (v4) regions of the
16 S ribosomal RNA (rRNA) encoding gene (341f–CCTACGGGNGGCWGCAG
and 802r–GGACTACNVGGGTW TCTAAT′). 16S rRNA sequencing results
were pre-processed using the DADA2 pipeline and amplicon sequence
variants (ASVs) were annotated using the SILVA 128 reference database
[32]. Samples were quality controlled for sequencing depth and α-diversity
outliers. One sample was removed from the dataset for concurrent low
sequencing depth (reads = 5466) and low α-diversity (Shannon Index =
2.00). Taxa abundance from the remaining 178 participants were used in
downstream microbiome analyses.

16 S rRNA analysis
Retain-resolve agglomeration: Dimension reduction of quality con-
trolled 16 S rRNA microbiome taxa was achieved using an in-house retain-

resolve agglomeration strategy (Fig. 1). This strategy retains common
amplicon sequence variants (ASVs) and resolves rare ASVs to filtered
genus-level taxa. Initial number of unique ASVs was 7867. Criteria for ASV
retention was set to prevalence >50% or mean relative abundance >0.1%
and prevalence >10%. 165 ASVs met criteria and were retained in the
analytical dataset. Remaining ASVs that did not meet the criteria were
agglomerated to genus-level taxa using the tax_glom function in phyloseq
in R [33]. Resolved genus taxa were then filtered by the criteria –
prevalence >50% or mean relative abundance >0.01% and prevalence
>10%. 135 agglomerated genus-level taxa met filtering criteria in the
analytical dataset, for a total number of 300 retain-resolved taxa (Fig. 1,
Supplementary Table S1). To preserve integrity of the center log ratio (CLR)
transformation, we also generated an “Other taxa” label for each sample,
which accounts for the proportion of taxa lost during genus-level filtering.
All downstream analyses were performed using retain-resolved taxa.

Microbiome co-occurrence community: The microbiome co-
occurrence network was generated from 300 retain-resolved taxa using
weighted correlation network analysis (WCNA) using the WGCNA package
in R [25]. Covariate-corrected networks were generated using CLR taxa
abundances adjusted for age and BMI using empirical bayes-moderated
linear regression (empiricalBayesLM) in the WGCNA package. A soft-
threshold power (β) of 3 was selected using WGCNA guidelines to satisfy
scale-free topology criteria. Minimum module size of 10, 15, or 25 were
used to generate networks; each network was assessed for individual
module stability. Merging similar modules was attempted, however
merged module was equivalent to original module sets for each network.
Module taxa abundance in each sample was summarized as the module
eigentaxon, which is a single value calculated using the moduleEigengenes
function in WCGNA. Participants with high abundance of a particular
module will have a higher module eigentaxon value. Then, association
between module eigentaxon and continuous clinical traits (age, PHQ-9
total score, GAD-7 total score) was determined using Pearson’s correlation
coefficient according to WGCNA guidelines. Taxa in the 95th percentile for
module membership were designated as hub taxa. Module membership
was calculated by correlating taxa with each module eigentaxon. A higher
module membership indicates a stronger relationship between the taxon
and module abundance across samples. Module membership is also a
proxy measure of taxa network node connectivity.
Taxa significance was defined here as the signed Pearson correlation

between an individual taxa and clinical trait (GAD7, PHQ9, DARS).
Correlation significance was adjusted using Benjamin-Hochberg correction.
Higher taxa significance indicates that taxa is more biologically significant
to the clinical trait. Moreover, high correlation between taxa significance
and clinical trait suggests the module is robustly associated with the
clinical trait. Lower correlation suggests a few select taxa within the
module are likely driving the module’s association with the trait, rather
than the microbial community. Correlation between module membership
and absolute taxa significance – defined here as the unsigned correlation
between individual taxa and clinical trait – is also provided for consistency
with WCGNA’s methods.

WCNA module stability: WCNA module stability was assessed by
applying similar principles used in clustering stability analysis previously
described [34]. The module stability algorithm is summarized in
Supplementary Fig. S1. First, the taxa belonging to the original WCNA
network were determined. The dataset was then resampled with
replacement 1000 times, and taxa assigned to each bootstrapped network
module was determined. The Jaccard similarity of bootstrapped modules
was compared to the original modules, and the bootstrapped module with
highest Jaccard similarity value was matched to each original module.
Module stability was defined as the mean Jaccard similarity of the 1000
bootstrapped modules assigned to the original module. Valid modules
were those that had module stability greater than 0.5, akin to minimum
definition of a cluster used in other cluster stability analyses [34].

Network visualization: The brown module network was visualized as a
hard-threshold correlation network using Cytoscape (version 3.9.0) [35].
Network connections were generated using Pearson’s correlations
coefficient between taxa calculated via the rcorr function in the Hmisc R
package [36]. An arbitrary threshold of r > 0.35 was set to simplify
Cytoscape visualization. Edges were sized according to the strength of the
correlation between taxa, with the thinnest connections corresponding to
correlation of r= 0.35. Taxa nodes were also sized and colored by their
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brown module membership. Finally, taxa in the Clostridiales order are
represented by oval-shaped nodes, while taxa belonging to all other
taxonomic orders are represented by hexagonal nodes. A simple network
visualization was also generated with a weak correlation threshold of
r > 0.2. Taxa that did not connect to the main network after hard
thresholding were removed from the visualization.

ALDEx and Random Forest: ALDEx and random forest methods, which
are often used in microbiome analysis, were employed to complement the
results of the WCNA analytical approach and generate consensus taxa
were associated with age, anxiety, and depression. Association between
individual taxa and each continuous clinical trait (age, PHQ-9 total score,
GAD-7 total score) was determined separately using generalized linear

models via ALDEx2 glm function [37]. Taxa met criteria for ALDEx2 in our
consensus analysis if they had an unadjusted p-value less than 0.05.
Random forest regression was used to predict continuous clinical traits
(age, PHQ-9 total score, GAD-7 total score) from 16S taxon CLR
transformed abundances using the randomForest package in R [38]. Taxa
met the criteria for random forest in our consensus analysis if they were
ranked one of the top 20 important predictor variables for the clinical trait.

RESULTS
The analytical sample included 179 participants (124 female) with
average age of 46.2 years (SD= 15.9). Briefly, 50% of participants
had moderate or higher severity of depression (PHQ-9 total score

Fig. 1 Retain-resolve agglomeration method. Mean relative abundance (MRA) and prevalence (prev) thresholds were set for filtering ASVs
and genera. The final 16S taxa dataset contains a mix of ASV-level and genus-level taxa (Supplementary Table S1) that met MRA and
prevalence thresholds, or prevalence thresholds alone.
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≥ 10), and 37% of participants had moderate or higher severity of
anxiety (GAD-7 total score ≥ 10) at the time of sample collection
and clinical assessment. See Table 1 for more detailed demo-
graphics and current mood state description of the analytical
sample population.

Microbiome co-occurring communities
WCNA identified three bacterial modules—labeled turquoise, blue
and brown—which represent structured networks of co-occurring
human gut microbial communities (Fig. 2). The three-module result
was validated by comparing the module stability of the three
modules and the module stability of two additional networks with
varying minimum module size (Fig. 2, Supplementary Fig. S2). All
three modules in the initial network formed stable modules, and
were therefore selected for downstream analyses (Fig. 2). A
significant assocation between module eigentaxon (ME) and clinical
traits revealed that the brown module was significantly negatively

correlated with anxiety, depression, and positively correlated with
anhedonia (Fig. 2), such that lower abundance of this microbiota
network (brown module) was associated with increased clinical
symptoms. The microbial composition of the brown module was
further investigated by identifying hub taxa and clinically significant
taxa.
Module hub taxa were defined as the most highly connected

taxa in the module’s network. The brown module hub taxa were
genus-level taxa, including one Ruminococcaceae family taxon,
one Christencenellaceae family taxon, and one Clostridiales
vadinBB60 group family taxon (Fig. 3). Sp1198 Ruminococcaceae
UCG-010 and sp161 Christensenellaceae R7 group are both highly
prevalent taxa in the population (Fig. 3, Supplementary Table S1).
Sp1198 Ruminococcaceae UCG-010 also has the highest brown
module connectivity, as indicated by high module membership
(Supplementary Table S2).
Brown module taxa that had Pearson correlations greater than

0.35 with at least one other brown module taxon were visualized
in a hard-threshold correlation network (Fig. 3). For reference, the
correlation network for the brown module that had correlations
greater than 0.2 is provided in Supplemental Fig. S3. This
visualization highlights the presence of several Ruminococcaceae
family taxa in the brown module (see Supplementary Table S2 for
full list of brown module taxa).
The association between taxa significance and module member-

ship measures the robustness of the correlation between the clinical
trait and bacterial community. Signed taxa significance for GAD-7
and taxa brown module membership had a strong negative
correlation (r=−0.72, p= 6.6e−13; Fig. 4). The high correlation
between taxa significance and module membership indicates
increased confidence that the entire brown module bacterial
community is associated with the clinical trait, rather than
association being driven by individual non-hub taxa in the module
[25]. Indeed, the hub taxa (visualized in color in Fig. 4) were among
the most negatively correlated with GAD-7 score of all brown
module taxa, indicating a durable and strong relationship between
the brown module and anxiety. Hub taxa sp1198 Ruminococcaceae
UCG-010 and sp576 Clostridiales vadinBB60 group unknown were
both significantly negatively associated with GAD-7 score (p= 0.005
and p= 0.027 respectively). Furthermore, brown module signed taxa
significance is unidirectional, as all significant correlations between
brown module taxa and GAD-7 score were negative (Fig. 4,
Supplementary Table S2). This indicates that reduction of bacteria
in the brown module community was uniformly associated with
increased clinical anxiety scores.
Module membership and taxa significance were also associated

for PHQ-9 and DARS, albeit to a lesser degree than GAD-7 (Fig. 4).
However, signed taxa significance for PHQ-9 was not unidirec-
tional with at least one positively correlated taxa, indicating a less
robust relationship between clinical depression scores and the
brown module (Fig. 4, Supplementary Table S2). DARS clinical
scores were not significantly correlated with any brown taxa,
indicating a weak relationship between the module and
anhedonia. PHQ-9 was trending towards significantly negatively
correlated (p= 0.053 and |r| = −0.23) with primary hub taxa
sp1198 Ruminococcaceae UCG-010 (Supplementary Table S2).
Correlation between module membership and absolute taxa
significance for all clinical traits—defined here as the unsigned
correlation between taxon and clinical trait—is also provided for
consistency with other WCNA pipelines and resulted in similar
interpretations (Supplementary Fig. S4).
WCNA was also performed with CLR abundances without age and

BMI correction. We identified similar associations between clinical
symptoms with a module defined by primary hub taxa sp1198
Ruminococcaceae UCG-010 (Supplementary Fig. S5, Supplementary
Table S3). Overall, our WCNA results demonstrate three stable
microbial co-occurrence modules, one of which that is significantly
and robustly negatively associated with anxiety symptoms.

Table 1. Demographic and current mood state characteristics of the
participants.

Demographics

n %

Sex

Male 55 31.0

Female 124 69.0

Race

White 133 74.3

Black/African American 26 14.5

Other 13 7.2

Unknown 7 3.9

Ethnicity (Hispanic/ Non-Hispanic)

Yes 21 11.7

No 143 79.9

Unknown 15 8.4

Mean SD

Age in yearsa 46.2 15.9

Current Mood State

n %

PHQ-9b

None 45 25.7

Mild 42 23.5

Moderate 40 22.3

Severe 30 16.2

Very Severe 22 12.3

GAD-7b

None 59 33.5

Mild 52 29.1

Moderate 39 21.8

Severe 29 15.6

DARSb,c 49.7 13.3

Non anhedonic 123 69.2

Anhedonic 48 26.3
a2 participants missing age in years.
bPHQ-9 cutoffs: None (0–4), Mild (5–9), Moderate (10–14), Severe (15–19),
Very Severe (20 and above); GAD-7 cutoffs: None (0–4), Mild (5–9),
Moderate (10–14), Severe (15 and above); DARS cutoffs: Non-Anhedonic
(>44), Anhedonic (<= 44).
c8 participants missing DARS total score.
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ALDEx and Random Forest
Complementary analyses using ALDEx revealed several individual
taxa that were significantly associated with continuous clinical
traits (21 taxa with GAD-7, 19 taxa with PHQ-9, and 3 taxa with
DARS) before correction (p value < 0.05; Supplementary Table S4).

However, taxa associations did not survive multiple correction
(Benjamini-Hochberg adjusted pBH value < 0.05) (Supplementary
Table S4, Supplementary Fig. S6). Additionally, random forest
models trained to predict clinical trait values for GAD-7, PHQ-9,
from patient CLR transformed abundances of individual taxa had

Fig. 2 Weighted taxon correlation network analysis reveals a gut microbial network associated with anxiety, depression, and anhedonia
clinical test scores after BMI and age correction. The network was generated using minimum module size of 25. A Weighted correlation
network soft-threshold parameter selection criteria graphs. B Weighted taxon correlation network visualized using dendrogram and heatmap
of Topological Overlap Matrix. Our clinical study has three robust human gut microbial modules. C Correlation of gut microbial networks with
clinical mood status. Abundance of taxa in the brown network are negatively correlated with clinical measures of anxiety, depression, and
anhedonia. D The human gut microbial communities form valid modules. Module stability was calculated using the mean Jaccard similarity
from one thousand bootstrapped module taxa and the original module taxa.
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low predictive accuracy on validation datasets (Supplementary
Fig. S7). There was no predictive utility of microbial taxa for
anhedonia clinical scores in our study (Supplementary Fig. S8).
To identify taxa of interest for potential biomarkers of

depression, anxiety, or anhedonia we examined the consensus
of all three analytical methods—WCNA, ALDEx2 and random
forest. The taxa that met the criteria for significance in WCNA and
either ALDEx2 or random forest methods are listed in consensus
tables (Tables 2, 3). Brown module hub taxa sp1198 Ruminococ-
caceae UCG-010 met all criteria for GAD-7 consensus taxa. Further,
its association with GAD7 score remained significant after BH
correction (Supplemental Table 2). Several additional taxa outside
the brown module were also identified by meeting ALDEx2 and
random forest criteria—the strongest individual taxa association
being sp28 Lachnospiraceae_NA (βGAD7= 0.28). Although these
individual taxa did not survive multiple correction in our analyses,
this list represents potential taxa that may be considered as
potential microbiota biomarkers for anxiety symptoms. PHQ-9 did
not have any brown module hub taxa that achieved consensus
criteria. However, GAD7 and PHQ-9 shared several positively

associated consensus taxa including positive associations with
Faecalitalea at both genus (βGAD7= 0.19, βPHQ9= 0.13) and ASV-
level (βGAD7= 0.17, βPHQ9= 0.15) and genus-level Romboutsia
(βGAD7= 0.17, βPHQ9= 0.12). Genus-level Christensenellacea was
also negatively associated with both GAD7 and PHQ9 (βGAD7= -
0.18, βPHQ9= 0.15). No consensus taxa were identified for DARS.

DISCUSSION
In this sample of adults with depression, using 16S rRNA sequencing
and clinical data, three co-occurrence communities of bacterial taxa
were identified. One of these communities was significantly
associated with clinical features including depression, anxiety, and
anhedonia. Further, the microbial composition of this co-occurrence
module was enriched with butyrate-producing bacteria. Importantly,
these analyses demonstrate that applying weighted network
correlation analysis to understand the community nature of the
gut microbiome reveals stable microbiota networks in depressed
individuals. Moreover, consideration of the bacterial community
structure generated clinically relevant associations that were more

Fig. 3 The brown human gut microbial network – which is positively associated with clinical scores of anxiety, depression, and
anhedonia – is enriched and regulated by butyrate-producing human gut microbes. A Visualization of the brown gut microbial network as
a hard-thresholded correlation network. Network connections were determined using Pearson correlation. Connections were pruned to taxa
correlations where R > 0.35. Edges correspond to correlation strength, with the thinnest correlations corresponding to r= 0.35. Nodes are
sized and colored by Brown module membership, and shapes are coded by taxonomic order. B Probability density function plots for hub taxa
of the brown network. Hub taxa represent probable network regulators.
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Fig. 4 Association between signed brown module taxa significance and brown module membership. Taxa significance is defined here as
the signed correlation between the taxa and clinical trait. Hub taxa for the brown module are highlighted as green, orange, or blue. A GAD7
taxa significance association with module membership. B PHQ9 taxa significance association with module membership. C DARS taxa
significance association with module membership.

Table 2. Consensus mood-associated taxa (GAD-7 score).

Taxa Resolution WCNA Random Forest Aldex Aldex linear model

β p p.BH

sp1198_Ruminococcaceae_UCG-010 genus YES YES YES −0.22 <0.001 0.195

sp280_Ruminococcaceae_NK4A214_group genus YES YES YES −0.22 0.004 0.503

sp1361_Peptococcaceae_NA genus YES YES YES −0.14 0.027 0.777

sp380_Romboutsia genus YES YES 0.17 0.015 0.695

sp524_Christensenellaceae_NA genus YES YES −0.18 0.001 0.243

sp372_Faecalitalea genus YES YES 0.19 0.01 0.777

sp244_Bifidobacterium genus YES YES 0.22 0.003 0.556

sp122_Lachnoclostridium ASV YES YES 0.16 0.034 0.978

sp28_Lachnospiraceae_NA ASV YES YES 0.28 0.001 0.354

sp109_Faecalitalea ASV YES YES 0.17 0.035 0.963
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robust than those generated by standard microbiome tools.
Visualization of the clinically associated network demonstrated that
numerous connections exist between co-occurring taxa and
employing an integrative analytical approach may provide a more
accurate and robust view of the community of bacterial associated
with clinical symptoms.
While anxiety symptoms are co-morbid in both physical and

mental illness, clinical research design does not adequately address
the presence anxiety or other co-morbidities [39]. As such,
translating clinical research findings to real world depressed
individuals is challenging. The T-RAD study aims to better under-
stand depression in a naturalist real world patient population [24].
The current study leveraged a data-driven microbiome approach to
generate a more holistic and biologically specific classification of
depressed participants. By doing so, we identify a clinically relevant
co-occurring community of gut bacteria that was significantly
associated with mood symptoms in a broad sample of individuals
with current or previous depression. The clinically relevant co-
occurrence module of bacteria was reduced in individuals with
increased anxiety, depressive, or anhedonic symptoms and
included several members of the Ruminococcaceae family. The
primary hub taxa belonged to the Ruminoccocaceae family. In
addition, several module members belong to the Ruminococcaceae
family and were significantly associated with anxiety symptoms
following multiple correction. Notably, reduced abundance of
Ruminococcaceae taxa was associated with increased depressive
symptoms in two large cohorts, the Rotterdam Study cohort &
Amsterdam HELIUS cohort, with 1054 and 1539 depressed
individuals, respectively [40] Ruminococcaceae family taxa are
butyrate-producing bacteria in the human gut [41, 42]. Butyrate is
a short-chain fatty acid that is a product of microbial fermentation.
Reduced abundance of butyrate-producing bacteria have pre-
viously been reported in depressed individuals [11, 43]. Butyrate
contributes to the maintenance of a healthy intestinal barrier and
homeostatic immune responses [44]. Indeed, butyrate is a primary
fuel source for intestinal epithelial cells supporting homeostatic
proliferation of intestinal epithelial cells [44]. Intestinal epithelial
cell-cell adhesion by tight junction proteins forms the intestinal
barrier, which prevents translocation of bacteria and gut metabo-
lites that induce deleterious host inflammation [44]. Butyrate helps
maintain intestinal barrier integrity and biomarkers of intestinal
permeability, including zonulin and intestinal fatty acid binding
protein (IFAP), have been associated with depression and anxiety
disorders [45]. Furthermore, butyrate promotes intestinal regulatory
T cell differentiation and production of anti-inflammatory cytokines
IL-10 and TGF-β, while concurrently decreasing mature antigen-
presenting dendritic cells and levels of pro-inflammatory cytokines,
demonstrating its direct importance in immune regulation [44]. A
dysregulated immune response has been associated with greater
depressive symptom severity [46, 47], resistance to commonly used

antidepressants [48], and a higher likelihood of hospitalizations in
depressed patients [49, 50]. Overall, the association of a reduced
community of butyrate-producing bacterina with mood symptoms
lends microbiota-immune regulation as an important target in
investigating the causal link between gut microbiome, immune
dysfunction, and depression as well as anxiety.
The second hub taxa of the clinically relevant microbiota

module was a member of the recently identified Christencenella-
ceae family. The Christencenellaceae family of bacteria have been
reported to be heritable as revealed by microbiome studies in
twins, and have been linked to metabolic health and aging [51].
Christencenellaceae abundance has been associated with body
mass index (BMI), with reduced abundance of Christencenellaceae
in obese individuals (BMI > 30) compared to individuals with a
normal BMI [51]. Reduced abundance of Christencenellaceae has
also been reported in individuals with metabolic syndrome
[52, 53]. Increased inflammation is associated with increased
BMI, poor metabolic health, and depression.
The functions of hub taxa Clostridiales Vadin BB60 family

emerging. Recent studies indicate it may be a marker of gut-brain
axis health. Depressed patients were reported to have lower
Clostridiales Vadin BB60 family abundance compared to healthy
controls [11]. Additionally, abundance of Clostridiales Vadin BB60
was a robust biomarker for microbiome-based Alzheimer’s treat-
ment in mice [54]. The biological activity of Clostridiales Vadin BB60
family in the gut lumen is unknown, however, these taxa have been
linked to increased dopamine metabolites or serotonin precursors
in the brainstem [55] and potentially contribute to microbiome-
induced protection against experimentally induced colitis [56].
Clostridiales Vadin BB60 family taxa belong to the Clostridiales order,
and other Clostridiales species are associated with reduced gut
lumen inflammation via Treg expansion [57]. While not directly
tested in the current study, it is plausible that the community of
microbiota identified here in the brown co-occurrence module may
represent a microbial community in healthy individuals that
protects against inflammatory processes and at the same time
prevents inflammation-related anxiety and depressive symptoms.
The significant relationship between anxiety and a gut microbial

community identified in these analyses translates earlier neu-
roscience studies linking microbiota to anxiety-related behavior
[58–62] to clinical anxiety. These landmark gut-brain axis studies
demonstrated that microbiota influenced stress-reactivity and
stress-related (e.g., anxiety-like) behaviors using germ-free mice
and were a catalyst for neuroscientists to consider how microbes
may influence brain function [60–63]. Since then, microbiome
research in animal models has demonstrated a role for microbiota-
brain communication in brain development, behavior, and brain
function [64]. In the past 5 years, several reports have extended
these preclinical findings to mood and anxiety disorders [11–23]. A
recent large population study reported an association between

Table 3. Consensus mood-associated taxa (PHQ-9 score).

Taxa Resolution WCNA Random Forest Aldex Aldex Linear Model

β p p.BH

sp1361_Peptococcaceae_NA genus YES YES YES −0.13 0.008 0.673

sp1802_Defluviitaleaceae_UCG-011 genus YES YES YES −0.12 0.019 0.769

sp524_Christensenellaceae_NA genus YES YES −0.15 0.002 0.294

sp129_Lachnoclostridium ASV YES YES 0.15 0.013 0.864

sp299_Sutterella genus YES YES 0.12 0.048 0.966

sp288_Megasphaera genus YES YES 0.15 0.022 0.815

sp380_Romboutsia genus YES YES 0.12 0.039 0.874

sp372_Faecalitalea genus YES YES 0.13 0.04 0.973

sp109_Faecalitalea ASV YES YES 0.15 0.026 0.907
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the microbiome and quality of life and depression [43]. The
relative abundances of Faecalibacterium and Coproccus bacteria
were associated with higher quality of life, and a reduction of
Coproccus and Dialister spp were linked to depression, an
observation that was validated in a second cohort [43]. These
population-level findings have been reproduced in a recent
clinical study of female depressed individuals compared to
healthy volunteers; this study used random forest models to
identify bacterial genera that are enriched in healthy individuals
compared to depressed individuals, which included Faecalibacter-
ium and Coprococcus [16]. Several other studies comparing
healthy volunteers to depressed individuals have reported
reduced abundance of Faecalibacterium in depressed individuals
and reduced abundance of members of the Rumminococcaceae
family [11, 13, 16, 65, 66]. Faecalibacterium prausnitzii is an
abundant commensal in the healthy human gut, plays an
important role in gut physiology [67, 68], and is a key butyrate
producer similar to the hub taxa associated with anxiety and
depressive symptoms in the current study. A recent study also
identified bacterial genera enriched in depression including
Escherichia-Shigella and Alistipes, taxa that are suggested to be
associated with increased inflammation [16], supporting a role for
microbe-immune signaling in depression.
Overall, the analysis of 179 current or formally depressed

individuals presented here demonstrates the benefit of utilizing
microbiome analysis to better understand the clinical hetero-
geneity in depression. The results of this study should be
considered preliminary as replication of our findings in indepen-
dent samples is required to validate the clinically relevant module,
to verify the clinical utility of identified hub taxa, and to determine
the generalizability of the results to a broad population of
depressed patients. There are some limitations to these analyses:
participants were recruited from a limited geographical region
(Texas, US); the analysis was cross-sectional and did not consider
factors that influence microbiota composition and function, such
as diet and exercise; and the lack of a healthy control cohort limits
inference of the results to normal microbe-host interactions.
In summary, this study identified three co-occurrence bacterial

modules using 16S microbiome data from a broad sample of
depressed participants. One of these co-occurrence modules was
significantly associated with clinical depression and anxiety. Based
on our results we propose that reduced abundance of butyrate-
producing taxa and increased abundance of inflammatory-related
taxa may drive increased anxiety and depressive symptoms in
depression. An important feature of this work was the innovative,
data-driven approach that integrated both the compositional
nature of the microbiome, as well as the community structure.
These results are a critical step toward understanding the
association between the microbiome and depression, and how a
community-driven approach may facilitate effective precision
medicine to improve clinical outcome.
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