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Smoking behaviors and alcohol use disorder (AUD), both moderately heritable traits, commonly co-occur in the general population.
Single-trait genome-wide association studies (GWAS) have identified multiple loci for smoking and AUD. However, GWASs that have
aimed to identify loci contributing to co-occurring smoking and AUD have used small samples and thus have not been highly
informative. Applying multi-trait analysis of GWASs (MTAG), we conducted a joint GWAS of smoking and AUD with data from the
Million Veteran Program (N= 318,694). By leveraging GWAS summary statistics for AUD, MTAG identified 21 genome-wide
significant (GWS) loci associated with smoking initiation and 17 loci associated with smoking cessation compared to 16 and 8 loci,
respectively, identified by single-trait GWAS. The novel loci for smoking behaviors identified by MTAG included those previously
associated with psychiatric or substance use traits. Colocalization analysis identified 10 loci shared by AUD and smoking status
traits, all of which achieved GWS in MTAG, including variants on SIX3, NCAM1, and near DRD2. Functional annotation of the MTAG
variants highlighted biologically important regions on ZBTB20, DRD2, PPP6C, and GCKR that contribute to smoking behaviors. In
contrast, MTAG of smoking behaviors and alcohol consumption (AC) did not enhance discovery compared with single-trait GWAS
for smoking behaviors. We conclude that using MTAG to augment the power of GWAS enables the identification of novel genetic
variants for commonly co-occuring phenotypes, providing new insights into their pleiotropic effects on smoking behavior and AUD.
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INTRODUCTION
Smoking and alcohol use disorder (AUD) commonly co-occur in
the general population [1]. Compared to the use of a single
substance, smoking co-occuring with AUD has greater adverse
health effects [2]. Smoking-related behaviors (e.g., smoking
initiation, smoking cessation) and alcohol-related behaviors (e.g.,
alcohol consumption (AC) and AUD) have an estimated heritability
of 40–50% [3–5]. The genetic correlations between smoking-
related and alcohol-related behaviors are estimated to be about
40% [6, 7], suggesting that the pleiotropic effects of genetic
variants contribute to their co-occurrence.
Genome-wide association studies (GWAS) with large sample

sizes have made remarkable progress in identifying genetic loci
for individual smoking-related and alcohol-related phenotypes. In
a sample of over 1.2 million individuals, Liu et al. reported over
400 genome-wide significant (GWS) loci associated with multiple
smoking-related and alcohol-related behaviors: 378 variants for
smoking initiation, 24 variants for smoking cessation, and 99
variants for the number of alcoholic drinks consumed per week
[8]. Quach et al. identified five loci for nicotine dependence in a
meta-GWAS that included individuals with European ancestry and
African ancestry [9]. In a sample of 209,915 European Americans

(EA) from the Million Veteran Program (MVP), we reported 18 GWS
loci for a smoking trajectory contrasting current versus never
smoking (contrast I), which corresponds to smoking initiation, and
five loci for another smoking trajectory contrasting current versus
mixed smoking (contrast II), which is similar to smoking cessation
[10]. Several dozen single nucleotide polymorphisms (SNPs) have
been linked to alcohol misuse, AC, and AUD. For example, in
another MVP study, we identified 13 loci for AC and 10 loci for
AUD in an EA population [7]. In that study, as in others [11], AC
and AUD were shown to have distinct genetic architectures.
Consistent with the phenotypic correlation between smoking-

and alcohol-related behaviors, phenotypes related to these two
substance use behaviors have moderate to strong genetic
correlations [12, 13] and these correlations remain significant
even after adjustment for environmental factors such as socio-
economic status [14]. However, the loci that contribute to the
combined risks of smoking and drinking remain unclear, as
standard GWAS considers traits in isolation rather than the
combined influence of genetic variants on smoking and alcohol
consumption or AUD. Thus, little is known regarding the
pleiotropic effects of genetic variants on co-occuring smoking-
and alcohol-related phenotypes.

Received: 3 March 2023 Revised: 20 March 2023 Accepted: 22 March 2023

1Yale School of Public Health, New Haven, CT 06511, USA. 2VA Connecticut Healthcare System, West Haven, CT 06516, USA. 3Yale School of Medicine, New Haven, CT 06511, USA.
4University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. 5Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.
✉email: ke.xu@yale.edu

www.nature.com/tpTranslational Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-023-02409-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-023-02409-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-023-02409-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-023-02409-2&domain=pdf
http://orcid.org/0000-0002-7694-6391
http://orcid.org/0000-0002-7694-6391
http://orcid.org/0000-0002-7694-6391
http://orcid.org/0000-0002-7694-6391
http://orcid.org/0000-0002-7694-6391
http://orcid.org/0000-0001-8820-2659
http://orcid.org/0000-0001-8820-2659
http://orcid.org/0000-0001-8820-2659
http://orcid.org/0000-0001-8820-2659
http://orcid.org/0000-0001-8820-2659
http://orcid.org/0000-0003-1195-9607
http://orcid.org/0000-0003-1195-9607
http://orcid.org/0000-0003-1195-9607
http://orcid.org/0000-0003-1195-9607
http://orcid.org/0000-0003-1195-9607
http://orcid.org/0000-0002-4067-1859
http://orcid.org/0000-0002-4067-1859
http://orcid.org/0000-0002-4067-1859
http://orcid.org/0000-0002-4067-1859
http://orcid.org/0000-0002-4067-1859
http://orcid.org/0000-0002-1018-0450
http://orcid.org/0000-0002-1018-0450
http://orcid.org/0000-0002-1018-0450
http://orcid.org/0000-0002-1018-0450
http://orcid.org/0000-0002-1018-0450
http://orcid.org/0000-0002-6472-7052
http://orcid.org/0000-0002-6472-7052
http://orcid.org/0000-0002-6472-7052
http://orcid.org/0000-0002-6472-7052
http://orcid.org/0000-0002-6472-7052
https://doi.org/10.1038/s41398-023-02409-2
mailto:ke.xu@yale.edu
www.nature.com/tp


A recently developed method, multi-trait analysis of GWASs
(MTAG), enables joint analysis of genetically correlated traits to boost
statistical power to detect variants for each trait [15]. MTAG takes
summary statistics from single trait GWASs as input, generalizes
inverse-variance-weighted meta-analysis to explore multiple traits,
and calculates the trait-specific association for each variant. More-
over, MTAG accounts for overlap of samples among GWASs for
different traits based on regression of linkage disequilibrium (LD)
scores. Because of these features, MTAG has recently been applied to
identify genetic variants for multiple, related phenotypes in
psychiatric disorders and in substance use disorders. For example,
Wu et al. utilized a sample size of approximately 60,000 EA
individuals and identified genetic variants on seven genes commonly
associated with four out of the following five psychiatric disorders:
schizophrenia, bipolar disorder, autism spectrum disorder, attention-
deficit hyperactivity disorder, and depression [16]. Recently, Deak
et al. applied MTAG to discover novel risk loci for opioid use disorder
[17], and Xu et al. applied MTAG for four common substance use
disorders and reported several novel loci for opioid use disorder,
cannabis use disorder, alcohol and smoking behaviors [18]. These
studies show that MTAG is a useful method for identifying loci

associated with strongly correlated psychiatric disorders, including
substance use behaviors.
In this study, we performed MTAG for two smoking-related

behaviors (smoking initiation and smoking cessation) and two
alcohol traits (AC, defined the same way as Alcohol Use Disorders
Identification Test–Consumption (AUDIT-C), and AUD) in 318,694 EA
individuals from the MVP database. Single-trait GWAS was performed
for each of the four phenotypes, deriving summary statistics for
MTAG. Multi-trait colocalization served to identify genetic risk loci
shared by smoking- and alcohol-related traits and to verify that
MTAG augmented power to identify colocalized loci [19]. We also
characterized MTAG performance by estimating the SNP-based
heritability, heritability enrichment, and by prioritizing causal genes
(Fig. 1). Our results provide novel insight for the genetic contribution
to the co-occurance of smoking- and alcohol-related behaviors.

METHODS
Study samples and phenotypes
The MVP recruited veteran volunteers and collected data from them using
questionnaires, access to their electronic medical records (EMRs), and

Fig. 1 Phenotypes and analytic strategy. A The distribution of two smoking-related, two alcohol-related phenotypes, and demographic
characteristics in the Million Veteran Program (MVP). B An overview of analyses performed on the single trait genome-wide association study
(GWAS) and multi-trait GWAS (MTAG). All participants are from European American ancestry in the MVP (N= 318,694). *: the mean and
standard deviation (sd) for AC and age, the proportion of male are calculated for the overall sample (N= 318,694). Smkinit: smoking initiation;
Smkcess: smoking cessation; AUD: alcohol use disorder; AC: alcohol consumption measured by Alcohol Use Disorders Identification Test-
consumption (AUDIT-C).
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genomic analysis of blood samples. The Institutional Review Board (IRB) of
the Veterans Affairs Central Office and site-specific IRBs approved the MVP
study. All relevant ethical regulations for work with human subjects were
followed in the conduct of the study, and informed consent was obtained
from all participants prior to data collection.
We used flashpca to perform principal component analysis (PCA) on all

MVP samples and 2504 samples from the 1000 Genomes Project (1KG) to
identify the genetic ancestry of subjects [20], which was harmonized with
self-reported race/ethnicity using the HARE (Harmonizing Genetic Ancestry
and Self-identified Race/Ethnicity) method to construct ancestral groups
[21]. We removed samples with a high genotype missing rate (>10%),
discordant sex, excessive heterozygosity (>3 SD), and up to second-degree
relatives. A total of 318,694 EAs, 81,057 African Americans (AA), and 31,828
Hispanic Americans (HA) passed quality control filters. In the analyses
reported herein, we focused on the MVP EA samples. Among the MVP EA
samples, the mean age was 70.50 years with a standard deviation of 13.80.
Most participants were male (92.81%).
Using the available EMR smoking records, we identified 108,210

nonsmokers, 97,591 former smokers, and 101,734 current smokers. We
defined smoking behaviors following Xu, Li, et al. [10]: individuals who
report that they ever smoked (former or current smokers) were contrasted
with those who report that they never smoked (nonsmokers) to study
smoking initiation, while reported current smokers were contrasted with
former smokers to explore smoking cessation.
For alcohol-related behaviors, we defined age-adjusted AUDIT-C (herein

we call it AC) as described by Justice et al. [22], and the sample size for the
quantitative phenotype AC was the overall sample size (N= 318,694). AUD
cases were defined as individuals with ≥1 inpatient or ≥2 outpatient AUD
codes according to the International Statistical Classification of Diseases
and Related Health Problems, 9th (ICD-9) or 10th (ICD-10) revision; non-
AUD (controls) were defined as the absence of any AUD code. The study
sample comprised 58,113 individuals with AUD and 248,847 individuals
without AUD.

Genotyping and quality control
The MVP used an Affymetrix Axiom Biobank Array to genotype ~723,000
markers. SNPs were validated for common diseases and phenotypes of
specific interest to the VA population (e.g., psychiatric traits) [23]. Minimac4
and the 1000 Genomes Project 3 reference panel were used to conduct
genotype imputation [24, 25]. During the quality control step after
imputation, we filtered out variants that were rare (minor allele frequency
<0.01), had a missing rate >5%, an imputation r2 < 0.8, or that deviated
significantly from Hardy–Weinberg equilibrium (p < 1E− 6). This yielded a
total of 4.14 million variants. The genotype was based on Genome
Reference Consortium Human Build 37 (GRCh37/hg19).

Single trait GWAS for smoking and alcohol traits
For the smoking phenotypes (smoking initiation and smoking cessation)
and AUD, logistic regression was applied to estimate marginal effects of
each single genetic variant on the phenotype, while for AC, linear
regression was used. PLINK (v1.9) was employed to perform logistic and
linear regression analyses [26]. To be consistent with previous MVP GWAS
on smoking traits [10] and on alcohol traits [7, 27], we adjusted the same
covariates: age, sex, and the top 10 genotype principal components (PCs)
calculated by flashpca [20].

MTAG analysis for smoking-related behaviors
We used MTAG to jointly analyze summary statistics of one alcohol-related
GWAS with one smoking-related GWAS [15], yielding a total of 4
combinations: AUD with smoking initiation, AUD with smoking cessation,
AC with smoking initiation, AC with smoking cessation. The MTAG results
for smoking behaviors were our focus. For each MTAG smoking trait, we
further calculated ‘maxFDR’, which was an upper bound for the false-
discovery rate (FDR) and was recommended to account for Type I error
[15].
Lead SNPs and risk loci were defined in the same way for the single-trait

GWAS and MTAG summary statistics: independent SNPs (LD, r2 < 0.1) with
the most significant p-values were identified as lead SNPs, while the region
containing all GWS variants (p < 5E− 8) that were in LD (r2 > 0.6) with the
lead SNP was defined as a risk locus. ANNOVAR was then employed to map
lead SNPs to their nearest genes [28], and loci within 250 kb were further
merged into a single risk locus [10, 29, 30]. Each locus was represented by
the top lead SNP with the minimum p-value [31].

Colocalization between AUD and smoking-related behaviors
To identify genetic risk factors shared by AUD and smoking-related
behaviors, we applied HyPrColoc (Hypothesis Prioritization for multi-trait
Colocalization) [19] in multiple genomic regions using the full summary
statistics from single-trait GWAS. HyPrColoc reports (1) the posterior
probability that alcohol and smoking behaviors are colocalized in a specific
region, (2) the causal variant in this colocalized region and the proportion
of the posterior probability of colocalization explained by this variant. The
identified shared risk variants facilitate validation of whether MTAG
improves the power to identify colocalized loci between alcohol and
smoking traits. We first used LDetect to partition the genome into 2258
independent regions (each, on average, approximately 1.6 cM in length)
[32, 33], with LD estimated from the 1000 Genomes Project phase III
samples of European ancestry [34], which is also the default reference
panel in LDetect’s example [32]. We paired AUD with each of the smoking
behaviors and performed colocalization analysis to identify shared genetic
risk factors. For each pair, we reported the regions whose posterior
probability of colocalization was greater than 0.75, as suggested by the
authors of HyPrColoc [19]. LocusZoom (v1.3) was applied to visualize the
change in regional associations after performing MTAG [35].

Downstream analysis of the results from single-trait GWAS
and MTAG
We estimated heritability and heritability enrichment for the 2 smoking-
related single-trait GWASs and 2 smoking-related MTAGs. LD score
regression (v1.0.0) was performed to estimate the narrow-sense heritability
due to additive genetic effects [36]. To identify tissues most relevant to
smoking-related phenotypes, we performed heritability enrichment
analyses using 66 functional annotations from GenoSkyline-Plus (v1.0.0),
which included tissues and cell lines from the blood, brain, lung, vascular
system, heart, thymus, spleen, muscles, gastrointestinal tract, pancreas,
liver, fat, bone/connective tissue, skin, breast, and ovary [37]. To adjust for
multiple comparisons, we applied Bonferroni correction to the 66
enrichment tests for 2 smoking-related single-trait GWASs and 2
smoking-related MTAGs (p < 0.05/66/4= 1.89E− 4).
Functional gene mapping was performed for 2 smoking-related MTAGs.

We used the FUMA tool (v1.3.6) to conduct eQTL and chromatin
interaction mapping [31]. We restricted eQTL mapping to 13 genotype-
tissue expression (GTEx) v8 brain tissues and performed chromatin
interaction mapping with the built-in adult cortex Hi–C data and
enhancer/promoter annotations in 12 brain tissues from the Roadmap
epigenomes. By default, we used false-discovery rate (FDR) < 0.05 for
significant SNP-gene pairs in the eQTL mapping and FDR < 1E− 6 for
significant chromatin interactions, as suggested by Schmitt et al. [38].

RESULTS
Single-trait GWAS for smoking initiation, cessation, and
alcohol behaviors
Single-trait GWAS for smoking initiation and cessation. We
previously reported 12 GWS loci associated with smoking initiation
and 8 loci associated with smoking cessation among 209,915 EA
individuals in the MVP database [10]. In this study, where we
utilized a larger sample from the MVP (N= 318,694), we identified
16 loci for smoking initiation (Supplementary Fig. 1, Supplemen-
tary Table 1), six of which were previously reported to be linked to
smoking initiation (LINC01360, TEX41, ZBTB20, EPHX2, NCAM1, and
SPATS2, Supplementary Fig. 2), including two identical lead SNPs,
rs6438208 on ZBTB20 and rs78875955 on EPHX2. In addition, we
identified novel loci for smoking initiation, which included several
RNA coding genes: Y_RNA and LINC01833. The intronic SNP
rs4687552 on ITIH3 was also a novel locus associated with
smoking initiation in this sample.
We found eight GWS loci associated with smoking cessation,

including three that we previously reported: rs6011779 on
CHRNA4, rs17602038 near DRD2 and rs11881918 near CYP2A6
(Supplementary Fig. 1 and 2, Supplementary Table 1). We also
previously reported a GWS association of rs112270518 near DBH
with smoking trajectory II (current versus mixed smoking) [10],
which corresponds to the smoking cessation trait. Here,
rs3025360, near DBH, was a GWS locus associated with smoking
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cessation. Rs12341778 on MAPKAP1, with the mapped genes
previously linked to mood disorder [39], also showed GWS
associations with smoking cessation. The other two novel GWS
loci associated with smoking cessation in the present study were
3:49638084:A:AAAATT on BSN and rs650599 on SCAI. Although the
Manhattan plots for the 2 smoking traits stressed different loci and
patterns, shared genetics is evident between these 2 traits
(genetic correlation= 0.6642) (Supplementary Table 1).

Single-trait GWAS for alcohol phenotypes. Compared with our
previous GWASs on AUD and AC in the MVP cohort [7, 27], here
with a larger MVP sample size, we identified eight loci that
overlapped with previously reported loci for AUD (i.e., GCKR, SIX3,
ARHGAP15, ADH1B, SLC39A8, CNTLN, DRD2, and FTO) as well as six
novel loci for AUD (LNC01360, FANCL, LOC646736, PLCL2, KLB, and
MTCH2). Regarding AC, there were 27 GWS loci, six of which
overlapped with loci associated with AUD, including five that we
previously reported. Rs13130101, near KLB, was a GWS locus
associated with AUD, and rs13146907, also near KLB, was a GWS
locus associated with AC (Supplementary Table 1 and Supple-
mentary Fig. 1, 2). KLB is a coreceptor for the hormone FGF21 and
was previously linked to alcohol intake in a European ancestry
population [40]. Altogether, we identified more loci for each
smoking- and alcohol-related trait in the present study with a
larger sample size drawn from the MVP database.

Genetic correlations between smoking- and alcohol-related pheno-
types. The genetic correlation between smoking behaviors and
AUD ranged from 0.59 to 0.62, substantially higher than the
correlation between smoking behaviors and AC (ranging from 0.08

to 0.12) (Supplementary Fig. 3, Supplementary Table 1E). This
pattern indicates that the shared genetic risk between smoking-
related phenotypes and AUD is much greater than that between
smoking-related phenotypes and AC.
Single-trait GWAS in AA and HA samples were summarized in

Supplementary Figs 4 and 5. Few signals were detected, and they
were not included in following analyses.

MTAG analysis for smoking-related behaviors
We conducted a joint-GWAS for two smoking-related phenotypes
(smoking initiation, smoking cessation) and two alcohol-related
phenotypes (AUD and AC) using MTAG. Each smoking phenotype
was paired with AUD or AC.
Leveraging the summary statistics from single-trait GWAS for

smoking initiation and AUD, MTAG identified 21 GWS loci for
smoking initiation (maxFDR= 0.0021); five more than the number
of loci identified through single-trait GWAS for smoking initiation.
Among the 21 loci, 11 were identified by the single-trait GWAS for
smoking initiation, while 10 were novel loci from the MTAG results
(Fig. 2A). The novel loci identified by MTAG included the well-
known loci for alcohol phenotypes, rs1229984 on ADH1B and
rs6589386 on DRD2 (Supplementary Table 2). Another novel locus
for smoking initiation has been linked with smoking-related
phenotypes in previous studies: rs6778080 on USP4 was linked to
the lifetime smoking index and depression [41, 42]. Of note, one
locus identified in both single-trait GWAS and MTAG, rs4144892
on NCAM1, was also identified by a recent multivariate GWAS of
externalizing liability at a nearby SNP rs9919558 [43]. Using MTAG,
we were also able to replicate previous findings that linked
genomic regions to smoking initiation in the Genetic Sequencing

Fig. 2 Multi-trait analysis of GWASs (MTAG) on two smoking phenotypes with alcohol use disorder (AUD). Manhattan plot of MTAG and
Venn plot of the number of genome-wide significant (GWS) loci identified by single-trait GWAS and MTAG for A smoking initiation and
B smoking cessation. The nearest genes to GWS loci are shown. New MTAG-identified loci are shown in red. Smkinit: smoking initiation;
Smkcess: smoking cessation; AUD: alcohol use disorder.
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Consortium of Alcohol and Nicotine Use (GSCAN) study of 1.2
million individuals: [8] 9 loci identified in MTAG colocalized with
GSCAN summary statistics (Supplementary Table 2).
Regarding smoking cessation, MTAG identified 17 GWS loci, 9

more than the single-trait GWAS for smoking cessation (maxFDR=
0.0103). Two of the 17 loci, rs6011779 on CHRNA4 and rs17602038
on DRD2, were identified by both the single-trait GWAS and MTAG
for smoking cessation. Fifteen of these loci attained GWS only in
MTAG (Fig. 2B). As with the MTAG for smoking initiation, we found
that multiple alcohol-related loci also attained GWS for smoking
cessation. These loci included rs1229984 on ADH1B and
rs62048402 on FTO (Supplementary Table 2). Another highly
pleiotropic locus, rs13135092 on SLC39A8, previously associated
with high-density lipoprotein cholesterol (HDL) in current drinkers
[44] and schizophrenia [45], was a GWS locus associated with
smoking cessation. Additionally, rs1260326 on GCKR, which has
been linked to multiple metabolic traits [46], attained GWS for
smoking cessation. Of note, 3 loci identified in MTAG colocalized
with GSCAN summary statistics for smoking cessation:[8]
LINC00637, CHRNA4, PPP6C (Supplementary Table 2).
The intersection of the MTAG loci, single-trait GWAS loci and

previous reported MVP GWAS loci [10] was shown in Supplemen-
tary Fig. 6. The merging of loci within 250 kb (Methods) was
shown in Supplementary Fig. 7.
Of note, compared with the single-trait GWAS results (Supple-

mentary Fig. 1A, 1B), the MTAG of AC and smoking phenotypes
did not yield new loci for smoking phenotypes (Supplementary

Fig. 8). The subsequent analyses included only the results from the
MTAG of each smoking trait and AUD. Together, these findings
show that by leveraging the strongly correlated AUD trait, MTAG
was able to identify more loci for smoking phenotypes than
single-trait GWAS.

Colocalization between AUD and smoking-related behaviors
To identify genetic risk factors shared by AUD and smoking-
related behaviors, we performed hypothesis prioritization for
multi-trait colocalization (HyPrColoc) by pairing single-trait GWAS
for each of the two smoking traits with single-trait GWAS for AUD.
For each pair, we reported the regions whose posterior probability
of colocalization was greater than 0.75 [19]. We identified a total of
10 colocalized regions, including six regions shared by AUD and
smoking initiation and four shared by AUD and smoking cessation
(Fig. 3A). Of note, among the 10 regions shared by AUD and
smoking traits, MTAG identified all as attaining GWS, while single-
trait GWAS identified only 4 out of 10 as GWS loci. Thus, the
greater power of MTAG is most obvious for loci shared by AUD
and smoking-related behaviors. For example, one colocalized SNP
for AUD and smoking initiation, rs6589386 on DRD2, was
marginally significant in the single-trait GWAS (p-value= 7.17E-
06) but attained GWS in MTAG (p-value= 3.58E-10) (Fig. 3B).
Another noteworthy colocalized SNP shared by AUD and two

smoking traits was rs11210229 on LINC01360 (Supplementary Fig.
9). For smoking initiation, MTAG resulted in a moderate increase in
the significance of the association with rs11210229 and other

Fig. 3 Multi-trait colocalization analysis of two smoking traits and alcohol use disorder (AUD). A Hypothesis prioritization for multi-trait
colocalization (HyPrColoc) identified six regions shared by AUD and smoking initiation and four regions shared by AUD and smoking
cessation. We report regions whose posterior probability of colocalization was greater than 0.75. $: p values for the colocalized SNP in the
single-trait GWAS and in MTAG for the corresponding smoking trait. B LocusZoom plots for the association of rs6589386 with smoking
initiation. The genetic variant rs6589386 mapped near DRD2 was identified as a colocalized SNP between AUD and smoking initiation. Smkinit:
smoking initiation; Smkcess: smoking cessation; AUD: alcohol use disorder.
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variants in LD. For smoking cessation, the increase in significance
was greater: rs11210229 did not attain significance in the single-
trait GWAS (p-value= 1.33E-06) but was the lead GWS SNP in
MTAG (p-value= 3.03E-10).

Estimated heritability and enrichment for smoking-related
behaviors
The estimated heritability from MTAG was 1–2% greater for each
smoking trait than the heritability from single-trait GWAS
(Supplementary Table 3). For the two smoking traits, single-trait
GWAS did not detect significant heritability enrichment, while
MTAG identified significant heritability enrichment for smoking
initiation in the anterior caudate (enrichment= 4.08, Wald test
p= 1.86E-05) and the dorsolateral prefrontal cortex (enrichment=
5.41, Wald test p= 4.40E-05) as well as significant heritability
enrichment for smoking cessation in the anterior caudate
(enrichment= 5.64, Wald test p= 2.72E-06) and the colonic
mucosa (enrichment= 7.69, Wald test p= 4.61E-05) (Supplemen-
tary Table 3).

Prioritizing genetic regions for smoking phenotypes based on
MTAG
By integrating MTAG variants with functional genomic features in
brain tissues, we identified biologically important regions/genes
for smoking behaviors. We performed expression quantitative trait
loci (eQTL) and chromatin interaction mapping for the MTAG
summary statistics of two smoking-related behaviors with the
functional mapping and annotation (FUMA) tool [31]. For smoking
initiation, we identified 41 genes mapped by eQTL and 85 genes
mapped by chromatin interaction (Supplementary Table 4).
Among those regions, seven overlapped with MTAG-identified
loci, including two newly identified loci, rs6589386 on DRD2 and
rs6778080 on USP4 (Fig. 4A); this finding indicates the pleiotropic
effects of the MTAG-identified variants on gene expression and
smoking behaviors. For smoking cessation, we identified 46
significant genomic regions by eQTL mapping and 67 regions by
chromatin interaction mapping. Importantly, five of those regions
overlapped with MTAG-identified loci, including four newly
identified loci (Supplementary Table 4). For example, the MTAG-
identified SNP rs10986603 on PPP6C colocalized with PPP6C eQTL
in the anterior cingulate cortex and chromatin interaction in the
cortex (Fig. 4B). PPP6C was recently associated with opioid
addiction in EA individuals according to gene-based and eQTL
analyses [47]. This finding was replicated in a GWAS on opioid use
disorder conducted among MVP participants [48].

DISCUSSION
By leveraging the genetic architecture of AUD, we identified new
loci for smoking behaviors that were not identified using a single-
trait GWAS approach. MTAG revealed genetic variants that affect
both smoking behaviors and AUD. Convergent evidence from
MTAG, colocalization, and functional annotation analyses high-
lighted several AUD-associated genes that contribute to smoking
behaviors. Importantly, the newly identified loci for smoking were
colocalized with eQTL and chromatin interaction in brain regions
previously shown to be relevant for addictive behavior. These
findings underscore prior findings that MTAG is a powerful
approach for identifying genetic variants for complex traits, as it is
particularly important for revealing pleiotropic effects of signifi-
cant variants that contribute to highly comorbid disorders.
Although smoking and alcohol use are closely associated both
epidemiologically and clinically, their genetic associations have
not been well documented. Our study revealed GWS variants that
likely contribute to the co-occurrence of these traits in a large EA
population, thereby providing insight into their pleiotropic effects
on the co-occuring phenotypes.

Performing colocalization between MTAG and GSCAN summary
statistics [8], we replicated previous findings that linked genomic
regions to smoking initiation and smoking cessation and
identified some biologically meaningful overlaps. Among the 21
MTAG-identified loci for smoking initiation, nine colocalized with
the GSCAN study, including three long intergenic nonprotein
coding RNA genes (LINC01360, LINC01833, LINC01392). For
smoking cessation, three of 17 MTAG-loci colocalized with the
GSCAN study, including two novel loci (LINC00637 and PPP6C).
However, AUD-associated genes such as ADH1B and FTO only
attained GWS for smoking initiation or smoking cessation in the
present study.
This study provides novel genomic findings that link well-

established genetic loci for AUD to smoking behavior. These
findings augment well-established phenotypic associations show-
ing both high rates of smoking among individuals with AUD [49]
and greater difficulty in stopping smoking among individuals with
AUD [50]. A functional variant, rs1229984 on ADH1B, has long
been recognized as a risk locus for AC and alcohol-related diseases
across populations with different ancestry. Recently, this locus,
combined with another functional locus on ALDH2, was shown to
be predictive of smoking initiation in a Japanese population [51].
We found that rs1229984 was strongly associated with two
smoking behaviors in the context of AUD, suggesting that
rs1229984 influences smoking behavior for individuals with
problematic alcohol use.
In addition, rs9937709, near FTO, was significantly associated

with smoking cessation. FTO has been linked to obesity [52], AC,
and AUD [7]. We previously reported that rs62033408, a lead SNP
on FTO, was associated with AC and that rs1421085, near FTO, was
associated with AUD. The MTAG results indicated that rs9937709,
near FTO and 19.9 kb from rs1421085, was associated with
smoking behaviors. Another region near DRD2 was important
for alcohol and smoking behaviors: we previously reported
significant associations of rs61902812 with AUD and of
rs3133388 with current versus never smoking, corresponding to
smoking initiation. In this study, MTAG identified multiple novel
loci near DRD2 for different smoking behaviors, including
rs6589386 for smoking initiation and rs17602038 for smoking
cessation. Among them, a recent study on multivariate GWAS has
reported rs6589386 on DRD2 as the most significant signal
associated with the addiction risk factor [53], a general genetic
factor underlying problematic alcohol use, tobacco use, cannabis
use disorder and opioid use disorder [54]. Altogether, these data
suggest that this region is biologically important for under-
standing mechanisms underlying how variation in DRD2 leads to
addictive behaviors.
Despite smoking initiation and smoking cessation being very

different behaviors, their genetic architectures are significantly
correlated: in GSCAN, genetic correlation between initiation and
cessation was 0.396 (se= 0.021) [8]. In our current study, the
genetic correlation between two smoking traits was 0.6642
(se= 0.0401). One possible explanation for these findings is the
complexity of smoking phenotypes [55]. Cigarette smoking has
different stages such as initiation, experimentation, regular use,
dependence, cessation, and relapse [56–58]. Smoking initiation is
defined as “ever versus never” while cessation is defined as
“current versus former”. Most studies used cross-sectional self-
reported data. However, changes in individuals’ smoking status
are not uncommon in the population. Future studies using long-
lasting biomarkers to define never, former, and current smokers
should enhance gene identification. Secondly, a proportion of
genetic loci and pathways are shared between initiation and
cessation traits. Wang and Li reported six shared pathways
between initiation and cessation, including “Dopamine receptor
signaling”, “calcium signaling”, “cAMP-mediated signaling”, “G-
protein-coupled receptor signaling”, “Tyrosine metabolism”, and
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“Tight junction” [59]. Thus, shared loci for smoking traits and AUD
from MTAG analysis are not surprising.
In contrast to the highly informative MTAG for AUD and

smoking behaviors, the MTAG for AC and smoking behaviors did
not show enhanced effects relative to the single-trait GWAS.
Although the reasons for these differences are unclear, we
hypothesize that AC and AUD may have different genetic
architectures. As we reported, AC and AUD have distinct profiles
of genetic correlations [7, 11]. AC is negatively genetically
correlated with some medical diseases, such as coronary artery
disease and Type 2 diabetes, while AUD is positively genetically
correlated with psychiatric diseases, including some addictive
disorders. In contrast, among all these psychiatric disorders, only
major depressive disorder demonstrated a significant (negative)
genetic correlation with AC [7]. This suggests that AUD reflects

more information about addiction, and is thus more genetically
correlated with smoking initiation and cessation. In the MTAG
results presented here, the genetic correlations between AUD and
smoking behaviors were approximately 0.6, while those between
AC and smoking behaviors were approximately 0.1. This pattern is
consistent with the original report [15], which emphasized that
MTAG is most useful for analyzing phenotypes with strong genetic
correlations. Another explanation is that the AC measurements
may have been inaccurate. The AUDIT-C component of the MVP
study is a self-reported measure of alcohol intake over the past
12 months. As we previously reported, individuals who were
lifetime abstainers or former drinkers could have a confounding
effect on gene associations with AC [60]. After removing former
alcohol drinkers, single-trait GWAS identified more loci for AC in a
sample from the UK Biobank. Future studies using longitudinal

Fig. 4 Gene prioritization for smoking traits using the MTAG. Functional mapping and annotation (FUMA) gene prioritization were
performed for A smoking initiation and B smoking cessation. The outer layer shows chromosomal Manhattan plots. The GWS locus is
indicated in blue. Genes mapped by chromatin interactions or eQTL are shown in orange or green, respectively. Genes mapped by both
chromatin interactions and eQTL are shown in red.
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assessment of AC are warranted to deepen our understanding of
the genetic architecture of smoking behaviors in the context of
AUD and AC.
We acknowledge several limitations in the study. A lack of

ancestral diversity limits the findings to EA individuals, due to lack
of availability of GWASs on non-EA individuals that are large
enough to provide adequate statistical power. As larger samples of
other ancestral groups become available, we plan to examine
whether the findings reported here are replicable in other
populations. Second, MTAG is established on the assumption that
all SNPs share the same variance–covariance matrix of effect sizes
across multiple traits [15]. This assumption may not be applicable
to AUD and smoking behavior. Authors of MTAG also stressed one
potential problem for SNPs that are true null for one trait but non-
null for another trait. For such SNPs, MTAG could have false
positives in the first trait [15]. This statement is consistent with a
recent study on opioid use disorder, which showed that increased
detection of MTAG might come with a loss of specificity [17]. In our
analyses, we quantified false discoveries by maxFDR (0.0021 for
smoking initiation, and 0.0103 for smoking cessation), and low
maxFDR values enhanced the confidence for the MTAG identified
variants. Some of the newly identified loci by MTAG were shared
between AUD and smoking behaviors by colocalization, such as
rs6589386 on DRD2. However, there were also MTAG-identified loci
that were not significant in the colocalization analysis, such as
rs1229984 on ADH1B, suggesting that some loci identified by
MTAG may be biased towards AUD. The MTAG-identified
rs1229984 on ADH1B for smoking traits need to be interpreted
with caution. Further investigations are needed to verify whether
this locus revealed by MTAG is truly shared across different
phenotypes. Recently, Xu et al. applied MTAG on four substance
use traits, and reported that MTAG-derived polygenic risk scores
(PRS) showed stronger associations with expected phenotypes
than PRS derived from single-trait GWAS [18]. If a large
independent cohort was available, comparison of predictive power
of PRS constructed from single-trait GWAS versus MTAG associa-
tion statistics might further support the utility of our MTAG
findings. Third, we were unable to differentiate lifetime abstainers
from former alcohol users who quit drinking (possibly due to
alcohol-related problems) in the MVP samples. Future studies that
use biomarkers instead of self-reported data to quantify AC could
benefit from greater statistical power to detect risk loci for smoking
behaviors. Finally, we did not examine the functional effects of the
pleiotropic loci for smoking and AUD; such studies are needed to
understand the mechanisms underlying our findings.
In summary, we identified multiple genetic loci significantly

associated with the co-occurrence of smoking behavior and AUD
in an EA population. The findings highlight several biologically
relevant regions for further study that could elucidate potential
mechanistic targets for therapeutic intervention shared by
smoking behavior and AUD.

DATA AVAILABILITY
The full summary-level association data of the smoking-related traits from this report
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